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Energy efficiency and GHG emissions: Prospective scenarios for the chemical and petrochemical 

industry 

This study analyses the savings potential of energy consumption and GHG emissions from cost-effective 

technological improvements in the chemical and petrochemical industry up to 2050. The analysis follows a 

bottom-up approach; that is, it is based on information at facility level of existing plants with their production 

characteristics, best available and innovative technologies. The analysis includes 26 basic chemical compounds 

that cover 75 % of the total energy use (including energy used as feedstock) and more than 90 % of GHG 

emissions of the chemical sector in 2013. The bottom-up approach includes an annual cost-effectiveness 

analysis of the uptake of best available and innovative technologies in each facility up to 2050. The projections 

and assumptions used are in accordance with the reference scenario of the European Commission. In absolute 

terms, from 2013-2050 the total energy consumption increases by 39.2 % and the GHG emissions' decrease by 

14.7 %; these values include the effect (and depend on) a demand increase of 45.6 %. In 2050, without any 

technological improvement, the GHG emissions and energy consumption would be 36 % and 4 % higher, 

respectively. The minor effect of technological improvements on energy savings can be partly explained by the 

fact that 73.5 % of the total energy consumed in the manufacturing of the products covered in this study is 

incorporated in the final products, and most of new technologies have an impact on the direct energy use, but 

not on the non-energy use.  

 

http://www.roads2hy.com/
https://www.americanchemistry.com/


i 

Contents 

Executive summary ............................................................................................... 1 

1 Introduction ...................................................................................................... 4 

2 Overview of the European chemical and petrochemical sector ................................. 6 

2.1 Background of the EU chemical and petrochemical industry in the EU-28 ............ 6 

2.2 Energy consumption and GHG emissions of the EU chemical and petrochemical 
industry ............................................................................................................ 7 

3 Policy context .................................................................................................. 10 

4 Methodology and current status of the EU chemical and petrochemical industry ...... 13 

4.1 Definition of boundaries .............................................................................. 13 

4.2 Data sources for current technologies........................................................... 16 

4.3 Energy consumption and GHG emissions ...................................................... 17 

4.4 Best available techniques (BATs) and Innovative Technologies (ITs) ................ 18 

4.5 Cross-cutting BATs and ITs ......................................................................... 20 

4.5.1 Combined Heat and Power (CHP) ......................................................... 20 

4.5.1.1 CHP in the European chemical and petrochemical industry ................ 20 

4.5.1.2 Cogeneration as Best available technique ........................................ 24 

4.5.2 Carbon capture and storage as Innovative technology ............................ 26 

4.6 Current status of the EU chemical and petrochemical industry ......................... 27 

4.6.1 Technologies used and Production in 2013 ............................................ 28 

4.6.2 Energy consumption and GHG emissions in 2013 ................................... 31 

5 European chemical and petrochemical industry per product .................................. 34 

5.1 Nitric acid ................................................................................................. 34 

5.1.1 Production processes .......................................................................... 35 

5.1.2 Current consumption and emission levels ............................................. 36 

5.1.3 Best available techniques (BATs) ......................................................... 39 

5.1.4 Innovative technologies (ITs) .............................................................. 41 

5.2 Ammonia and Urea .................................................................................... 41 

5.2.1 Production processes .......................................................................... 44 

5.2.2 Current consumption and emission levels ............................................. 46 

5.2.3 Best available techniques (BATs) ......................................................... 48 

5.2.4 Innovative technologies (ITs) .............................................................. 52 

5.3 Steam cracking and Acrylonitrile .................................................................. 53 

5.3.1 Production processes .......................................................................... 56 

5.3.2 Current consumption and emission levels ............................................. 59 

5.3.3 Best available techniques (BATs) ......................................................... 62 

5.3.4 Innovative technologies (ITs) .............................................................. 64 

5.4 Hydrogen, Syngas and Methanol .................................................................. 66 



ii 

5.4.1 Production processes .......................................................................... 68 

5.4.2 Current consumption and emission levels ............................................. 70 

5.4.3 Best available techniques (BATs) ......................................................... 72 

5.4.4 Innovative technologies (ITs) .............................................................. 75 

5.5 Adipic acid ................................................................................................ 76 

5.5.1 Production processes .......................................................................... 77 

5.5.2 Current consumption and emission levels ............................................. 78 

5.5.3 Best available techniques (BATs) ......................................................... 80 

5.5.4 Innovative technologies (ITs) .............................................................. 81 

5.6 Soda ash .................................................................................................. 82 

5.6.1 Production processes .......................................................................... 83 

5.6.2 Current consumption and emission levels ............................................. 85 

5.6.3 Best available techniques (BATs) ......................................................... 86 

5.6.4 Innovative technologies (ITs) .............................................................. 88 

5.7 Aromatics ................................................................................................. 89 

5.7.1 Production processes .......................................................................... 91 

5.7.2 Current consumption and emission levels ............................................. 93 

5.7.3 Best available techniques (BATs) ......................................................... 95 

5.7.4 Innovative technologies (ITs) .............................................................. 96 

5.8 Carbon black ............................................................................................. 97 

5.8.1 Production processes .......................................................................... 98 

5.8.2 Current consumption and emission levels ............................................. 99 

5.8.3 Best available techniques (BATs) ....................................................... 100 

5.8.4 Innovative technologies (ITs) ............................................................ 102 

5.9 Chlor-alkali ............................................................................................. 103 

5.9.1 Production processes ........................................................................ 105 

5.9.2 Current consumption and emission levels ........................................... 107 

5.9.3 Best available techniques (BATs) ....................................................... 109 

5.9.4 Innovative technologies (ITs) ............................................................ 111 

5.10 Ethylene oxide and Ethylene glycol ...................................................... 111 

5.10.1 Production processes ........................................................................ 113 

5.10.2 Current consumption and emission levels ........................................... 114 

5.10.3 Best available techniques (BATs) ....................................................... 116 

5.10.4 Innovative technologies (ITs) ............................................................ 117 

5.11 Ethylene dichloride and Vinyl chloride monomer .................................... 117 

5.11.1 Production processes ........................................................................ 118 

5.11.2 Current consumption and emission levels ........................................... 119 

5.11.3 Best available techniques (BATs) ....................................................... 121 



iii 

5.11.4 Innovative technologies (ITs) ............................................................ 122 

5.12 PVC .................................................................................................. 123 

5.12.1 Production processes ........................................................................ 124 

5.12.2 Current consumption and emission levels ........................................... 125 

5.12.3 Best available techniques (BATs) ....................................................... 126 

5.12.4 Innovative technologies (ITs) ............................................................ 127 

5.13 PVC recycling .................................................................................... 127 

5.13.1 Production processes ........................................................................ 131 

5.13.2 Current consumption and emission levels ........................................... 132 

5.13.3 Best available techniques (BATs) ....................................................... 133 

5.13.4 Innovative technologies (ITs) ............................................................ 135 

5.14 Ethylbenzene and Styrene .................................................................. 136 

5.14.1 Production processes ........................................................................ 137 

5.14.2 Current consumption and emission levels ........................................... 138 

5.14.3 Best available techniques (BATs) ....................................................... 139 

5.14.4 Innovative technologies (ITs) ............................................................ 140 

6 Model ........................................................................................................... 142 

6.1 Basic input in the model ........................................................................... 144 

6.2 Step 1: Calculation of operating costs ........................................................ 145 

6.3 Step 2: Production vs expected demand ..................................................... 147 

6.4 Step 3: Cost-effectiveness analysis for integrating BATs and ITs .................... 148 

7 Input scenarios ............................................................................................. 150 

8 Results ......................................................................................................... 151 

8.1 Total energy consumption and GHG emissions trends ................................... 151 

8.2 Results per product .................................................................................. 153 

8.2.1 Nitric acid ....................................................................................... 153 

8.2.2 Ammonia and Urea .......................................................................... 155 

8.2.3 Steam cracking ............................................................................... 159 

8.2.4 Hydrogen and Methanol .................................................................... 162 

8.2.5 Adipic acid ...................................................................................... 165 

8.2.6 Soda ash ........................................................................................ 167 

8.2.7 Aromatics ....................................................................................... 168 

8.2.8 Carbon black ................................................................................... 169 

8.2.9 Ethylene oxide and Monoethylene glycol ............................................. 170 

8.2.10 Ethylene dichloride and Vinyl chloride monomer .................................. 172 

8.2.11 PVC ................................................................................................ 173 

8.2.12 Ethylbenzene and Styrene ................................................................ 174 

8.2.13 Chlor-alkali ..................................................................................... 177 



iv 

9 Conclusions .................................................................................................. 180 

References ....................................................................................................... 183 

List of figures .................................................................................................... 208 

List of tables ..................................................................................................... 212 

Annex 1: Abbreviations ...................................................................................... 216 

Annex 2: Basic chemical product chains ............................................................... 220 

Ammonia ...................................................................................................... 220 

Ethylene ....................................................................................................... 221 

Propylene ..................................................................................................... 222 

Methanol ...................................................................................................... 223 

Benzene ....................................................................................................... 224 

Toluene ........................................................................................................ 225 

Xylene .......................................................................................................... 226 

Chlor-alkali ................................................................................................... 227 

Annex 3: Calculation of national energy mixes ...................................................... 228 



1 

Executive summary 

In relation to climate action, there is an overall goal at global level to keep the average 

temperature increase caused by human activities below two degrees Celsius compared to 

pre-industrial levels. To achieve this goal, EU action alone is not enough, since the EU is 

responsible for only 11 % of global emissions (PBL, 2014). Nevertheless, there is a need 

for further progress in all areas if the EU is to achieve the 2050 goal (EC, 2011a) of 

reducing emissions to 80-95 % below 1990 levels. This document shows what potential 

contribution the European chemical and petrochemical industry could make to achieve 

this goal. 

The first goal of this study consists of performing an in-depth analysis of the current 

technological status of the chemical and petrochemical industry and the second one the 

assessment of potential for energy efficiency and greenhouse gas (GHG) emissions 

reduction up to 2050. In order to achieve these objectives, a bottom-up model has been 

developed at facility level for the EU industry, with 2013 as starting year.  

The chemical and petrochemical industry is very wide, complex and diverse. These 

characteristics, combined with a lack of publicly available data concerning energy use and 

efficiency, the variety of processes for producing even the same compound and the 

possibility of integration with refineries make the analysis of the industry as a whole 

quite challenging. As a result, the assessment had to be restricted to a selection of 

products that are expected to cover at least 70 % of the sector's final energy and non-

energy use and GHG emissions.  

In total, 26 basic chemical products were included in the analysis, covering chemical 

subsectors such as fertilisers, basic organic and inorganic substances, polymers and 

others. These products were found to cover 75 % of the total energy and non-energy use 

of the industry and the vast majority of the emissions in 2013. For these products, a 

detailed database was compiled, containing information such as the facilities producing 

the 26 chemical products, the production capacities, the processes used, inputs and 

outputs, as well as energy consumption of the processes, GHG emissions and production 

costs. It also includes a list of different technologies that can be applied in the processes 

used and can configure the current pathways so as to improve their performances, from 

the aspect of either energy efficiency or GHG emissions. These technologies can be 

already available or under development and are named best available techniques (BATs) 

or innovative technologies (ITs), respectively. It should be noted though, that this list 

cannot be comprehensive, as for some of them there is no information publicly available.  

In addition, a model was developed in order to analyse the trend in energy consumption 

and GHG emissions to 2050. The model is based on the compiled database and future 

projections that are in accordance with the Reference Scenario of the European 

Commission (EC, 2013). At the core of this model is a cost-effectiveness analysis of the 

potential implementation of the best available and innovative technologies. Making these 

innovations take place can be the way to develop an ambitious policy that in the short-

term aims for industrial production accounting for 20 % of the EU GDP by 2020, 

compared to around 15 % currently (EC, 2014a). A set of several scenarios was tested in 

order to determine the sensitivity of the chemical and petrochemical industry in key 

factors, such as fuel prices, GHG allowances and the maximum payback time of the 

technologies installed.  

Key conclusions 

The results obtained for the different scenarios are quite similar; meaning that already 

for the assumptions of the baseline scenario - that follows the Reference Scenario (EC, 

2013) - practically all potential savings are materialized. The adoption of best available 

and innovative technologies would mean annual savings of 72.5 MtCO2.eq and 225 PJ 

(5.4 Mtoe) by 2050. With these figures the total energy consumption of the products 

included in this study would increase from 2013-2050 by 39.2 % whereas the GHG 

emissions would decrease by 14.7 %, reaching in 2050 129 MtCO2 and 5515 PJ 
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(131.7 Mtoe); these values include the effect (and depend on) an increase by 45.6 % of 

the demand. 

The savings in 2050 of 225 PJ (5.37 Mtoe) and 72.5 MtCO2 correspond to 4 % and 36 % 

of the energy consumption and GHG emissions that would be obtained without the 

contribution from the technological improvement. Regarding the small savings in energy 

consumption, it is worth noting that the chemical and petrochemical industry is unique 

among the energy-intensive industries in the fact that most of the energy consumed is 

stored in its products. For the period 2013-2050, the energy incorporated to the final 

products as raw material (that this, as feedstock), passes from 73 % of all energy 

consumed, to 77 %. The marginal improvement of 225 PJ is due to the fact that non-

energy consumption is not much affected by the new technologies, while it represents 

77 % of the total energy consumption. Most of the about 50 BATs and ITs considered in 

this study reduce the electricity, thermal energy or steam consumed in the processes, 

but not directly the feedstock needed. Out of the total savings of 225 PJ, 16 %can be 

attributed to savings of feedstock, while the rest 84 % (189 PJ in 2050) are savings in 

the electricity or fuels (used for thermal needs or steam). This reduction of 189 PJ 

corresponds to 13 % of the energy that would be consumed by 2050 as electricity, steam 

or heat without the effect of potential technological improvements. The only big changes 

in non-energy consumptions are expected from technologies that replace the fossil 

feedstock with some more sustainable alternative, such as production of hydrogen from 

electrolysis or for chemicals could be produced by biomass. 

The chemical products that have already and will continue, to an extent, to contribute the 

most in savings of GHG emissions are nitric acid and adipic acid. The common 

characteristic of these sub-sectors is the production of nitrous oxide emissions, a 

pollutant with global warming potential(1) equal to 298 and they have a reduction 

potential of more than 75 % and 90 %, respectively. Some other chemical substances, 

such as ethylene, chlorine, ammonia and hydrogen have lower potentials (27 % for 

ethylene, 31 % for chlorine, 54 % for ammonia and 75% for hydrogen), but are playing 

an important role, as they cover about 33 % of the volume of all the 26 chemical 

products.   

Regarding technologies resulting in energy or emission savings, the chemical and 

petrochemical industry is far too diverse and complex such as to include them in this 

summary. Nevertheless, there are two cross-cutting technologies worth mentioning: 

combined heat and power (CHP) and carbon capture and storage (CCS). CHP is already 

installed to a large extent in the chemical industry. According to our simulation there will 

be new CHP units installed with total electrical capacity 2750 MW. New CHP is foreseen in 

seven products: adipic acid, benzene, ethylbenzene, ethylene dichloride, vinyl chloride 

monomer, PVC-S and PVC-E. From the 9.4 TWh/y electricity produced via CHP, only 

12 % is consumed inside the processes, while the excess is sold. 

On the other hand, CCS is foreseen to be installed in all three subsectors that are sources 

of high purity CO2. In the case of ammonia the technology becomes popular only in the 

part of the industry that is not integrated with urea production, but it is only expected, as 

CO2 is usually consumed in producing urea. In the hydrogen industry, about 70 % of the 

facilities install CCS, while in the ethylene oxide subsector 80 %. 

