Slide background

EN 349 White Paper Machine Guards

ID 2154 | | Visite: 11768 | Documenti Marcatura CE AziendePermalink: https://www.certifico.com/id/2154



EN 349 White Paper Machine Guards  

EN 349 Safety of machinery.

Minimum gaps to avoid crushing of parts of the human body (and BS EN 349 as published by BSI in the UK) has been with us since 1993 and has proven to be a very useful standard for machine builders and engineers designing or specifying guards, particularly perimeter guarding.

At the time of writing, the current version of the standard is BS EN 349:1993+A1:2008, with the 2008 amendment just adding a pair of appendices referencing the old and new Machinery Directives. EN 349 is Harmonised to the Machinery Directive 2006/42/EC and provides a presumption of conformity with certain essential health and safety requirements (EHSRs).

Compared with some other machinery safety standards, EN 349 is uncontroversial, simple to understand and straightforward to use, though care has to be taken in its application.

Risk assessment Before reaching for a copy of EN 349 and designing or specifying machine guards it is important to conduct a risk assessment, ideally in line with the requirements of EN ISO 12100:2010 Safety of machinery.

General principles for design. Risk assessment and risk reduction (with the equivalent in the UK being BS EN ISO 12100:2010).

If possible, the machine should be designed to be inherently safe so that it does not need measures such as guarding.

In fact EN 349 can help in this respect because if gaps are sufficiently large, then they do not need to be guarded to prevent crush injuries.

Nevertheless, a risk assessment should be the first step taken.

 An EN ISO 12100:2010 risk assessment should cover all aspects of the machine’s lifecycle, including assembly, maintenance, disassembly and so on.

Although it may not seem obvious when reading EN 349, there is an implication that needs to be considered: it is easy to imagine situations where fingers could be crushed while handling heavy components during assembly, maintenance and disassembly.

Although the formal risk assessment may show the likelihood of occurrence to be small, the severity of the injury (finger amputation) is serious enough that the designer should take reasonably practicable steps to eliminate the risk.

In reality, it would be impossible to design-out all potential finger-crushing gaps, so there will be residual risks for which the appropriate action could be to state in the machine instructions that care must be taken when handling heavy parts (using appropriate lifting equipment if necessary) so as to avoid fingers being crushed.

The risk assessment also needs to take into account the people who are likely to be using the machinery because the anthropomorphic data used to determine the ‘safe’ gaps stated in EN 349 will not cover 100 per cent of the population or those wearing bulky clothing or PPE (personal protective equipment). Furthermore, EN 349 refers to children (if they are in the ‘population at risk’) whereas EN ISO 13857, relating to safety distances (see Normative references below), applies only to people of 14 years and older for upper and lower limbs, and children older than three years where the designer needs to address reaching through openings. 

Explaining the requirements for minimum gaps to avoid crush hazards Jeremy Procter, a Member of standards committees ISO/TC 199/WG 6 (Safety distances and ergonomic aspects) and BSI MCE/3 (Safeguarding of machinery), and Managing Director of Procter Machine Guarding, explains the requirements in EN 349, Safety of Machinery.
Minimum gaps to avoid crushing of parts of the human body.

Procter
1st edition - December 2015

Descrizione Livello Dimensione Downloads
Allegato riservato EN 349 White Paper PROCTER.pdf
Procter - 12.2015
131 kB 86

Tags: Normazione EN 349

Ultimi archiviati Aziende

Commodity specification acetylene
Mar 04, 2022 1261

Commodity specification acetylene

Commodity specification acetylene EIGA Doc 240/22 This publication provides specification requirements for gaseous acetylene. This publication does not attempt to recommend or establish end usage designations for specific types or grades of products. It is suggested that users requiring this kind… Leggi tutto
EIGA DOC 237 2021
Ago 20, 2021 1784

Safe Operation of Acetylene Generator Systems

Safe Operation of Acetylene Generator Systems EIGA Doc. 237/21 This publication is intended to provide general guidelines for safe operation of acetylene generator systems. It is limited to acetylene generation systems using calcium carbide added to water, known as wet generation. The scope… Leggi tutto
Guideline MEWP 03 2021
Mar 19, 2021 1459

Guideline FEM | Mobile Elevating Work Platform

Guideline FEM | Mobile Elevating Work Platform Guideline/Mobile Elevating Work Platform Information & suitability for the task of exiting and/or re-entering at height First Edition - 17.03.2021 This document deals with criteria for the selection of a Mobile Elevating Work Platform (MEWP) for tasks… Leggi tutto
FEM
Ago 14, 2020 2924

Linea Guida Controllo Periodico dei Carrelli Industriali

Linea Guida | Controllo Periodico dei Carrelli Industriali FEM, 2020 I suggerimenti e i consigli contenuti in queste raccomandazioni si basano su specifiche, procedure, standard e altre informazioni raccolte dal gruppo FEM-IT-T. Rappresentano, per quanto a conoscenza di FEM-IT-T, i migliori dati… Leggi tutto
IBS IVD
Nov 14, 2019 4490

Explaining IVD classification issues

Explaining IVD classification issues IBS - White paper 2019 This white paper provides a historical perspective on the development of medical device and IVD device classification, explains the new rules and analyses the implications of the new system. Whilst it offers guidance, it should not be… Leggi tutto

Più letti Aziende

Set 05, 2022 29477

EN ISO 20344 Calzature di sicurezza

Calzature di sicurezza: le norme di riferimento EN ISO 20344: Metodologia di prova e requisiti generali. EN ISO 20345: Calzature di sicurezza con puntale resistente a 200 Joule. EN ISO 20346: Calzature di protezione con puntale resistente a 100 Joule. EN ISO 20347: Calzature da lavoro, non prevista… Leggi tutto