One of the main findings of this study is in line with the need for additional research 

priorities identified in the Energy Union Package (EC, 2015d), such as carbon capture and 

storage, so as to reach the 2050 climate objectives in a cost-effective way. Since a large 

part of the savings uncovered in this study comes from technologies that are not yet 

effectively implemented in the industry, it is clear that both an effective push and 

creating the right conditions are crucial factors for these potential savings to happen. In 

general, it is important that the European chemical and petrochemical industry remains 

competitive, as investments in new technologies depend mainly on this factor. 

                                           
1 Global warming potential is a relative measure of the heat a greenhouse gas traps in the atmosphere. It is a 

comparative measure between each GHG and CO2. Nitrious oxide is 298 times more intensive than CO2. 
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The realisation of this work by the JRC, although an exhausting exercise, and the first of 

a kind for this industry, can always be extended. For example, most of the results of the 

model rely on factors that are exogenous and do not lack uncertainty. The treatment of 

that uncertainty might deserve some attention that cannot be encompassed within the 

scope of this work. Moreover, the analysis can be examined from additional points of 

view, for example, considering alternative scenarios varying the electricity price 

independently of the fuels prices. This latter scenario could throw additional insight about 

the prospects of the CHP in this industry. Also, additional information about the 

performance of current technologies or upcoming technologies could affect the results 

obtained.  
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1 Introduction 

During the last few decades, there is increasing concern about climate change, which has 

created international policy responses. Since 2007, it has been agreed under the 

auspices of the United Framework Convention on Climate Change (UNFCCC) to limit 

global warming to 2oC (EC, 2007a).  

Within this framework, the European Union (EU) endorsed an integrated approach to 

climate and energy policy, in order to mitigate climate change, increase the EU’s energy 

security and to strengthen its competitiveness. To initialise this process, the EU adopted 

a series of targets, known as the "20-20-20" targets, that set three objectives for 2020: 

a 20 % reduction in EU greenhouse gas (GHG) emissions (from 1990 levels); raising the 

share of EU energy consumption produced from renewable resources to 20 %; and a 

20 % improvement in the EU's energy efficiency (EC, 2016a). In a further effort, the 

European Council reconfirmed in February 2011 the objective of reducing GHG emissions 

by 80-95 % by 2050 (EC, 2011a).  

Meeting the ambitions of the EU energy and climate change policy requires changes of 

the European energy system and has a profound effect on its technology mix. The core 

conviction of the EU is that Europe's industrial base should move towards a more 

sustainable future and focus on increased innovation and investment in clean 

technologies and low-carbon energy. The energy-intensive industries are playing an 

important role in this goal, as highlighted by the Industrial Emissions Directive (IED) (EC, 

2010b). The chemical industry is one of these activities.  

Chemical products and technologies are used in almost every area of the world economy. 

This characteristic makes the chemical industry complex. The wide range of products and 

technologies poses a challenge for modelling the whole industry. In addition, lack of 

publicly available detailed energy use and energy efficiency data, a large diversity of 

process routes for producing the same product and, in some cases, integration with 

refineries are factors that make the analysis even more challenging. This report is an 

effort to model the chemical industry of the EU.  

The goal of this study consists of two parts: firstly, to perform an in-depth analysis of the 

current technological status of the chemical and petrochemical industry; and secondly, to 

assess the potential for energy efficiency and greenhouse gas emission reduction up to 

2050. The year of base for our study is 2013, that corresponds to the latest data 

available at the time of writing and the boundary is the European Union's 28 Member 

States.  

For the first goal of this study a detailed database is compiled, containing information at 

facility level for the European chemical industry. Specifically, the database includes 

information, such as an overview of the current plants capacities in the EU-28, the type 

of chemical product manufactured, the different processes used to produce these 

chemicals, inputs and outputs, as well as energy consumption of the processes, GHG 

emissions, production costs and technologies already installed in the facilities, for in total 

26 basic chemical products. It also includes a list of technologies already available, as 

well as innovative, which have a potential of improving energy efficiency or reducing GHG 

emissions, with details such as a quantification of their potential, their investment costs 

and year of availability. The components of the database are collected, where possible, 

from both publicly available information and commercial databases. A first version of the 

database and model was provided by RINA VALUES S.R.I. (under contract no. 108530 to 

the European Commission, JRC-IET Petten).  

The model is built up based on the data collected during the first part of the study. It 

estimates the trends in energy consumption and GHG emissions of the industry, 

depending only on a cost-effectiveness analysis of potential technological improvements. 

Other factors, such as potential policy development are incorporated into the analysis 

only to the extent at which they are already considered into the parameters of the 
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reference scenario of energy and GHG trends in the European Union up to 2050 (EC, 

2013).  

Besides the basic scenario, which depends on the assumptions of the reference scenario, 

a series of six alternative scenarios are analysed, in order to evaluate the influence of 

some factors in the behaviour of the chemical industry. In three of them, the prices of 

fuels and feedstocks were simultaneously increased to several levels, while in another 

three the price of GHG allowances. All scenarios take for granted that cost-effective 

investments (those whose savings are able to recover the investment costs in less than 2 

years –payback period lower than 2 years) are implemented by the industry.  

This report is divided into eight chapters: 

● Chapter 2 is devoted to providing an overview of the EU chemical and 

petrochemical sector including its energy consumption and its GHG emissions.  

● Chapter 3 contains some of the main EU regulations affecting the chemical 

industry.  

● Chapter 4 outlines the methodology followed to evaluate the EU chemical industry 

as a whole and demonstrates the state-of-art in the chemical industry in 2013, as 

this is concluded from the analysis of the individual products. 

● In Chapter 5, the detailed analysis for each product considered is carried out. 

● Chapter 6 outlines the model developed and used for the analysis and discusses 

the input variables. 

● Chapter 7 summarises the different input scenarios that were considered for the 

sensitivity analysis. 

● Chapter 8 demonstrates the results obtained by the simulation and includes the 

discussion of them. 

● Chapter 9 outlines the major conclusions of this study. 
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2 Overview of the European chemical and petrochemical 

sector 

The chemical industry is one of the largest in the world and a robust sector in Europe in 

terms of productivity and employment. It is also in the root of the several other 

industries. In 2013 its global sales were EUR 3.16 billion (Cefic, 2015) and employed 

over seven million people, while more than 95 % of all manufactured products rely on 

chemistry (IEA, 2013).  

This chapter presents the current state of the chemical industry in the EU. Firstly, some 

general information concerning the industry's global position is provided, followed by 

information about energy consumption and GHG emissions. 

2.1 Background of the EU chemical and petrochemical industry in 
the EU-28 

In 2013, the global chemical industry showed marks of recovery compared to previous 

years, but the global sales were driven by China and in general by Asia. The chemical 

industry in the European Union represented 1.1 % of EU GDP (EC, 2014a) and in 2013 

accounted for 16.7 % of the global sales (Cefic, 2015). This percentage increases to 

20 % if we also include Switzerland, Norway, Turkey, Russia and Ukraine (Cefic, 2015). 

It is a mature and rather stable industry, which recovered relatively well from the 

economic crisis of 2008/2009, with a production level in 2013 9 % below the 2008 peak 

and a world market share 10 % lower than in 2001 (EC, 2014a). In the EU in 2013 

chemical companies employed about 1.2 million (Cefic, 2015). 

Figure 1. EU chemical industry sales in 2013 sorted by country (Cefic, 2015) 

 

Figure 1 shows the distribution of the EU chemical industry in the 28 member states. 

Germany is the largest chemical producer, followed by France, Netherlands and 

Italy. Total EU chemicals sales were worth EUR 527 billion (2013), but only 26 % 

of these sales were exported out of the EU market (Cefic, 2015). If intra-EU trade 

is included, in 2013 the European Union was the leading exporter, responsible for 

42.5 % of global exports, and the second strongest importer of chemicals in the 

world (after Asia), with a share of 35.3 % (Cefic, 2015). 
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Products from the chemical industry are present in the majority of everyday life. 

Chemistry is involved in different stages of multiple value added chains; it provides 

solutions in several areas, as alternative energy, transportation, buildings, 

pharmaceuticals and information technology. In the EU, about one third of all chemical 

production is consumed by big industrial users (rubber and plastics, construction, pulp 

and paper and the automotive industry), one third goes to the rest of the industrial 

sector (e.g. metal products, textiles, machinery, wood, mineral products etc.) and the 

last third goes to agriculture, health, trade, food, services and other business activities 

(Cefic, 2015). 

According to (Cefic 2015), the position of the EU chemical industry has weakened during 

the last 20 years, especially in comparison with emerging Asian countries and the Middle 

East. Europe's market share nearly halved since 1992, from 35.2 % to 16.7 %, as 

already mentioned. In 2013, China's share increased to 33.2 % compared to 8.7 % in 

2003 (Cefic, 2015). Asian countries have been advancing in sectors such as basic 

chemicals, while the Middle East is increasingly using its feedstock availability in 

petroleum so as to develop polymers and petrochemicals.  

Concerning the future, projecting trends for the chemical industry forecast growth rates 

for the chemicals sales of about 3 % per year to 2050, but not distributed evenly 

geographically (UNEP, 2012). As has been seen from the last decade, countries such as 

Brazil, China, India, Russia and South Africa have higher growth rates than OECD 

countries. During the period 2012-2020, chemical production was predicted to change 

less than 30 % in Australia, Canada, Japan, Mexico, Western Europe (2) and the United 

States (UNEP, 2012). On the other hand, Latin America, Russia, Korea, Singapore and 

the Middle East had changes between 30 and 40 %, while India had 59 % and China 

66 %.  

2.2 Energy consumption and GHG emissions of the EU chemical 

and petrochemical industry 

The chemical industry consumes energy and raw materials and transforms them into 

products. An important distinction in the use of the different types of energy carriers 

compared to other industries is that energy is used as raw material (or feedstock) and 

also consumed within the own chemical processes (in form of thermal energy or 

electricity consumption). GHG emissions are released when fuels are used for energy 

purposes. However, when fuels are used as feedstock, part of the carbon content may 

end up embedded in the product.  

According to the most recent data (IEA, 2013), the global energy demand of the 

chemical industry was 15 EJ/y excluding feedstock and 42 EJ/y including feedstock, 

corresponding to approximately 10 % of the global energy demand or 28 % of the total 

industrial energy demand (IEA, 2014).  

With the 2030 climate and energy framework, by 2030 the EU aims at increasing energy 

efficiency by at least 27 % (compared to 1990 levels) (EC, 2016b). The European 

chemical industry is already focused on decreasing its total energy consumption and is 

still continuing the efforts to improve its cost-efficient potential  by investing in cost-

effective efficiency measures, for instance by installing Combined Heat and Power (CHP) 

or setting up effective internal energy management systems (EMS). According to (Cefic, 

2015), although production has increased by almost 60 % since 1990, the amount of 

energy consumed in 2012 was reduced by 16 %.  

In 2013, the EU chemical industry consumed 53.952 million tonnes of oil equivalent (toe) 

(2 260 PJ) in the different processes, while the total final non-energy consumption 

attributed to the chemical/petrochemical industry and incorporated as feedstock, was 

74.717 million toe (3 130 PJ) (Eurostat, 2016a). As shown in Figure 2, the profile of fuels 

used in each case is quite different. In the case of energy used as feedstock, 81.4 % is 

                                           
(2) Western Europe for the chemical studies usually included EU (at least EU15) and Norway or Switzerland.   
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petroleum products and mainly naphtha (46.9 %), while natural gas is covering 18.1 % 

of the total energy. On the other hand, natural gas (25.2 %), electrical energy (20.9 %) 

and petroleum products (14.2 %) are the main forms of energy used in the processes 

(Eurostat, 2016a). 

Figure 2. Fuels consumed in the European chemical industry as feedstock and in the processes 
(Eurostat, 2016a) 

 

As a major energy user, the chemical industry worldwide generates 5.5 % of carbon 

dioxide (CO2) emissions (7 % of the global GHG emissions) and is responsible for 17 % 

of all industrial CO2 emissions (IEA, 2013). According to the European Pollutant Release 

and Transfer Register (E-PRTR), the chemical industry in EU-27 emitted in total 145 Mt 

CO2.eq in 2013 (E-PRTR, 2016). In 1990 this value was 327.3 Mt CO2.eq, which means that 

since 1990 there has been a decrease by 55.7 % of the total GHG emissions (Figure 3). 

If we consider the increase in production, which expanded by 60 % during the same 

period (Cefic, 2015), these results are even more relevant, demonstrating the 

commitment of the EU chemical industry in reducing its carbon footprint. It is interesting 

to note, though, that the application of abatement techniques has decreased N2O 

emissions more than 90 %, while CO2 emissions (3) have decreased only by 9 % (Figure 

3).  
  

                                           
(3) These emissions are absolute CO2 and not CO2.eq, so N2O emissions are not already included in them. 
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Figure 3. Comparative evolution of total GHG emissions and absolute CO2 and N2O emissions in 

the European chemical industry in the period 2007-2014 (UNFCCC, 2016) 

 

More than 70 % of the total GHG emissions were CO2 emissions. The second and third 

most important pollutants are methane and nitrous oxide with 15 201 tCH4 and 24 823 

tN2O respectively (E-PRTR, 2016). The global warming potential of the main GHG gases is 

shown in Table 1. 

Table 1. Global warming potential for the main GHG gases 

Greenhouse Gas 
Formula 100-year GWP 

IPCC1 EC2 

Carbon dioxide CO2 1 1 

Methane CH4 25  

Nitrous oxide N2O 298 298 

Sulphur hexafluoride SF6 22 800  
1 Source (IPCC, 2007a) 
2 Source (EC, 2014b) 
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3 Policy context 

Different policies related to environment, climate, energy, product or consumer 

protection have originated legislation relevant for the chemical industry. This chapter 

summarises some basic EU legislation with high impact on the chemical industry, but is 

neither aiming to include all policies affecting the chemical industry, nor explaining them 

in detail; the interested reader can find a more detailed description on the CCA reports 

(EC, 2016c). 

A cornerstone of the European legislation to minimise pollution arising from industrial 

activities is the directives on integrated pollution prevention and control (IPPC). The first 

one was adopted in 1996 (Directive 96/61/EC(4) was replaced in 2008 by Directive 

2008/1/EC (5). Directive 2010/75/EU on industrial emissions (IED) (EC, 2010b), replaced 

the later IPPC Directive and brought together a total of seven directives. It applies to 

industrial installations including those producing organic and inorganic chemicals, 

fertilisers and biocides, pharmaceutical products and explosives on industrial scale by 

chemical or biological processing of substances; and installations refining mineral oil and 

gas. The detailed list of these installations can be found in Annex I of the Directive. These 

installations are obliged to:  

● take all appropriate preventing measures against pollution; 

● apply best available techniques (BATs);  

● cause no significant pollution; 

● reduce, recycle or dispose waste in a manner which creates least pollution;  

● use energy efficiently;  

● prevent accidents and limit their impact;  

● remediate the sites when the activities are ceased. 

In the framework of the IED and the previous IPPC Directive, reference documents on 

Best Available Techniques (BATs), dedicated to the different types of installations of 

Annex I of these directives, are regularly prepared and updated as a result of exchange 

of information between Member States and the industry. These documents are the main 

reference used by the authorities in the Member States so as to issue operating permits. 

The decision granting a permit must contain a number of specific requirements, including 

emission limit values (ELVs) for polluting substances, based on BATs. The reference 

documents do not propose ELVs, but help to determine the appropriate BAT-based 

conditions or to establish general binding rules under Article 17 of the IED.  

Due to the diversity of the chemical industry, there are a several Reference documents 

encompassing all the chemical industry: 

● large Volume Inorganic Chemicals – Ammonia, Acids and Fertilisers (EC, 2007b) 

● large Volume Inorganic Chemicals – Solids and other Industry (EC, 2007c)  

● production of Chlor-alkali (EC, 2014c) 

● large Volume Organic Chemical Industry (EC, 2014d) 

● refining of Mineral oil and gas (EC, 2015a) 

Besides the IED, the legislation related to the EU Emissions Trading System (EU-ETS) is 

also important in the effort to combat climate change reducing industrial GHG emissions 

in a cost-effective way. Directive 2003/87/EC (6) and its amendments (Directives 

2004/101/EC, 2008/101/EC and 2009/29/EC) establish a scheme for GHG emission 

                                           
(4) Further information: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0061:en:HTML 
(5) Further information: http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:l28045&from=EN  
(6) Further information: http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32003L0087&from=EN 
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allowance trading that sets a cap in the total amount of greenhouse gases. This cap 

decreases according to the police objectives established. Companies in sectors covered 

by the EU-ETS have to render the allowances of CO2 emitted.  Within this limit, the 

companies receive or buy emission allowances that can be traded if needed. Every year 

each company has to cover all its emissions with enough allowances, otherwise heavy 

fines are imposed. Industrial installations that are exposed to a significant risk of carbon 

leakage receive higher share of free allowances, in order to ensure their competitiveness. 

The amount of free allocations of allowances is calculated based on the production of 

each installation multiplied by the benchmark value (7) for the particular product. 

Installations in sectors that are exposed in carbon leakage receive 100 % of this quantity 

for free (EC, 2016d). As a result of this legislation, a price is set on carbon, which 

fluctuates according to the market of trading emission allowances. In 2013 the average 

carbon price was EUR 4.38/tCO2 and its variation during the whole year is shown in Figure 

4 (EEX, 2016). 

Figure 4. Fluctuation of the carbon price is the EU ETS auctions during 2013 (EEX, 2016) 

 

The sectors included in the EU-ETS are power and heat generation stations, commercial 

aviation and energy-intensive industry sectors (oil refineries, acids and bulk organic 

chemicals, steel and iron production, cement, aluminium and metals, lime, glass, pulp 

and paper etc.), accounting for the CO2 they emit; installations producing nitric, adipic, 

glyoxal and glyoxlic acids, accounting for the N2O they emit; and aluminium production 

sites, accounting for the perfluorocarbons (PFCs). For these sectors, participation in the 

scheme is mandatory with some exceptions (EC, 2015b).  

Besides climate and environmental legislation, the chemical industry is also affected by 

the energy related directives. According to the Energy Efficiency Directive (EC, 2012a) a 

set of binding measures are established to ensure major energy savings for consumers 

and industry alike. Companies are encouraged to monitor their energy levels and make 

audits of their energy consumption to help them identify ways to reduce it. The 

Renewable Energy Directive (EC, 2009a), on the other hand, is promoting the production 

of energy from renewable sources, requiring that at least 20 % of the EU total energy 

needs are covered by renewable by 2020.  

This study is focusing mainly on the energy efficiency and the GHG emissions of the 

chemical industry and therefore, the legislations presented up to this point are the most 

interesting. Nevertheless there is a series of other legislations that the chemical industry 

has to comply with. The Regulation on registration, evaluation, authorisation and 

                                           
(7) The product benchmarking values reflect the average GHG emissions of the 10% best performing 

installations in the EU 
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restriction of chemicals (REACH) (EC, 2006) is affecting directly the chemical industry 

and it renders industry responsible for assessing and managing risks posed by chemicals 

and providing safety information to the users. Other legislation affecting the chemical 

industry concerns restriction of hazardous materials (Directive 2002/95/EC (8)), waste 

treatment (Directive 2008/98/EC (9) and Directive 1999/31/EC (10)), chemical accident 

prevention (Directive 2012/18/EU (11)), water quality (Directive 2000/60/EC (12)) and 

waste water treatment (Directive 91/271/EEC (13)), as well as labelling and packaging 

(Regulation 1272/2008 (14)) and health and safety (Directive 2014/27/EU (15)).   

 

                                           
(8) Further information: http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32002L0095&from=EN  
(9) Further information: http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN   

(10) Further information: http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN  

(11) Further information: http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32012L0018&from=EN  

(12) Further information: http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-
bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF  

(13) Further information: http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN  

(14) Further information: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:353:0001:1355:en:PDF  

(15) Further information: http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32014L0027&from=EN  

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0095&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0095&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0018&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0018&from=EN
http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:353:0001:1355:en:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:353:0001:1355:en:PDF
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0027&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0027&from=EN
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4 Methodology and current status of the EU chemical and 

petrochemical industry 

This study aims to analyse the improvement margin of energy efficiency and GHG 

emissions of the sector up to 2050 for different scenarios. In order to achieve this 

ambitious goal, the first and not minor milestone is mapping the current technological 

status of the chemical and petrochemical industry in the 28 Member states of the 

European Union. The second milestone is the estimation of the future performance of the 

chemical industry up to 2050. The methodology for this second part of the study is 

presented in Chapter 6. 

Two key challenges arise in attempting to fulfil the first milestone: firstly the uncountable 

number of chemical products and secondly the fact that many products are not produced 

by a single production process. Further difficulties are added, due to lack of publicly 

available detailed energy use and energy efficiency data, complex production sites with 

high level of heat integration, high levels of combined heat and power (CHP) potentials 

and in some cases integration with refineries. The heterogeneity of the industry expands 

further due to some characteristics of the industries, such as different levels of 

technological advancement for each process.  

The chemical sector has a long tradition of energy analysis via benchmarking surveys 

(e.g. for ammonia by the International Fertiliser Industry Association and for steam 

cracking by the Solomon Associates) (UNIDO, 2010a), but they are usually confidential. 

Few studies have been found in the literature trying to map the chemical industry. 

Usually the sector is limited to a few large volume products (Phylipsen et al., 2002; 

Neelis et al., 2007), while others include more products and follow either a top-down or a 

bottom-up approach (Saygin et al., 2011; Serpec-cc, 2009).  

In this study, in order to achieve our objective, a bottom-up model has been developed 

at facility level for the EU Chemical Industry. This chapter presents the methodology and 

the model followed. It includes a discussion of the boundaries of the study, a summary of 

the current technologies present in the industry and an explanation of the best available 

techniques (BATs) and innovative technologies (ITs) considered. The last two sections of 

this chapter refer to the methodology applied concerning cogeneration, a technology 

present in the majority of the industries and our approach about energy consumption and 

GHG emissions. 

4.1 Definition of boundaries 

Due to the challenges mentioned above, it would be unrealistic to analyse all chemical 

and petrochemical products. On the contrary, a more realistic approach is to construct 

specific energy consumptions and GHG emissions for key products. The first step of our 

analysis is, therefore, a literature screening within the variety of products, in order to 

select a group of the most important chemical and petrochemical key products that are 

expected to cover at least 70 % of the sector's final energy and non-energy use and GHG 

emissions. 

Data for the total GHG emissions per product is not generally available. The 

benchmarking study by Ecofys on the chemical industry (Ecofys, 2009) includes a 

ranking of the most emission-intensive activities, but it is based on data from 

2007/2008. The European Pollutant Release and Transfer Register (E-PRTR) includes 

much more detailed and up-to-date information (E-PRTR, 2016). The whole of the 

chemical industry in EU27 emitted in total 145 Mt CO2.eq in 2013, while if only selected 

NACE codes are considered (industrial gases, organic and inorganic basic chemicals, 

fertilisers and plastics in primary forms) the emissions add up to 138 Mt CO2.eq in 2013. 

The European Environmental Agency (EEA) reports GHG emissions for the chemical 

industry and some individual categories, as described by IPCC (Table 2) (EEA, 2015). In 

2013, the EU-28 chemical industry reported in total 62 million tonnes CO2 equivalent. 

Besides the chemical industry (as it is defined in the EEA inventory – category 2B in the 
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reporting format), the boundaries of this study include also emissions from the fuel 

combustion in the chemical industry, which is included in category 1.A.2.c and amounted 

to 75.3 million tonnes CO2 equivalent (EEA, 2015). 

 

Table 2. Greenhouse gas emissions in the EU-28 chemical industry (EEA, 2015) 

Emission sector (Category in EEA report) 

Emissions 

(million tonnes CO2.eq) 

1990 2013 

Ammonia production (2.B.1) 32.2 26.9 

Nitric acid production (2.B.2) 49.5 5.0 

Adipic acid production (2.B.3) 57.6 0.6 

Caprolactam, glyoxal and glyoxylic acid production (2.B.4) 4.3 2.3 

Carbide production (2.B.5) 1.7 0.3 

Titanium dioxide production (2.B.6) 0.25 0.29 

Soda ash production (2.B.7) 2.2 2.1 

Petrochemical and carbon black production (2.B.8) 15.5 17.1 

Fluorochemical production (2.B.9) 40.8 2.9 

Other chemical industry (2.B.10) 2.0 4.5 

Total chemical industry (2B) 206.1 62.0 

Fuel combustion – Chemicals (1.A.2.c) 118.5 75.3 

Total 324.6 137.3 

 

In order to pre-select the key processes included in this study we estimate the 

cumulative percentage of total CO2.eq emissions of the chemical industry, using 

information from (Ecofys and EEA). Table 3 shows the key processes and their role in the 

total GHG emissions of the chemical industry, according to the literature (Ecofys, 2009; 

EEA, 2015).  

 

Table 3. Ranking of the most emission intensive industries in the chemical industry 

according to (Ecofys, 2009; EEA, 2015) 

Processes 
GHG emissions 

Share (%) Cumulative (%) 

Nitric acid 3.8 3.8 

Steam cracking 25.5 29.1 

Ammonia 19.6 48.7 

Adipic acid 0.4 49.2 

Hydrogen / Syngas (incl. Methanol) 9.2 58.3 

Soda ash 1.5 59.9 

Aromatics (BTX) 4.8 64.7 

Carbon black 3.4 68.0 

Ethylene chloride / Vinyl chloride / PVC 2.6 70.6 

Ethylbenzene / Styrene 2.9 73.6 

Ethylene oxide / Monoethylene glycol 2.6 76.2 

Chlorine  10.6 86.8 

Other 13.2 100.0 

These key processes lead to a selection of 26 products. Some processes involve only one 

product (e.g. nitric acid, adipic acid, carbon black and soda ash), while other more than 
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one. From the steam cracking process (SC), the products selected are ethylene, 

propylene, butadiene and butenes, while the main aromatics considered are benzene, 

toluene and xylene. Urea is included in the ammonia process. The detailed list of the 

products included in the scope is shown in Table 4. 

 

Table 4. Products to be included in this study 

Nr. 
Product name Molecular formula 

1 Nitric acid HNO3 

2 Ethylene C2H4 

3 Propylene C3H6 

4 Butadiene C4H6 

5 Butenes C4H8 

6 Acrylonitrile C3H3N 

7 Ammonia NH3 

8 Urea CH4N2O 

9 Adipic acid C6H10O4 

10 Hydrogen H2 

11 Methanol CH4O 

12 Soda ash CN2O3 

13 Benzene C6H6 

14 Toluene C7H8 

15 Xylene C8H10 

16 Carbon black C 

17 Ethylene oxide C2H4O 

18 Monoethylene glycol C2H6O2 

19 Ethylene dichloride C2H4Cl2 

20 Vinyl chloride monomer C2H3Cl 

21 PVC-S (C2H3Cl)n 

22 PVC-E (C2H3Cl)n 

23 PVC recycled (C2H3Cl)n 

24 Ethylbenzene C8H10 

25 Styrene C8H8 

26 Chlorine Cl2 

In order to simplify the calculations some basic assumptions have been made: 

● The plants are operating 24 hours a day during 90 % of the year, unless stated 

differently in the data.  

● The components in the systems behave as ideal gases or ideal solutions.  

● In the environmental analysis, only GHG are considered. 

● If the fuel used for producing thermal energy is not stated clearly in the 

description of each process, natural gas is assumed for the calculation of the 

emission factors. 

● If in the information available for the different ITs, there is no clear indication 

about the year the investment costs refer to, the assumption will depend on the 

date of the corresponding reference.  
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4.2 Data sources for current technologies 

The first milestone of this study is a description of the current technological status of the 

industry. In order to perform an in-depth analysis, a bottom-up approach at facility level 

is followed. The current technology pathways used in the industry were considered for 

each key process or products included in the analysis. As a result, a database was 

developed that includes data of 1004 small, medium and large scale chemical plants in 

the EU-28(16). The number of facilities in our study exceeds the ones used to determine 

the value of the benchmarking values used in the carbon leakage provision of the ETS.  

According to the statistical classification of economic activities in the EU, the plants 

selected corresponded to NACE codes that associate with the products preselected. The 

NACE codes included in this study (Table 5) are subcategories of the C20 code 

"Manufacture of chemicals and chemical products" (EC, 2008). 

Table 5. List of NACE codes considered in this study 

NACE code Activity description 

C20.11 Manufacture of industrial gases 

C20.13 Manufacture of other inorganic basic chemicals 

C20.14 Manufacture of other organic basic chemicals 

C20.15 Manufacture of fertilisers and nitrogen compounds 

C20.16 Manufacture of plastics in primary forms 

The information at facility level about the EU28 chemical industry has been gathered in a 

database that includes information on the production capacity and product manufactured, 

the production pathways, on the energy consumed and on the presence of cogeneration 

units. Most of the plant specific data were provided by (ICIS, 2012) and (IHS, 2015a), 

chemical/petrochemical market information providers, complemented by publicly 

accessible technical or scientific data. Due to confidentiality restrictions, the databases 

contain exclusively data on the processes in use at plant level and installed capacities. 

The information about energy consumptions and emission levels were collected from 

publicly available literature. Emission factors and lower heating (or net calorific) values 

(LHV) of each fuel type considered in this study are according to the 2006 IPCC 

Guidelines (IPCC, 2006a) and the relevant Commission Regulation (EC, 2012b) and are 

shown in Table 6.  

Table 6. Fuel emission factors and lower heating values 

Fuel type Emission factor 

(tCO2/ GJ)  

Lower Heating 

value (MJ/kg) 

Natural gas 0.0561 48.0 

Naphtha  0.0733 44.5 

Heavy fuel oil  0.0774 40.4 

Gas/Diesel oil  0.0741 43.0 

Electricity1 (MWh) 0.465  

Steam2  0.072  
1 Source (EC, 2012c) 
2 Source (Ecofys, 2009) 

Data about the use of cogeneration units were provided by (ESAP, 2012). This database 

provides technical data on cogeneration systems at unit level, considering units above 

100 kWe.  

                                           
(16) For some products (hydrogen and PVC) some fictitious plants were created to represent special cases of the 

industry and as a result the number of the facilities included in the study cannot be directly compared with 
the actual facilities of the whole chemical and petrochemical industry.  
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4.3 Energy consumption and GHG emissions 

Due to the fact that neither of the databases (ICIS, 2012; IHS, 2015a) contain 

information about resources, energy consumptions and GHG emissions at facility level, 

the energy consumption per plant and the GHG emissions were calculated according to 

the data collected for each plant and process.   

The energy use for each process can be measured by either the specific energy 

consumption (SEC) or the energy efficiency index -as developed by (Phylipsen et al., 

2002) and (Neelis et al., 2007) (UNIDO, 2010a). Specific energy consumption is defined 

as the final energy use (fuels, steam or electricity) required to operate a process for the 

production per unit of product, since the fuels enters the factory gate to output of the 

product. On the other hand, the energy efficiency index is used when there is more than 

one product from the process and therefore the total energy use cannot be expressed as 

a function of their total physical output. In this study we use the first type of energy 

indicator; therefore, for each process the SEC is calculated based on the process 

performances according to literature. 

For each plant, the total annual consumption of energy is calculated according to the 

generic formula: 

Total annual energy consumption = SEC * Installed capacity * Load factor 

For the total GHG emissions, we follow the definition used in the EU ETS (EC, 2011b). 

The benchmark values include all production-related direct emissions (the process direct 

emissions and the emissions due to fuel use for energy production). Emissions due to 

electricity used are usually considered outside the boundaries of the benchmark values, 

but are inside for processes where direct emissions and emissions from electricity are to 

a certain extent interchangeable (EC, 2011b). If electricity emissions are included in the 

total GHG emissions or not depends on the product and the distinction is included in 

Table 7.  

In order to convert fuels that are consumed to emissions, emission factors are used. The 

fuel emission factors that are used in this study are the ones mentioned in (IPCC, 2006a) 

and (EC, 2012b) (Table 6).  

Table 7. Benchmark values associated to the products considered in this study (EC, 

2011b; 2012d) 

Product 
Benchmark value 

(tCO2.eq/tproduct) 

Consideration of exchangeability of 

fuel and electricity 

Nitric acid 0.302 Without 

Ethylene 0.702 With 

Propylene 0.702 With 

Acrylonitrile - - 

Ammonia 1.618 With 

Urea - - 

Adipic acid 2.790 Without 

Hydrogen 8.850 With 

Methanol - - 

Soda ash 0.843 Without 

Benzene 1 0.155 With 

Toluene 1 0.155 With 

Xylenes 1 0.155 With 

Carbon black 1.954 With 

Ethylene oxide 0.512 With 

Monoethylene glycol 0.512 With  

Ethylene dichloride -  - 

Vinyl chloride monomer 0.204 Without 
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PVC-S 0.085 Without 

PVC-E 0.238 Without 

PVC recycled - - 

Ethylbenzene - - 

Styrene 0.527 With 

Chlorine 2 1.144 With  
1 For aromatics, the benchmark value is expressed in (EC, 2011b) per CO2 

weighted tonne of mix of aromatics (0.0295 tCO2.eq/CWT) and the CWT function for 

aromatic solvent extraction is equal to 5.25. The multiplication of these two values 

results in the value displayed in Table 7. 
2 In the case of chlorine, the benchmark value in (EC, 2012d) is 2.461 MWh/tproduct 

and it is converted to 1.144 tCO2.eq/tproduct, by using the emission factor of electricity 

(Table 6). 

As the energy consumption and GHG emissions calculations are based on literature, in 

the model all facilities producing the same product with the same manufacturing process 

have the same specific energy consumption and CO2 emissions. However, benchmarking 

curves for the CO2 emissions, according which the benchmarking values (17) were adopted 

by the European Commission (EC, 2011b) show that no two facilities are similar. This 

information at facility level is used to modify the initial values of CO2 emissions in a 

manner, referred to as calibration that resembles the actual benchmarking curves. 

Calibrated specific CO2 emissions for each plant are estimated by the following equation: 

CO2.p,c = (Capp / Capref)
n* CO2.p,o 

where CO2.p,c is the calibrated specific CO2 emissions at plant level, CO2.p,o the original 

specific CO2 emissions of the plant, Capp is the plant capacity, Capref is the plant 

reference capacity and n is a calculated scale coefficient.  

The benchmark values, established by the European Commission for each cluster of 

facilities, relates to 10% of the best performers in terms of CO2.eq emissions. The values 

adopted for each product considered in this study (EC, 2011b; EC, 2012d) can be seen in 

Table 7. 

Benchmarking curves for CO2 emissions and energy consumptions in the chemical 

industry are available only for some of the products (Ecofys, 2009). Capref and n are 

parameters obtained through the model and adopted to fit the given curves. With this 

calibration, each facility of the model is assigned one of the actual CO2 emissions and 

energy consumptions recorded by the industry in 2007/08. This calibration enables the 

model to use values that are quite close to the real ones. 

 

4.4 Best available techniques (BATs) and Innovative Technologies 
(ITs) 

According to the bottom-up approach followed, the potential for energy efficiency 

improvement is the difference between the average current energy consumptions and 

the consumption if best available technologies (BATs) or innovative technologies (ITs) 

were implemented in the chemical processes.  

Best Available Techniques (BATs) are different technologies that can be applied in the 

processes used and can configure the current chemical pathways in order to improve 

their performance. According to the Industrial Emissions Directive (IED) (EC, 2010b), 

BATs are the most effective and advanced stage in the development of activities and 

their methods of operation. They indicate the practical suitability of particular techniques 

for providing the basis for emission limit values and other permit conditions designed to 

                                           
(17) The benchmarking values are used in order to determine the free allocations of allowances under the EU-

ETS legislation, which is explained briefly in Chapter 3. They reflect the average emissions of the 10% best 
performing installations in the EU. 
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prevent or reduce emissions and the impact on the environment as a whole. In the 

present study, BATs are considered to be deployed technologies that can be applied in 

multiple plants and whose integration will enable significant reductions in energy 

consumption or GHG emissions. It should be noted that we follow the term best available 

techniques that is used in the legislation, but we are neither limited nor bound by it in 

the technologies that are taken into consideration.  

Innovative Technologies (ITs) are technologies either under development or applied in a 

small scale, but not yet implemented or well established in Europe. In the IED (EC, 

2010b) they are named "emerging techniques" and are defined as novel techniques, not 

yet commercially developed, that could provide either a higher general level of protection 

of the environment or at least the same level of protection of the environment and higher 

cost savings than existing BATs. For this study, if there is no information about the years 

of expected availability of an IT, that time has been estimated based on the following 

assumptions: 

● If the technology is close to be ready at industrial scale, it is assumed to be 

readily available. (TRL ≥9).  

● If the technology is still under development, but close to scaling up, then 2020 is 

assumed to be its year of availability (TRL 7-8).  

● If the technology is still under development, but far from technical implementation 

(3 < TRL ≤6), its year of availability is assumed to be 2030. 

● If the technology is in the early stages of basic research (TRL ≤ 3), its year of 

availability would have to be after 2040. Nevertheless in most of the cases of so 

early technologies, there is not enough information concerning their performances 

and as a result they fall outside the scope of this study. 

The BATs and ITs considered in this study are analysed per product in Chapter 5. The 

parameters that were taken into consideration for the advantage of using a BAT or an IT 

in a plant are heat and electricity consumptions, feedstock consumptions and GHG 

emissions, all per tonne of product. If a technology leads to reductions in electricity, 

thermal or feedstock consumptions, which will effectively lead to reduction of CO2 

emissions, no additional GHG reduction is taken into consideration, as this would be 

double counting. Technologies, whose improvement potential turned out to be lower than 

3% of the total SEC of the process or have restrictions in their application in the industry, 

are disregarded(18). Concerning innovative technologies, if the availability of it is 

estimated to be further than 2040, they are not taken into consideration in this study.  

As decision making criterion to decide whether an investment in a BAT or an IT is carried 

out we rely on the payback period. This criterion considers feasible investments when 

their investments costs are compensated (paid back) by the annual savings in a less than 

a given number of years (payback period). As a result, information concerning the 

economics of the technologies is also included in the database. This information is 

collected from publicly available sources. In order to compare the different technologies 

and use them in the scenarios, the investment costs should be referring to year 2013 and 

therefore, the historical data collected from the literature needs updating. Cost indices 

are available, so as to estimate the escalation costs over the years. The Chemical 

Engineering Plant Cost Index (CEPCI) is published monthly in the journal Chemical 

Engineering and is the index mostly widely used for the chemical industry. For this study, 

the updates are done using annual indices (Chemical Engineering 2009; 2014) and 

according to the following equation (Towler and Sinnott, 2013): 

Cost in year A = Cost in year B * (Index in year A / Index in year B) 

                                           
(18) This restriction is applied in this study, as there are no actual data concerning the SEC of the individual 

plants, but only information about the theoretical processes. The SEC calculated for each plant in this study 
is based on this information and savings that are less than 3% are considered to be too close to the level of 
uncertainty of the calculation.   
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When applying this equation and the CEPCI indices, it is important to note that the 

indices refer to USD and therefore, the costs have to be expressed in this currency. In 

this study, if there is no clear indication for the year of reference of the investment costs 

found in the literature, the date of publishing the data is assumed to be the reference.  

 

4.5 Cross-cutting BATs and ITs 

 

4.5.1 Combined Heat and Power (CHP) 

4.5.1.1 CHP in the European chemical and petrochemical industry 

Combined Heat and Power (CHP) or cogeneration is a technology used to improve energy 

efficiency through the generation of both heat and power in the same plant. Heat is 

usually used for processes or space-heating purposes, while electricity can be sold out.  

Since 2004 the European Commission is promoting cogeneration with the issuing of 

Directive 2004/8/EC (19) which have been facilitating the installation and operation of 

electrical cogeneration plants. This action was further strengthened under the energy 

efficiency directive, Directive 2012/27/EU (EC, 2012a), that advices the member states 

to carry out a comprehensive assessment of the potential for the application of high-

efficiency cogeneration and adopt policies encouraging it.  

In 2013, the total CHP electrical capacity installed in the EU-28 was 112.97 GW, 24.1% 

of which is located in Germany (Eurostat, 2015). In 2013, the share of CHP in the gross 

electricity generation in the EU-28 was 11.7%. Slovakia and Denmark have the highest 

power production share (77.0 and 50.6% respectively), while the lowest were in Greece, 

France and Cyprus (3.4%, 2.4% and 1.4% respectively). Malta is the only EU country 

that does not use CHP. The total CHP heat production was 2899.3 PJ and the total CHP 

electricity generation was 382.0 TWh (Eurostat, 2015). In 2013, the overall load factor of 

CHP units installed in Europe is 0.39 and this value is taken as reference for estimated 

the energy produced by each CHP unit. The load factor is calculated as following: 

Load factorCHP = Total electricity production  / (Total CHP electrical capacity * 8 760 h)   

A CHP unit has four basic elements: (1) a prime mover (engine or drive system), (2) an 

electricity generator, (3) a heat recovery system and (4) a control system.  The prime 

mover, while driving the electricity generator, creates usable heat that can be recovered. 

CHP units are generally classified by the type of application, prime mover and fuel used. 

The amount of energy produced depends on the Overall Efficiency (OE) (20) of each 

technology. CHP plants generally convert 75-80% of the fuel source into useful energy, 

while the most modern plants reach efficiencies of 90% (IPCC, 2007b). The amount of 

electricity produced is compared to the amount of heat produced and is expressed as the 

power to heat ratio. If this ratio is less than 1, the amount of electricity produced is less 

than the amount of heat.  

Optimal CHP systems are designed as a source of heat, with electricity as a by-product. 

If the electricity demands of the facility are not met with the presence of a CHP unit, the 

additional electricity needed is bought from the grid. Additional heat demand is typically 

supplied by stand-by boilers or boost heaters.  

There are significant economic and environmental advantages to be gained from CHP 

use. Some of these advantages are the following (IEA, 2008; MNP, 2008):  

● energy production exactly where it is needed;  

                                           
(19) Further information: http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32004L0008&from=EN 
(20) Overall efficiency is defined as the sum of electricity and mechanical energy production and useful heat 

output divided by the fuel input used for heat produced in a cogeneration process [EC, 2012a] 
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● reduction of transmission and distribution losses;  

● overall cost savings (for the whole system) for energy use (it should be noted that 

a facility with CHP has to face the extra fuel cost that would not be necessary if all 

power is bought to the grid; 

● lower CO2 emissions of the system (but not for the facility with CHP unit); 

● Reduced reliance on imported fossil fuels; 

● reduced investment in energy system infrastructure, but again the investment 

avoided is in the power system at the partial expense of the cost of the CHP unit; 

● enhanced electricity network stability. 

Concerning emissions, it is important to note that integration of a CHP unit has a double 

effect. On one hand it leads to increased direct emissions due to the increase in fuel 

consumed to feed the CHP and produce heat and electricity. On the other hand it results 

in a reduction of indirect emissions, thanks to avoiding electricity bought from the grid.  

Energy-intensive industrial sites have been traditional hosts for CHP facilities and 

represent more than 80% of the total global electric CHP capacities (IEA, 2007). In 

general, CHP units are applicable to plants with significant heat demands at temperatures 

within the range of medium or low pressure steam.  

For the chemical industry, the general characteristics are high and medium temperature 

demands; typical system sizes 1-500 MWe, while the typical prime movers are steam 

turbines, gas turbines, reciprocating engines and combined cycles for the larger systems 

(IEA, 2008). In total, high temperature demands make up 43% of the total industry 

demand, while medium and low demands correspond to 30% and 27% respectively 

(Ecoheatcool, 2005-2006). Any liquid, gaseous or solid fuels, as well as industrial process 

waste gases are used as fuel sources and there is moderate to high ease of integration 

with renewables and waste energy.  

Unfortunately, Eurostat has stopped publishing statistics on CHP generation and capacity 

by economic activity. The most recent publication (Eurostat, 2006) refers to data from 

2002 and EU-25. According to those data, the chemical and petrochemical industry had 

in total 17.8 GW installed CHP capacity, when the total CHP capacity in EU-25 was 91.6 

GW. By extrapolation of this correlation, the CHP installed capacity in chemical and 

petrochemical industry in 2013 would correspond to around 22 GW. 

As mentioned earlier, there are four types of typical prime movers: 

● Steam turbines: It is the simplest cogeneration power plant, where electricity is 

generated from the steam produced in a boiler. They can operate in a variety of 

fuels including oil products, natural gas, solid waste, coal, wood, wood waste and 

agricultural by-products. The capacity of commercially available steam turbines 

typically ranges between 50 kW to more than 250 MW (EPA, 2015). The power to 

heat ratio of these plants is normally 0.3-0.5 (EC, 2009b).  

● Gas turbines: Gas turbines are typically available in sizes in the range 0.5 MW to 

more than 300 MW and can operate on a variety of fuels such as natural, 

synthetic or landfill gas and fuel oils (EPA, 2015). Usually they are used with heat 

recovery, where heat is generated with the hot flue-gases of the turbine. 

Temperatures can be as high as 430-480oC for smaller industrial turbines and up 

to 590oC for new large central station utility machines.  

● Internal combustion or reciprocating engines: In these systems, heat can be 

recovered from lubrication oil and engine cooling water, as well as from exhaust 

gases. Chemically bound energy in fuel is converted to thermal energy by 

combustion. They have high single cycle efficiency and relatively high exhaust gas 

and cooling water temperatures. 
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● Combined cycle: These plants consist of one or more gas turbines connected to 

one or more steam turbines. The heat from the exhaust gases of the gas turbine 

is recovered for the steam turbine. The advantage of this system is a high power 

to heat ratio and a high efficiency.  

These types of prime movers are further described and compared in the BREF for Energy 

Efficiency (EC, 2009b). Table 8 shows the default values for power to heat ratio 

suggested in Directive 2012/27/EU (EC, 2012a) and the overall efficiencies (IPCC, 

2007b).  

Table 8. Default power to heat ratios and overall efficiencies for CHP technologies 

Type of CHP unit 
Power to heat ratio       

(EC, 2012a) 

Overall efficiency 

(IPCC, 2007b; 

EC, 2009b) 

Combined cycle gas turbine with heat recovery 0.95 0.85 

Steam backpressure turbine 0.45 0.80 

Gas turbine with heat recovery  0.55 0.76 

Internal combustion engine 0.75 0.875 

Concerning installation costs, they can vary significantly and can depend on geographical 

factors, specific site requirements, whether the system is a new or retrofit application 

and if it includes emission control systems (EPA, 2015). There is definite economy of 

scale, with larger projects having lower costs per kW. The values available in the 

literature (EPA, 2015; Serpec-cc, 2009; IEA ETSAP, 2010) for representative CHP 

systems are summarised in Table 9. (EPA, 2015) includes a detailed breakdown of the 

estimated values and reports all assumptions. In (Serpec-cc, 2009) they assume that 

CHP investment costs will not decrease over time due to learning effects. The values 

from (Serpec-cc, 2009) and (IEA ETSAP, 2010) are rather in accordance, while the 

values reported by (EPA, 2015) are a bit higher.  

In the current study, the CHP facilities considered are of industrial scale, therefore we 

assume that the investment costs will be rather at the lowest range of the values from 

literature, due to scale of size.  

Table 9. Costs of typical CHP systems 

Type of CHP unit Size 

Costs 

Source Investment 
Operation/ 

maintenance 

(EUR2013/kW) 

Combined cycle  

>100 MW 750   (Serpec-cc, 2009) 

50-100 MW 1 000   (Serpec-cc, 2009) 

 750-1 200 35 (IEA ETSAP, 2010) 

Gas turbine  

25-50 MW 815  (Serpec-cc, 2009) 

<25 MW 1250  (Serpec-cc, 2009) 

0.5-15 MW 2 500-940   (EPA, 2015) 

 650-1 050 27 (IEA ETSAP, 2010) 

Backpressure 

steam turbine 

0.5-15 MW 830-490   (EPA, 2015) 

Internal 

combustion engine 

0.1-9 MW 2 180-1 070   (EPA, 2015) 

 580-1350 170 (IEA ETSAP, 2010) 

As mentioned earlier, the database developed for this study includes information on 

cogeneration at plant level. These data were provided by (ESAP, 2012). Based on these 
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data, our database includes 495 chemical and petrochemical installations with a total CHP 

electrical capacity equal to 20027.85 MW gross and 19083.24 MW net.   

ESAP includes information only on the CHP electrical capacity of the plants, but reports 

also the type of the units used. As a result, the CHP heat capacity of the plants can be 

calculated from the electrical capacity using the power to heat ratio of the unit used. In 

case more than one CHP technology is used in a plant, the average of power to heat 

ratios and overall efficiencies was considered.  

Figure 5 and Figure 6 show the distribution of CHP units and net electrical capacity per 

country in the chemical and petrochemical sector of EU-28. More than 80% of these units 

use one of the four most typical prime movers or combination of them. 

As already mentioned, for each process the SEC is being calculated, based on the process 

performances according to literature. The important factors in determining SEC per plant 

are the fuel requirements and the electricity bought from the grid. We assume that if the 

CHP unit does not cover the heat or electricity demand of the facility the share of energy 

missing is compensated through separate heat production, or electricity bought to the 

grid. On the contrary, if the CHP production is higher than the plant demands, the excess 

is sold. In each facility, when accounting for energy consumption and GHG emissions, we 

discount the fuel consumption and GHG emissions associated to the energy (heat and 

electricity) exported. 

 

Figure 5. Number of CHP units installed per country in the European chemical industry in 

2013 
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Figure 6. Net CHP electrical capacity installed per country in the European chemical 

industry 

 

The methodology developed to calculate the overall energy balance, takes into account 

the energy produced at plant level by the CHP unit. If the plant has a cogeneration unit, 

we need to evaluate the potential deficits, that is, the difference between the plant's 

electricity and thermal energy requirements and the energy self-produced:  

● Delta Electricity: Δelectr. = Plant Electrical Demand – CHP electrical production  

If Δelectr<0 the plant self-produces more electricity than it needs, and it is assumed 

that it does not need to buy electricity from the grid. If Δelectr.>0 the electricity 

generated by the cogeneration does not cover the annual electricity requirements 

of the process, so the difference will have to be provided by the grid. 

● Delta Heat: Δheat = Plant Thermal Demand – CHP thermal production 

Similarly, if Δheat<0 there is a surplus of heat. If Δheat>0 the heat generated by the 

cogeneration is not covering the annual thermal requirements of the process, so 

the difference will have to be produced in a different way. 

4.5.1.2 Cogeneration as Best available technique 

Cogeneration appears as a best available technique for most chemical products. As a 

result, it was decided to include it separately, as a cross-cutting technique.  

In order for CHP to be included in this study as a BAT, we need to determine its energy-

efficiency improvement potential, emission reduction potential and investment costs. The 

technologies already used in the plants were identified at plant level using the (ESAP, 

2012) database. Table 10 shows the most common CHP technologies identified. 
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Table 10. Primary energy savings due to integration of cogeneration 

Type of CHP technology 
Ref Hη 

1 Ref Eη 
2 CHP Hη CHP Eη PES 

Combined cycle 0.82 0.35-0.55 0.44 0.41 22.2-41.4% 

Gas turbine 0.82 0.25-0.42 0.49 0.27 19.4-40.4% 

Internal combustion engine 

with heat recovery  

0.82 0.25-0.45 0.50 0.38 34.0-53.0% 

Steam turbine 0.81 0.17-0.35 0.55 0.25 28.2-53.4% 
1 Source (EC, 2015c) 
2 Source (IPCC, 2007b) 

Primary energy savings (PES) from integration of a CHP unit instead of separate 

electricity and heat production were calculated according to the following formula (EC, 

2012a): 

𝑃𝐸𝑆 = (1 −
1

𝐶𝐻𝑃 𝐻𝜂
𝑅𝑒𝑓 𝐻𝜂

+
𝐶𝐻𝑃 𝐸𝜂
𝑅𝑒𝑓 𝐸𝜂

) × 100% 

Where CHP Hη is the heat efficiency of the cogeneration production (21)  

 Ref Hη the efficiency reference value for separate heat production 

 CHP Eη the electrical efficiency of the cogeneration production (22) 

 Ref Eη the efficiency reference value for separate electricity production. 

The reference values for separate heat production were determined according to (EC, 

2015c). They depend on the fuel that feeds the power or heat installation and on the 

construction year of the generation unit. For each CHP technology, the value chosen 

corresponds to the fuel most frequently used in the chemical industry to feed this 

technology and for year of construction before 2012. On the other hand, the reference 

values for separate electricity production were determined according to (IPCC, 2007b). 

We consider that the values in the regulations for heat are representative of the heat 

technologies considered in this study although they depend only on the fuel used, but in 

the case of electricity the differences among the CHP technologies are an important 

factor that has to be taken into consideration.  

The heat and electricity efficiency of the cogeneration units was calculated from the 

overall efficiencies and the power to heat ratio for each technology (Table 8): 

CHP Hη = OE / (Ratio+1) 

CHP Eη = Ratio * CHP Hη 

Table 10 summarises the estimations of efficiencies and primary energy savings. 

Concerning emissions, the cogeneration increases direct emissions due to the fuel used 

to produce heat and electricity, but decreases the overall CO2 emissions (considering 

both, the power and chemical sector together), thanks to lower primary energy 

consumption than when producing the heat and power separately. 

In practical terms, although this study estimates the primary energy savings due to CHP, 

it neither reports the extra CO2 emissions from the power self-generated that is 

exported, nor the primary energy savings. In the model and analysis presented in 

chapters 6-8, any investment in the CHP can only be justified if the revenue from the 

electricity sold (and savings from the electricity not bought) justifies the extra cost of the 

                                           
(21) Heat efficiency of cogeneration is defined as the useful heat output divided by the fuel input to produce the 

sum of heat and electricity from cogeneration 
(22) Electrical efficiency of cogeneration is defined as the electricity produced divided by the fuel input to 

produce the sum of heat and electricity from cogeneration 
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additional fossil fuel consumption, additional CO2 emissions and investment cost of the 

CHP. 

 

4.5.2 Carbon capture and storage as Innovative technology 

Similarly to co-generation, CO2 capture and storage (CCS) is a horizontal innovative 

technology for a number of chemical products. It is considered to be a significant 

abatement technique, as it has also the potential to reduce CO2 emissions, and it is 

recognised as such by several intergovernmental scientific and environmental 

organisations (IPCC, 2013). In the European Union, there is a Directive on geological 

storage of CO2 since 2009 (EC, 2009d), and the potential of CCS has been acknowledged 

in the 2030 Climate and Energy Policy Framework (EC, 2016e) and it has been included 

in the technology portfolio of the European Union Reference scenario (EC, 2013) as a 

central low-carbon technology to achieve the GHG emission reduction objectives.  

CCS involves trapping CO2 emitted from facilities, compressing it and transporting it to a 

suitable storage site via pipeline or ship or combination of the two, where it is injected in 

underground geological formations (EC, 2016e). It was initially aiming at capturing CO2 

produced in the power sector, but it can be applied in several industrial sectors (Global 

CCS Institute, 2016). According to the European Technology Platform for zero emission 

fossil fuel power plants (ZEP) 34 plants across the EU member states can be 

commercialised as of 2020 (ZEP, 2008) These facilities concern besides the power sector, 

also the steel and chemical industries.  

In the chemical industry, CCS can be applied in the ammonia and urea production chain, 

the hydrogen production industry and the ethylene oxide industry, as well as some other 

applications, such as formic acid, polymers and inorganic carbons production. Several of 

the big chemical companies present in Europe (such as BASF, Bayern, Clariant, Lafarge, 

Haldor Topsoe, Linde, Repsol, Siemens, Solvay, ThussenKrupps, Total etc.) have been 

identified as even moving towards utilisation of captured CO2 as raw material (SBC, 

2012). 

Several process of the chemical industry result in CO2 streams of high purity and 

concentration (UNIDO, 2010b). In these cases, the energy-intensive CO2 separation step 

is not necessary and the costs of CCS would be lower. Such processes include hydrogen 

production (mainly from refineries), ammonia and ammonia-based fertilisers production 

and a range of organic chemicals processes, such as ethylene oxide production. Examples 

of plants applying CCS are, in the case of hydrogen production the Pernis refinery in the 

Netherlands uses captured CO2 to fertilise greenhouses and in the case of ammonia, all 

processes producing urea (UNIDO, 2010c).  

Typical costs of CO2 capture for industrial plants were estimated to range between 28 

and EUR 422004/tCO2 (Ecofys & TNO, 2004). For ammonia plants and hydrogen production 

with pure CO2 the costs can be as low as 3 EUR2004/tCO2, but if CO2 is in flue gas it can be 

around EUR 362004/tCO2. In the case of petrochemical plants typical costs are EUR 32-36 

2004/tCO2. These values exclude cost of compression, which would add EUR 6-10 2004/tCO2. 

(Ecofys & TNO, 2004). 

Table 11 includes the performance of applying CCS in the chemical and petrochemical 

sector. The various types of application of this technology have been included in our 

database with the characteristics summarised in Table 11. The investment costs for the 

rest of the applications have been calculated as follow: 

Investment cost = GHG Reduction × Process emission factor × CCS cost × Reference 

capacity 
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Table 11. CCS characteristics as innovative technology 

CCS in 
Ammonia 

production 

Hydrogen 

production 

Ethylene oxide 

production 

Process applicability Ammonia Hydrogen Ethylene oxide 

CO2 reduction 81 % 1 73-96 % 2 50 % 3 

Year of availability  Currently mature Currently mature 2020 4 

Cost (EUR 2013/tCO2) 39  39 39 

Energy requirement CO2 readily available 

Investment cost 

(EUR 2013) 

25 572 100 6 700 000 500 000 

Reference capacity 

(kt/y) 

500 18.13 260 

1 Source (CE Delft, 2012) 
2 Source (IPCC, 2005) 
3 Due to lack of data, a conservative value of 50% has been assumed.  
4 Lack of information. According to (Carbon Counts, 2010) this industry shows low interest to 
implement CCS. 

4.6 Current status of the EU chemical and petrochemical industry 

The following chapter includes the detailed description of the technologies used in the 

chemical industry for producing the 26 chemical products considered in this study. In this 

paragraph, this information is summarised, in order to demonstrate the status of the EU 

chemical industry in 2013. 

Figure 7. Distribution of chemical facilities included in the database in EU-28 by country 

 

As it has been explained, we have followed a bottom-up analysis at facility level. The 

database, in which we have gathered all the related information, includes more than 

1 000 facilities, 954 of which are still operating. This number includes the fictitious 

facilities, created in the case of hydrogen and PVC recycling, which summarise the 

several small facilities producing these products. This means that number of true facilities 

covered is much higher. Figure 7 shows the distribution of these facilities per country. 
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More than 70% of the total number of facilities are located in 7 Member States (Belgium, 

Germany, Spain, France, Italy, Netherland and United Kingdom), while in Cyprus, Latvia, 

Luxembourg and Malta only count with fictitious facilities. Regarding capacities, the same 

first 7 countries together with Poland cover more than 80% of the total.  

More than 50% of the total installed capacity considered in the current study corresponds 

to five products: ethylene, nitric acid, ammonia, propylene and urea (Figure 8). This 

result confirms that high value chemicals and fertilisers are also large volume chemicals 

in the EU. Facilities producing nitric acid are mainly located in Germany, France, 

Netherlands, Poland, Belgium, Romania and Lithuania (this countries account for 69.3% 

of nitric acid installed capacity), while the same countries cover 72.7% of the total 

installed capacity of ammonia and 78.8% of urea. In the case of ethylene more than 

80% is concentrated in Germany, Netherlands, France, United Kingdom, Belgium, Italy 

and Spain.  

Figure 8. Distribution of chemical facilities' capacities included in the database in EU-28 

by product 

 

4.6.1 Technologies used and Production in 2013 

Table 12 shows the current technology used in manufacturing the key 

products/processes included in this study. It includes also data on capacities and 

production volumes for each process/product. The typical load factor for each process 

can be determined by dividing the production volumes with the capacities. Installed 

capacities refer to year 2013, while for the production volumes there were not always 

available data. In the cases where data were not available, a typical load factor was 

assumed, which was the average of the load factors known (calculated at 0.77).   
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Table 12. Technology pathways in use for manufacturing each key product / process in 

the EU-28 and capacity, load factor and production in 2013 

Key product or 

process 

Technological 

pathway 

Installed 

capacity 

(kt/y) 

Load 

factor 

Production 

volume 

(kt/y) 

Fuel used  

Nitric acid 

Ostwald: Dual 

Pressure M/H 
23 223.6 0.73 1 16 953.2 

Natural gas  

Ostwald: Single 

Pressure M/M 
1 105.0 0.73 1 806.7 

Natural gas  

Steam cracking 

(SC) – Fluid 

catalytic 

cracking (FCC) 

– Acrylonitrile 

SC Ethane Based 4 075.0 0.83 2 3 382.3 Ethane  

SC Gas Oil Based 1 460.0 0.83 2 1 211.8 Gas oil  

SC Naphtha 

Based - Ethylene 
19 590.0 0.83 2 16 259.7 

Naphtha  

SC Naphtha 

Based - 

Propylene 

13 748.0 0.83 2 11 410.8 

Naphtha  

Fluid Catalytic 

Cracking 
5 468.0 0.76 3 4 155.7 

Refinery gas  

Ammoxidation 

(Sohio Process) 
855.0 0.77 658.4 

Natural gas  

Ammonia 

Natural Gas 

Based 
18 647.0 0.79 4 14 731.1 

Natural gas  

Heavy Residue 

Based 
1179.0 0.89 4 1049.3 

Heavy fuel 

oil 

 

Urea Urea Synthesis 12 455.0 0.81 10 088.6 Natural gas  

Adipic acid 

Cyclohexane KA 

Oxidation 
680.0 0.65 5 442.0 

Natural gas  

Phenol KA 

Oxidation 
192.0 0.65 5 124.8 

Natural gas  

Hydrogen - 

Methanol 

Steam Reforming 2 161.7 0.77 1 664.5 Natural gas  

Partial Oxidation 122.3 0.77 94.2 
Heavy fuel 

oil 

 

Naphtha 

Reforming 
289.8 0.77 223.1 

Naphtha  

Average 

Reforming 
186.9 0.77 143.9 

Natural gas  

By-product 

Hydrogen 
2 091.3 0.77 1 610.3 

Natural gas  

Steam Reforming 

- Methanol 
1 030.0 0.82 6 844.6 

Natural gas  

Heavy Oil Partial 

Oxidation - 

Methanol 

1 345.0 0.82 6  1 102.9 

Heavy fuel 

oil 

 

Aromatics 

Pygas Based - 

Benzene 
6 975.0 0.69 7 4 812.8 

Naphtha  

Pygas Based - 

Toluene 
934.0 0.71 7 663.1 

Naphtha  
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Pygas Based - 

Xylenes 
570.0 0.63 7 359.1 

Naphtha  

Naphtha Based - 

Benzene 
3 396.0 0.69 7 2 343.2 

Naphtha  

Naphtha Based - 

Toluene 
2 033.0 0.71 7  1 443.4 

Naphtha  

Naphtha Based - 

Xylenes 
4360.0 0.63 7 2746.8 

Naphtha  

Soda ash Solvay 8 285.0 0.85 8 7 042.3 Natural gas  

Carbon black Furnace Black 1 248.0 0.77 961.0 
Heavy fuel 

oil 

 

Ethylene Oxide Direct Oxidation 3 045.0 0.87 9 2 649.2  Natural gas  

Monoethylene 

Glycol 
Hydration 1 340.0 0.83 9 1 112.2 Natural gas 

 

Ethylene 

dichloride 

Direct 

Chlorination 
5 912.0 0.77 4 552.2 

Natural gas  

Oxychlorination 5 947.0 0.77 4 579.2 Natural gas  

Vinyl chloride 

monomer 
EDC Cracking 6 810.0 0.77 5 243.7 Natural gas 

 

PVC-S 
Suspension 

Polymerisation 
6 550.0 0.80 10 5240.0 

Natural gas  

PVC-E 
Emulsion 

Polymerisation 
814.0 0.80 10 651.2 

Natural gas  

PVC recycled 
Mechanical 

Recycling 
224.3 0.80 10 179.4 

Natural gas  

Ethylbenzene Friedel Crafts 6 245 0.77 4 808.7 Natural gas  

Styrene 
EB 

Dehydrogenation 
5 455.0 0.86 9 4 691.3 

Natural gas  

Chlorine 

Chlor-alkali 

Mercury Cell 
3 029.0 0.80 11 2 423.2 

Natural gas  

Chlor-alkali 

Diaphragm Cell 
1 679.0 0.80 11 1 343.2 

Natural gas  

Chlor-alkali 

Membrane Cell 
7 347.0 0.80 11 5 877.6 

Natural gas  

1 Source (IHS, 2015a) – Load factors 0.71 and 0.78 for western and eastern Europe respectively, as IHS defines 
them.  
2 Source (Petrochemicals, 2016) and (IHS, 2015a) 
3 Source (IHS, 2014a) – Load factor 0.74 in western Europe, 0.79 in Poland, 0.80 in Hungary and 0.84 in Romania. 
4 Source (IHS, 2015a) – Load factors 0.89 and 0.69 for western and eastern Europe respectively, as IHS defines 
them. 
5 Source (IHS,2015a) 
6 Source (IHS, 2014a) 
7 Source (IHS, 2015a) – Load factors for western and eastern Europe respectively, as IHS defines them: 0.71 and 
0.66 for benzene, 0.80 and 0.62 for toluene. For xylenes the value of mixed xylenes is used.  

8 Source (IHS, 2015a) – Load factors 0.82 and 0.90 for western and eastern Europe respectively, as IHS defines 
them. 
9 Source (Petrochemicals, 2016) 
10 Source (Ullmann's Encyclopaedia, 2014) 
11 Source (Euro Chlor, 2014) 

Each production process is also associated with a typical fuel, based on the type of 

feedstock used (Table 12). In the cases where the type of feedstock did not allow the 

clear attribution of a typical fuel, natural gas has been used by default, since it is the fuel 

most used in the EU chemical industry. 
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4.6.2 Energy consumption and GHG emissions in 2013 

Following the bottom-up analysis that is explained in the methodology and according to 

the performances of the processes that are described in detail in Chapter 5, the energy 

consumption and the energy incorporated as feedstock in the products can be calculated 

for the starting year of 2013. 

The total energy consumption is calculated from the sum of the electricity and heat 

consumptions of each process, according to the following equation: 

Energy consumption = (Process electricity consumption * 3.6 * 3 + Process heat 

consumption) * Production 

It should be noted that in the above equation(23), the process electricity consumption is 

multiplied by a factor of 3. This is due to the fact that when estimating the total 

electricity consumptions of the chemical sector in a bottom-up analysis, the estimation 

does not cover more than a third of the total electricity used (IEA, 2009a). The part that 

cannot be quantified is attributed to pumping equipment, and auxiliary uses.    

The total energy consumption for the EU chemical industry in 2013 is shown in Table 13. 

It is also compared with the value of total energy consumed in the chemical and 

petrochemical sector according to Eurostat (Eurostat, 2016a). As it can be seen with the 

products considered in the study and based on the theoretical values for energy 

consumptions of each process, which are explained in detail in Chapter 5, the present 

study covers close to 60% of the energy consumption of the chemical industry according 

to (Eurostat, 2016a).   

Table 13. Thermal energy and electricity consumption of the chemical industry in 2013 

Products 

Energy consumptions Cumulative 

thermal energy 

and electricity 

consumptions  

(%) 

Fossil 

fuel+Steam 

(PJ) 

Electricity 

(PJ) 

Total energy 

(thermal + 

electricity) 

(PJ) (%) 

Nitric acid 0.35 0.8 1.15 0.05 0.05 

Steam cracking 273.1 6.0 279.1 12.4 12.5 

Ammonia/ Urea 121.7 9.0 130.8 5.8 18.3 

Adipic acid 17.8 0.4 18.2 0.8 19.1 

Hydrogen/ 

Syngas 

39.3 49.6 88.9 4.0 23.0 

Soda ash 98.1 2.1 100.2 4.5 27.5 

Aromatics 69.9 0.5 70.3 3.3 30.6 

Carbon black 63.9 2.1 66.0 2.9 33.5 

EO/MEG 15.5 3.3 18.7 0.8 34.7 

EDC/VCM/PVC 113.3 23.9 137.2 6.1 40.5 

PVC Recycled 0,00 8.6 8.6 0.4 40.9 

EB/STY 50.8 3.7 54.5 2.4 43.3 

Chlorine 37.9 241.4 279.4 12.4 55.7 

Others 693.7 303.4 997.0 44.3  

Total 1 595.3 654.5 2 250.0 100.0%  

                                           
(23) The factor 3.6 in the equation is the conversion factor from kWh to MJ.  
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Besides the energy consumption as thermal energy and electricity, the chemical industry 

is the main industry consuming energy as feedstock, that is, consuming energy as a raw 

material. The chemical industry accounted for more than 76% of the 4.1 PJ of final non-

energy consumption in 2013 (Eurostat, 2016a).  

The energy incorporated as feedstock is calculated according to the following equation: 

Energy incorporated as feedstock = Σ(Eproduct – Eproduct_reused) 

where Eproduct is the total energy incorporated as feedstock in the final product, calculated 

by multiplying the production of each product with its energy content; and Eproduct_reused is 

the amount of products used as feedstock in some other of the processes considered in 

this study. Such examples are ammonia, which is used in the production of nitric acid 

and urea, or ethylene that is used in the production of ethylene oxide, ethylene dichloride 

and ethyl benzene.  

The total energy incorporated as feedstock in the products is shown in Table 14 and it is 

compared with the value for final non-energy consumption in the chemical and 

petrochemical sector in 2013 according to (Eurostat, 2016a). The present study covers 

almost 90% of this quantity. 

 

Table 14. Final energy consumed as feedstock in the EU chemical industry in 2013 

Products 
Energy incorporated 

as feedstock 

Cumulative energy 

incorporated as feedstock 

(PJ) (%) (%) 

Nitric Acid 0.0 0.00 0.0 

Steam cracking 1 365.9 43.7 43.7 

Ammonia/Urea 299.5 9.6 53.2 

Adipic Acid 0.0 0.0 53.2 

Hydrogen/Syngas 487.4 15.6 68.8 

Soda Ash 0.0 0.0 68.8 

Aromatics 353.1 11.3 80.1 

Carbon Black 31.5 1.0 81.1 

EO/MEG 1.3 0.04 81.2 

EDC/VCM/PVC 25.6 0.8 82.0 

PVC Recycled 4.0 0.1 82.1 

EB/STY 195.8 6.3 88.4 

Chlorine 0.0 0.0 88.0 

Others 364.1 11.6  

Total 3 128.2 100.0  

 

In total the products considered in the present study cover 75% of the total energy and 

non-energy use of the chemical industry in 2013, as it was reported in (Eurostat, 2016a).  

Table 15 illustrates the total GHG emissions resulting from the bottom-up analysis in 

2013 and the comparison with the total emissions of the chemical industry according to 

(EEA, 2015). The values for emission factors for the several processes in this study are in 

most cases in accordance with (IPCC, 2006b), a fact that might mean that the actual 

emissions in the industry might be improved since 2006. There has been an effort to be 

closer to the real situation in the chemical industry and in cases such as nitric and adipic 

acid the enormous improvements of the industry have been taken into consideration. 

With this remark in mind, the current study covers more than 99% of the emissions 

reported in (EEA, 2015).  
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Table 15. Total GHG emissions in the EU chemical industry in 2013 

Products (Mt CO2eq) (%) (%) 

Nitric Acid 16.9 12.0 12.0 

Steam cracking 24.7 17.6 29.7 

Ammonia/Urea 29.7 21.2 51.0 

Adipic Acid 2.8 2.0 52.9 

Hydrogen/Syngas 25.0 17.9 70.8 

Soda Ash 7.6 5.4 76.2 

Aromatics 6.0 4.3 80.4 

Carbon Black 1.8 1.3 81.7 

EO/MEG 3.4 2.4 84.1 

EDC/VCM/PVC 5.8 4.1 88.2 

PVC RECYCLED 0.4 0.3 88.5 

EB/STY 4.4 3.1 91.6 

Chlorine 11.3 8.0 99.7 

Others 0.4 0.3  

Total 140 100.0  
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5 European chemical and petrochemical industry per 

product 

After describing the European chemical industry as a whole and explaining our 

methodology, this chapter presents the information included in our database concerning 

the 26 products included in our boundaries (Table 4).  

The presentation is done either per product or per group of similar products and it follows 

the same pattern in all sections. Firstly, there is a short section describing each product, 

followed by four distinct parts: 

1. The explanation of the main production processes,   

2. The assessment of the consumption and emissions levels, 

3. The identification of the possible Best Available Techniques (BATs) and 

4. The identification of the Innovative Technologies (ITs).  

The overview presented in this chapter, though, should not be considered neither 

exhaustive, nor including all details. The interested reader can find detailed descriptions 

of processes and R&D needs in the references provided. 

5.1 Nitric acid 

Nitric acid (HNO3) is a strong highly corrosive acid, used primarily to produce synthetic 

commercial fertilisers. Other uses include the production of explosives and chemicals 

such as adipic acid and nitrobenzene. It can react explosively with compounds such as 

cyanides and carbides, as well as with most metals and as a result it is used in the 

extraction and purification of gold.  

Table 16. Nitric acid plants in the EU-28 in 2013 

Country Number of plants Capacity (kt/y) 

Belgium 3 2 135 

Bulgaria 2 843 

Czech Republic 3 453 

Germany 8 3 710 

Greece 1 230 

Spain 4 696 

France 9 3 032.5 

Croatia 1 415 

Italy 2 480 

Lithuania 1 1 410 

Hungary 2 890 

Netherlands 3 2 485 

Austria 1 318 

Poland 4 2276 

Portugal 3 438 

Romania 5 1 817 

Slovakia 1 480 

Finland 2 650 

Sweden 1 270 

United Kingdom 2 1 300 

Total 58 24 328.5 

In 2013, fertilisers accounted for almost 80 % of total nitric acid consumption, while non-

fertiliser applications for 17.2 % (IHS, 2014b). Ammonium nitrate and calcium 
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ammonium nitrate account for more than 96 % of the fertiliser applications, while 

nitrobenzene and adipic acid for about 40 % of the non-fertiliser applications. 

The annual production of nitric acid worldwide in 2013 was about 60 million tonnes, one 

third of which is produced in Europe (CIEC, 2015). Europe, China and North America 

accounted for about 82% of capacity and 84% of production and consumption. Apparent 

world consumption increased annually by about 2% between 2008 and 2013, and is 

projected to grow at 2.3% annually until 2018 (IHS, 2014b). 

In Europe 58 plants were in operation in 2013 with a total production capacity of 24.33 

Mt/y, as shown in Table 16 (ICIS, 2012; Ecofys, 2009; ECHA, 2014). 

5.1.1 Production processes 

Nitric acid is commercially available in two concentrations: weak nitric acid (30-65% 

w/w) and strong nitric acid (up to 99% w/w). The world market is represented mainly by 

weak acid, while the strong acid market covers only 10% of the total production (Ecofys, 

2009). Weak acid is used in the fertiliser industry, as well as in the production of adipic 

acid and concentrated nitric acid is used for the production of explosives, dyes and 

insecticides. 

The two different grades are produced by different methods (EPA, 2010). The first 

method utilises oxidation, condensation and absorption to produce weak nitric acid. High-

strength acid can be produced from dehydration, bleaching, condensation and absorption 

of weak acid.  

Weak nitric acid is produced by the catalytic oxidation of ammonia, based on the Ostwald 

process and it involves three distinct chemical reactions: 

4 NH3 + 5 O2 → 4 NO + 6 H2O (Oxidation)   (reaction 1) 

2 NO + O2 → 2 NO2 (Condensation)    (reaction 2) 

3 NO2 + H2O → 2 HNO3 + NO (Absorption)   (reaction 3) 

The catalyst for oxidation is typically woven or knitted wire gauze pads with a 

composition of approximately 90% platinum, 5% rhodium (for increased mechanical 

strength) and 5% palladium (for reducing costs). A rhodium content of 5-10% is 

considered to be optimal, but pure platinum should be used in temperatures less than 

800oC (EC, 2007b).  

Table 17. Parameters of the catalyst used in ammonia oxidation related to applied 

pressures (EC, 2007b) 

Pressure of NH3 oxidation (bar) 
1 3-7 8-12 

Catalyst layer 3-5 6-10 20-50 

Gas velocity (m/s) 0.4-10 1-3 2-4 

Temperature ( oC) 840-850 850-900 900-950 

Catalyst loss (g/tHNO3) 0.04-0.06 0.10-0.16  0.25-0.32 

Campaign length (months) 8-12 4-7  1.5-3 

During the oxidation reaction, the gauze gradually deactivates, since platinum is lost as 

volatile platinum oxide and rhodium oxides accumulate on the surface of the catalyst 

(Lloyd, 2011). Regeneration does not occur in the conventional sense, but new layers are 

added to the gauzes once they are no longer effective, or the pad is sent for 

reformulation. Some of the platinum lost during operation can be recovered by using 

recovery gauzes that absorb platinum oxide vapours and form an alloy (Lloyd, 2011). 
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The recovery achieved is usually 60 - 80% of the total losses (EC, 2007b). Some typical 

characteristics of the catalysts are shown in Table 17. 

An aqueous solution of nitric acid is collected at the bottom of the absorption tower, with 

concentrations varying from 50 to 65% w/w HNO3, depending on the temperature, the 

pressure, the number of absorption stages and the concentration of NO entering the 

absorber (EC, 2007b). Concentration is limited to about 68% in water, which is the 

azeotrope. The gases that are not absorbed in the solution exit from the top of the tower 

at temperatures 20 - 30oC and are commonly referred as tail gas.  

To create higher pressure in the absorption section, a compressor is installed between 

the cooler condenser and the absorption column. The heat of the compression is removed 

by heat exchange with the tail gas, or by heat recovery in a steam boiler. The absorption 

reaction is also exothermic and continuous cooling is needed (EC, 2007c; EPA, 2010).  

Table 18. NO dependence on pressure and temperature (EC, 2007b) 

Pressure (bar) Temperature ( oC) NO yield (%) 

Low (<1.7) 810-850 97 

Medium (1.7-6.5) 850-900 96 

High (>6.5) 900-940 95 

Several process variations are available; the principal differences are operating 

temperatures and pressures, the concentrations of product acid, catalysts and spent 

catalyst recovery systems. The efficiency of the first step is favoured by low pressure 

(Table 18) whereas that of the second by high pressure and lower temperatures (EC, 

2007c; EPA, 2010). This consideration explains the fact that there are mainly two types 

of nitric acid plants: single pressure plants and dual pressure plants, depending on the 

pressure where the oxidation and absorption take place. In single pressure plants, they 

take place in the same pressure, while in dual pressure plants absorption takes place at 

higher pressure than the oxidation stage. According to the pressure of the oxidation 

process, they can be classified to low, medium and high pressure plants. Medium 

pressure plants operate at pressures between 1.7 and 6.5 bar, while low pressure plants 

operate at pressures less than 1.7 bar and high pressure plants at pressures up to 13 

bar. The majority of European plants are in the medium pressure range (Ecofys, 2009).  

High-strength acid can be obtained either directly or indirectly. The direct process is used 

only in a few plants and is based on converting nitric oxide to nitric acid, according to the 

following reactions: 

2 NO2 ↔ N2O4     (reaction 4) 

N2O4 +  H2O  +  ½ O2 ↔ 2 HNO3   (reaction 5) 

Most production of concentrated acids is based on the indirect process, where weak acid 

is concentrated in additional extractive distillation units with the help of dehydrating 

agents, such as sulphuric acid or magnesium nitrate (EPA, 1998). Simple fractional 

distillation is not applicable, because of the azeotropic. Concentrated nitric acid is 

collected from the top of a packed dehydrating column as 99% vapour, containing small 

amounts of NO2 and O2, which are separated from the nitric acid in a bleacher. 

Dehydration agents are restored under vacuum. 

5.1.2 Current consumption and emission levels 

All of the plants included in our database are producing weak acid by the Ostwald process 

and as a result this is the only production process that will be considered in the study. 
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Starting materials for the production of nitric acid are ammonia, water and air. For the 

production of 1 tonne HNO3 (100%) the requirements are 280 - 290 kg NH3, 3600 - 3800 

Nm3 air, while about 1.93 t/tN water is produced at the oxidation of ammonia. The typical 

consumptions for steam turbine-driven HNO3 plants are shown in Table 19 (EC, 2007c; 

ThyssenKrupp, 2014). 

As a typical nitric acid plant is a net producer of steam, the steam consumption of the 

process is considered to be negligible compared to the overall production.   

 

Table 19. Typical consumption levels for steam turbine-driven HNO3 plants and tail gas 

containing <50 ppm NOx 

 
Single pressure plant Dual pressure plant 

M/M H/H M/H 

Operating Pressure (bar) 5.8 10 4.6/12 

Ammonia (kg/tHNO3) 284 286 282 

Electricity  (kWh/tHNO3) 9 13 8.5 

Platinum primary losses (g/tHNO3) 0.15 0.26 0.13 

Steam 8 bar, saturated (t/tHNO3) 0.05 0.20 0.05 

Excess steam 40 bar, 450 oC (t/tHNO3) 0.761 0.551 0.651 

Cooling water (ΔT=10 K) (t/tHNO3) 100 130 105 

The by-products produced in the process are nitrogen oxides (NOx), nitrous oxide (N2O), 

oxygen and water. They are usually present in the tail gas streams in concentrations that 

depend on the applied process conditions and may vary within the limits shown in Table 

20 during stable operation.  

Table 20. Tail gas properties after absorption (EC, 2007c; EFMA, 2000a) 

Parameter 
Level 

NOx (mg NO2/Nm3) 200-4 000 

N2O (mg/Nm3) 600-3 000 

O2 (% v/v) 1-4 

H2O (% v/v) 0.3-0.7 

Flow (Nm3/t100% HNO3) 3 100-3 400 

The main environmental concern during nitric acid production is the acid forming oxides 

of nitrogen. Nitrous oxide has a 100-year greenhouse potential of 298 (Table 1). It is 

produced during the ammonia oxidation, according to three possible intermediate 

reactions in amounts that depend on combustion conditions, catalyst composition and 

age and burner design (IPCC, 2006b): 

NH3 + O2 → ½ N2O + 1.5 H2O     (reaction 6) 

NH3 + 4 NO → 2.5 N2O + 1.5 H2O   (reaction 7) 

NH3 + NO + 0.75 O2 → N2O + 1.5 H2O   (reaction 8) 

Reactions like these that lead to formation of N2O are undesirable, as they decrease the 

conversion efficiency of ammonia and reduce the yield of NO. As a result abatement 

techniques are applied. The final amount of nitrous oxide emitted depends on the amount 

generated in the production process and the amount destroyed in any subsequent 

abatement process. 
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N2O emissions from nitric acid production accounted for 0.1% of the total EU-28 GHG 

emissions in 2013 and amounted to 4950 ktCO2.eq in total, while in 2012 they amounted to 

6578 ktCO2.eq. Between 1990 and 2013 there has been a decrease by 90% in these 

emissions, while between 2012 and 2013 25% (EEA, 2015). Poland is responsible for 

18% of the total emissions, while Greece (93%), Hungary (75%) and Croatia (63%) 

contributed the most in the decrease between 2012 and 2013. Some of the reasons for 

this remarkable improvement are implementations of new catalysts, or new and more 

advanced state-of-art production technologies (EEA, 2015). 

IPCC suggests emission factors for N2O including associated uncertainties and they are 

shown in Table 21 (IPPC, 2006b). The low and high values represent the uncertainty 

bound of the default factors. EPA is using the factor 9 kgN2O/tHNO3 (100%) in calculating 

uncontrolled N2O emissions (EPA, 2010).  

Table 21. Default emission factors for nitric acid production (IPPC, 2006b; EPA, 2010) 

Production process 
Approximate 

pressure (atm) 

N2O Emission factor 

(kgN2O/tHNO3 (100%)) 

Low Average High 

Atmospheric pressure plants (low 

pressure) 
1 4.5 5.0 5.5 

Medium pressure combustion plants 4-8 5.6 7 8.4 

High pressure plants 8-14  5.4 9 12.6 

Plants with NSCR  1.9 2.0 2.1 

Plants with process–Integrated or tail 

gas N2O destruction 

 
2.25 2.5 2.75 

Nitric plants emit also CO2 and methane, especially if they apply non-selective catalytic 

reduction (NSCR) processes (EC, 2007b). According to (Ecofys, 2009), the methane slip 

in these plants can have a significant impact, increasing N2O emissions by 0.7 

kgN2O/tHNO3. The values reported in Table 21 for plants with NSCR include already the 

effect of the abatement measures (IPPC, 2006b).   

Another possibility of emitting CO2 and methane is during start-up, if the plant is 

equipped with steam powered compressors (EPA, 2010). Natural gas is used at start-up, 

but once the plant operates normally, it generates enough steam to power the 

compressor.  

Table 22. Consumption and emissions levels of the nitric acid production processes in 

the database 

Process 

Consumption Emissions (tCO2.eq/tHNO3) 

Electricity 

(kWh/tHNO3) 
Direct Electricity Total 

Ostwald single pressure M/M 9.0 1.5 0.004 1.504 

Ostwald dual pressure M/H 8.5 1.6 0.004 1.604 

 Taking into consideration the consumptions shown in Table 19 and the emission 

factors of Table 21, the specific energy consumptions and the specific emissions of the 

nitric acid production used in the database can be summarised (Table 22). For direct 

process emissions, the lower N2O emissions factors will be used instead of the average, 

as the performance of the industry has been improving during the last decade. As the 

majority of the European industry is medium pressure plants, although they are mainly 

applying the dual pressure M/H process, the average between atmospheric and medium 

pressure plants is used for the single pressure process and the average between medium 

and high pressure plants for the dual process.  
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Nitric acid is a benchmarked product with value 0.302 allowance/tonne (EC, 2011b), 

but since the industry's emissions have changed remarkably, no calibration is performed 

to the specific emissions from the industry. 

5.1.3 Best available techniques (BATs) 

As mentioned before, the main problem in the nitric acid production is emissions of 

nitrous oxide. There are three types of controls for N2O at nitric acid plants based on the 

location of the control within the nitric acid production process (IPCC, 2006b):  

● Primary abatement measures – prevent N2O formed in the ammonia oxidation 

step. They involve modification of the ammonia oxidation process or catalyst. 

● Secondary abatement measures – remove N2O from the valuable intermediate 

stream.  

● Tertiary abatement measures – involve treating the tail-gas downstream of the 

expansion.  

The most commonly applied controls are secondary and tertiary. The technologies 

available are capable of achieving more than 80% N2O emissions reduction (EPA, 2010). 

Table 23 lists an overview of the possible BATs available for the nitric acid industry and 

summarises their performance. 

Table 23. Overview of the possible BATs in the nitric acid industry 

BAT  Description 

Investment 

cost (EUR)  

Operating 

costs 

(EUR/tHNO3) 

Energy 

savings (%) 

GHG 

Reduction (%) 

BAT 

Primary measures: 

Suppression of N2O 

formation  

811 162 1 Unknown None 30-85% 

BAT 

Secondary 

measures: Removal 

of N2O in the 

reactor 

811 162 2 at 0.76-0.94 None 70-90 

BAT 

Tertiary measures: 

N2O reduction in the 

tail gas 

1 561 613 3 at 0.76-0.94  None > 80 

1 
Investment costs are based on modifications of the catalysts, taking into consideration also the savings. The 

reference capacity is 465 kt/y, which is the average capacity of nitric plants in Europe, according to our database. 
2
 There is no data available for the investment costs of the secondary measures, but since it involves catalysts, it is 

assumed to be the same as the investment costs of the primary measures and for the same reference capacity. 
3 

Investment costs are based to Variant 1 of EnviNOx process and for reference capacity 328.5 kt/y. 

Almost all the BATs included in the same type of abatement techniques have similar 

potentials in GHG reduction and as a result in our database representative technologies 

are included, one for each of the three different types.  

Primary measures include optimisation of the oxidation process by modification of the 

process parameters or the catalyst.  The process parameters that are important for 

optimisation of the oxidation are the ammonia/air ratio, pressure and temperature. The 

NO yield in the oxidation step is maximised at an optimum NH3/air ratio of 9.5-10.5% 

ammonia (EC, 2007b). Higher ratios are avoided, in order to maintain a safety margin 

from the lower explosion level of ammonia. According to the laws of thermodynamics, 

lower pressure increases the conversion efficiency. On the contrary, high temperature, 

although it enhances ammonia combustion, it decreases the conversion efficiency, due to 

production of N2 and N2O (EC, 2007b).  
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There are several new catalysts available. Improved platinum catalysts, with 

modifications in composition and geometry, can lead to higher ammonia conversion 

efficiencies, reduced N2O emissions and extended campaign length. Example plants 

achieved reductions of 30-50 %, but achieved N2O emission levels were not lower than 3 

kgN2O/tHNO3 (100 %) (EC, 2007b). Data from several European units with improved catalysts 

showed a range of 3.6-9.7 kgN2O/tHNO3 (100%) (Entec, 2008). Alternatives could be Co3O4 

based catalysts, or two-step catalysts, platinum gauzes in the first step and non-platinum 

oxide catalysts in the second steps. The former alternative results in ammonia conversion 

efficiencies from 88 to 95 %, when the efficiencies normally are 93-97 %, but longer 

catalyst lifetime and less plant shut-downs. The use of the latter reduces the amount of 

Pt used by 40-50 % and the Pt losses by 15-30 %. Retrofitting alternative catalysts in 

existing plants can have costs EUR 1 425 000-1 900 000 (in 2001), while the savings are 

EUR 0.50-2.00 per tonne HNO3 (EC, 2007b).  

Secondary measures aim at removing N2O in the burner after the ammonia oxidation 

gauzes. There are two abatement techniques: homogeneous decomposition and catalytic 

decomposition. 

The first technique involves expanding the volume of the process burner in order to 

achieve homogeneous decomposition of N2O. Extending the reactor chamber results in 

increasing the residence time of the reacting mixture at high temperatures (850-950 oC), 

and therefore reduces N2O production. According to a patented technology from Yara, the 

residence time is increased up to 3 seconds, achieving  a reduction of 70-85 % (2-

3 kgN2O/tHNO3 (100 %))  (EC, 2007b). It is a technology applicable only to new plants, as long 

as they are not low pressure plants, but retrofitting in existing plants has much higher 

costs. 

The second technique consists of installing a selective de–N2O catalyst (secondary 

catalyst) under the ammonia oxidation gauzes. According to the BREF (EC, 2007b) there 

are three catalysts developed. The secondary catalyst is technically applicable to all types 

of plants, but for atmospheric pressure plants this technology is not favourable, as it 

ends in reduced plant capacity, due to additional pressure drop. No major modification of 

the reactor is needed, but depending on the case sufficient strength to withstand the 

extra weight and the additional load from the pressure drop is required (Entec, 2008).  

The use of secondary catalysts has the potential to reduce emissions over 80 % and 

below 2.5 kgN2O/tHNO3 (100 %) (Ecofys, 2009; EC, 2007b). The level of abatement efficiency 

depends on the design and operating conditions of the plant. The costs for the secondary 

catalysts do not show significant differences and are estimated at EUR 0.98-1.20/tHNO3 

(EC, 2007b; Kuiper, 2001). 

Tertiary measures are based on N2O abatement in the tail-gas. The techniques can be 

either a combined NOx and N2O abatement in the tail-gas or Non-selective Catalytic 

Reduction (NSCR).  

NSCR enables the reaction of a reducing agent (fuel) with nitrogen oxides, to produce N2 

and water. The most commonly used fuels are natural gas or CH4, H2 or ammonia purge 

gas (mainly H2). The N2O reduction efficiency of this technique is 80-95 %, while it also 

reduces NOx emissions to 100-150 ppm (EC, 2007b). It is typically used in plants with 

the capability to preheat tail-gas to 200-450 oC and its application will demand major 

adjustments. It is not considered as a BAT, due to cross–media effects, namely the high 

energy consumption and additional emissions of CO2 and methane slip (Ecofys, 2009).  

The main tertiary technique involves the instalment of a combined NOx and N2O 

abatement in tail-gas between the final tail-gas heater and consists of a process called 

EnviNOx, proposed in two variants (ThyssenKrupp, 2009a). Variant 1 operates at tail gas 

temperatures of 420-480 oC (EC, 2007b) and as a result it is not appropriate for low 

pressure plants. Variant 2 is suitable for a much wider temperature range (300-520 oC) 

(EPA, 2010). Variant 1 consists of two catalyst layers (Fe zeolite) and an intermediate 

injection of NH3, while in variant 2 N2O is removed by catalytic reduction with a 

hydrocarbon such as natural gas or propane (EC, 2007b). Both variants can achieve 
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emission levels as low as 0.12 kgN2O/tHNO3 (100 %) and NOx emission levels less than 5 ppm 

(EC, 2007b). The operational abatement efficiency is though slightly lower though, as 

increased tail gas temperatures decrease production levels and plants decide to operate 

at higher emissions (Entec, 2008). Variant 1 is very reliable and has no NH3 slip, but 

variant 2 consumes hydrocarbons that tend to increase capital and operating costs, as 

well as emissions (EC, 2007b). Economics are available only for Variant 1, as for the 

example of the plant with a capacity of 1 000 t/d the investment costs were 

EUR 2 100 000, but due to experience gained reduction of the investment cost is 

expected to around EUR 1 700 000 (24) for nitric acid plants of the same capacity (EC, 

2007b). Information concerning the operating costs is not generally available, but 

according to (EC, 2007b) they are estimated to be about EUR 0.98-1.20 2001/tHNO3. 

Most of the EU nitric plants have one or more BATs concerning controlling N2O emissions 

(Table 23) installed already. The most commonly applied controls are secondary and 

tertiary.  

Many European nitric acid plants participated in joint implementation projects of the 

Clean Development Mechanism, aimed at reducing anthropogenic emissions (UNFCCC, 

2015). As a result of the implementation of the abatement techniques, emissions of 

nitrous oxides in Europe have been considerably limited, as can be seen from Figure 9. It 

shows a comparison between 2008 and 2013 for the facilities reporting emissions, using 

information from the European Pollutant Release and Transfer Register (E-PRTR) (25) 

(PRTR, 2015). 

Figure 9. N2O emissions per facility level in 2008 and 2013 (PRTR, 2015) 

 

5.1.4 Innovative technologies (ITs) 

The only innovative technology according to the BREF is Variant 2 of the EnviNOx process 

(EC, 2007b), that should be considered as applied technique now and therefore is 

described in the previous paragraph. 

 

5.2 Ammonia and Urea 

Ammonia (NH3) is a major industrial chemical and the principal source of nearly all 

synthetic nitrogen fertilisers. Its product chain is included in Annex 2. Almost all 

ammonia is produced in the anhydrous form, a colourless non-flammable gas at normal 

pressure and temperature, by combining nitrogen with hydrogen. It can readily dissolve 

                                           
(24) Since the year of reference for this investment cost is not clearly stated, it is assumed that it is 2006, based 

on the year of publishing of the BREF.  
(25) The total emissions per facility reported by [PRTR, 2015] are converted to emissions per facility using 

average load factors.  
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in water. Even in this form it can be used as fertiliser, either directly applied to the soil or 

as an aqueous solution with other nitrogenous fertilisers as ammonium nitrate or urea 

(Fertiliser Encyclopaedia, 2009). Commercial anhydrous ammonia has two grades of 

purity: minimum 99.7 wt% (about 0.2 wt% is water) and maximum 99.9 wt % (EC, 

2007b). 

Figure 10. World ammonia consumption in 2013 (IHS, 2014b) 

 

Nitrogen fertilisers account for more than 80 % of the world ammonia market (IHS, 

2014c). After the 7.6 % contraction in 2008/09, world fertiliser consumption sharply 

rebounded in 2009/10 and 2010/11, with growth rates of 5-6 % (IFA, 2012; 2011). In 

2012 world consumption was 108.8 MtN (IFA, 2013) and in 2013 it reached 110.4 MtN 

(IFA, 2015). World distribution of ammonia consumption in 2013 is shown in Figure 10.  

Table 24. Ammonia plants in EU-28 in 2013 

Country Number of plants Capacity (kt/y) 

Belgium 2 1 090 

Bulgaria 2 540 

Czech Republic 1 347 

Germany 5 3 474 

Estonia 1 165 

Greece 1 150 

Spain 2 600 

France 4 1 429 

Croatia 1 450 

Italy 1 600 

Lithuania 1 420 

Hungary 1 470 

Netherlands 2 2 900 

Austria 1 515 

Poland 5 2 921 

Romania 5 2 170 

Slovakia 1 355 

United Kingdom 3 1 230 

Total 39 19 826 

World ammonia production in 2012 was 198 MtNH3 according to (IEA, 2013) and 140 

MtNH3 according to USGS (2014). In 2013 production increased to 143 MtNH3 (USGS, 

2015). Germany, France, Netherlands, Poland and the United Kingdom account for 7.3 % 

of the global demand, with China at 33 %, India 8.3 % and the US 6.4 % (USGS, 2015).  

Global ammonia capacity is projected to increase by 16% from 211 MtNH3 in 2013 to 



43 

245 MtNH3 in 2018, while potential nitrogen supply is projected at 176 MtN 
(26) and 

demand at 161 MtN (IFA, 2014).  The increases are attributed to the declining amount of 

arable land per person, as a result of urbanisation, soil erosion and nutrient exhaustion, 

and the growing of the world population (IHS, 2014c). In 2013 the world installed 

capacity was reported to be 214 MtNH3, with the EU covering about 9% of it (IHS, 2014a). 

The nitrogen market is highly fragmented and regionalised, with Yara being one of the 

largest producers in Europe (Yara, 2014). In the EU-28 there are 39 ammonia plants in 

18 member states, with total production capacity of 19826 ktNH3/y (IHS, 2015a; ICIS, 

2012; Ecofys 2009), as shown in Table 24.  

About 48% of the global ammonia production is used in the production of urea 

(CO(NH2)2), the most commonly used nitrogen fertiliser, 11% in the production of 

ammonium nitrate, 20% in the production of other fertilisers and 3% directly as fertiliser 

(CEPS, 2014a). Other uses of ammonia include synthesis of chemicals, explosives, fibres 

and plastics, refrigeration and others (CEPS, 2014a).  

Almost 90% of urea produced worldwide is consumed as fertiliser (Ullmann's 

Encyclopaedia, 2010a). Urea can also be used as a source of non-protein nitrogen in 

cattle feeds, in the manufacture of urea–formaldehyde resins and as raw material for 

melamine and cyanurate synthesis. Another application is in environmental application 

and in particular as a diesel exhaust fluid in mobile and stationary NOx reduction systems 

(Ullmann's Encyclopaedia, 2010a).   

Considering that the urea production is based on ammonia and carbon dioxide, which is a 

by-product of the ammonia production, typically ammonia plants are integrated with urea 

units. Urea (27) is produced only when integrated with an ammonia plant (EC, 2007b). In 

the EU-27 there are 25 urea plants distributed over 13 member states, as shown in Table 

25 (ICIS, 2012; EC, 2007c).  

Table 25. Urea plants in EU-28 in 2013 

Country 
Number of plants Capacity (kt/y) 

Germany 3 2 600 

Estonia 1 220 

Spain 2 385 

France 2 770 

Croatia 1 500 

Italy 2 580 

Lithuania 1 785 

Hungary 1 260 

Netherlands 2 1 650 

Austria 1 420 

Poland 3 1 765 

Romania 5 2 240 

Slovakia 1 200 

Total 25 12 455 

Concerning future projections, it is forecasted that up to the end of the decade ammonia 

will grow with 2.7 (IHS, 2014b; IFA, 2015) and urea 4 % to 2019 (IFA, 2015). For the 

total fertiliser demand, the IFA foresees a lower growth rate of only 1.7% (IFA, 2015). 

Projections to 2050 expect that fertiliser consumption in 2050 could be increased by 

                                           
(26) Fertilisers are commonly referred per tonne of 100% nitrogen (N) basis. In order to obtain ammonia 

volume, the information based on 100% N basis should be divided by 0.82 (nitrogen molecular weight / 
ammonia molecular weight). 

(27) Similarly to ammonia, if the information is given as based on 100% N basis, urea volumes are obtained if 
divided by 0.46 (2 * nitrogen molecular weight / urea molecular weight).  
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58.4% compared to the 2005/2007 levels, but they involve a continuing slowdown of the 

overall growth (Alexandratos & Bruinsma, 2012). Especially in the case of industrial 

countries (including Western Europe) growth is expected to lag significantly behind the 

one in developing countries. Changes in agricultural policies and increasing awareness 

and concern about the environmental impacts of fertilisers will play an important role. 

Total consumption in these parts of the world is expected to have annual growth rates of 

0.6% until 2030 and 0.3% in the period 2030-2050 (Alexandratos & Bruinsma, 2012). 

5.2.1 Production processes 

Ammonia is synthesised from nitrogen and hydrogen by the following reaction, which is 

known as the Haber-Bosch process: 

N3 + 3 H2 ↔ 2 NH3     (reaction 9) 

Nitrogen is obtained from air through liquid air distillation or an oxidative process, where 

air is burnt and the residual nitrogen is recovered. Hydrogen derives either directly or as 

a by-product from various feedstocks, mostly fossil fuels (Fertiliser Encyclopaedia, 2009). 

The feedstocks used worldwide are shown in Figure 11. Depending on the type of fossil 

fuel, there are two different methods applied to produce hydrogen for ammonia; (1) 

steam reforming, in the case of light hydrocarbons, such as natural gas, and (2) partial 

oxidation, used mainly in the case of heavy oils.  

Figure 11. World ammonia production by feedstock type (2008) (Carbon Counts, 2010) 

 

In the EU more than 90% of the H2 for NH3 is produced by steam reforming of natural 

gas (Figure 12a) (Ecofys, 2009). Production from natural gas involves the following 

reactions: 

CH4 + H2O → CO + 3 H2    (reaction 10) 

CO + H2O → CO2 + H2    (reaction 11) 

CH4 + air → CO + 2 H2 + 2 N2   (reaction 12) 

The first reaction takes part in the primary steam reformer and is highly endothermic 

(Ecofys, 2009). A water gas shift conversion – reaction 11 – also occurs to some extent. 

The gas leaving the primary reformer contains 5-15% CH4 and the heat that was not 

consumed during the reaction (Fertiliser Encyclopaedia, 2009). The third reaction takes 

place in the secondary steam reformer, and the main objective is to add the nitrogen 

required for the synthesis and complete the conversion. The reaction is exothermic and 

the gas outlet temperature is approximately 1 000 oC (EC, 2007b). The catalysts used 

can be divided into two types: based on non-precious metals (typically nickel) and based 

on precious metals from Group VIII elements (typically platinum or rhodium). The high 
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costs of precious metals, especially Rh, is driving researchers to develop alternative 

catalysts, such as cobalt-based (Holladay et al., 2009). 

After reforming, the residual CO2 is removed in a chemical or physical absorption 

process, with aqueous amine solutions or glycol dimethyl ether as most common solvents 

respectively (EC, 2007b). The small amounts of CO and CO2 remaining in the synthesis 

gas can poison the ammonia reaction catalysts and as a result they are converted to CH4 

by hydrogenation, diminishing them to concentrations less than 10 ppmv (EC, 2007b).  

Partial oxidation (Figure 12b) is used for the gasification of heavy feedstocks such as 

residual oils and coal and its main benefit is its ability to be more widely adaptable to a 

range of feedstocks (Carbon Counts, 2010). In 2009, there were no coal plants in Europe 

and only a couple of plants based on heavy fuel oil or LPG, but Poland intended to 

develop their coal reserves to reduce the dependency on Russian natural gas (Ecofys, 

2009). The production of hydrogen is based on a non-catalytic reaction between 

hydrocarbons, oxygen and steam at pressures up to 80 bar (EC, 2007b). The reactions 

typically occur with flame temperatures of 1 300-1 500 oC to ensure complete conversion 

and to reduce carbon soot formation (Holladay et al., 2009), but are exothermic and they 

are the following: 

(Heavy oil) CnHm + 0.5n O2 → n CO + 0.5m H2  (reaction 13) 

(Coal) C + H2O → CO + H2     (reaction 14) 

C + 0.5 O2 → CO       (reaction 15) 

Figure 12. Simplified diagrams of (a) the steam reforming process and (b) the partial 

oxidation process (EC, 2007b) 

 

Auto-thermal reforming combines partial oxidation and steam reforming, adding steam to 

catalytic partial oxidation. The oxygen to fuel ratio and the steam to carbon ratio must be 

properly controlled, in order to control the reaction temperature and product gas 

composition while preventing coke formation. A significant advantage over steam 

reforming is that it can be stopped and started very rapidly while producing larger 

amount of H2 than partial oxidation alone (Holladay et al., 2009). Another advantage is 
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that there is no direct production of CO2 emissions because all the heat release is internal 

(Carbon Counts, 2010). 

Steam reforming of natural gas can be up to approximately 85 % efficient in producing 

hydrogen on higher heating value (HHV) basis (Holladay et al., 2009), but the efficiency 

can be lower with sources of methane that have higher concentrations of sulphur or other 

impurities. The hydrogen rich gas contains typically 70-75% H2 on a dry mass basis, 2-

6 % CH4, 7-10 % CO and 6-14 % CO2 (Lipman, 2011). Partial oxidation and auto-

thermal reforming can have typical efficiencies in the range of 60-75 %, based on HHV 

(Holladay et al., 2009).  

The step following either partial oxidation or steam reforming is ammonia synthesis, 

which takes place usually at pressures 100-250 bar, temperatures 350-550 oC and on 

iron catalyst (Fertiliser Encyclopaedia, 2009). The conversion is incomplete in a single 

pass (20-30 %), but a large amount of ammonia is produced by its removal from the gas 

stream and by recycling the unreacted gas (EC, 2007b; Ullmann's Encyclopaedia, 

2011a).  

CO2 produced can be captured from the process gas and be used in downstream utilities, 

which need it as feedstock, such as urea production. The commercial synthesis of urea is 

achieved by the Basaroff reaction at high pressure and temperature, as following: 

2 NH3 + CO2 ↔ NH2COONH4 ↔ CO(NH2)2 (urea) + H2O  (reaction 16) 

The first reaction is fast and highly exothermic, while the second one is endothermic, but 

the overall reaction is exothermic (Ullmann's Encyclopaedia, 2010a). The reactions are 

reversible and therefore the output includes also unreacted ammonia and CO2. The 

achievable conversion per pass is influenced by factors as temperature and NH3:CO2 

ratio. As a function of the latter, urea yield reaches a maximum above the stoichiometric 

ratio.  In most plants all over the world the excess of ammonia and CO2 is recovered and 

recycled, achieving conversions up to 96-97%. In conventional recycle processes 

unconverted CO2 is recycled as an aqueous solution and the main proportion of 

unconverted NH3 is recycled without an associated water recycle. On the contrary, in 

stripping processes the major part of the recycle of both reactants occurs via the gas 

phase (Ullmann's Encyclopaedia, 2010a). The final product is usually prills or granules.  

5.2.2 Current consumption and emission levels 

The typical size of a large single–train ammonia plant is 300-500 kt/d, although new 

plants can have capacities 1800 t/d and above (EFMA, 2000b). Commercial anhydrous 

ammonia has two grades of purity: minimum 99.7 wt% (about 0.2 wt% is water) and 

maximum 99.9 wt% (EC, 2007b).  

As explained in 5.2.1, the starting materials for the production of ammonia are fuel as 

feedstock and air. In the EU, the fuels used are natural gas in the case of steam 

reforming and residual oil in the case of partial oxidation. The typical feedstock and air 

requirements are shown in Table 26.  

Table 26. Typical consumptions for the ammonia industry (EFMA, 2000b; EC, 2007c) 

Input requirements1 Steam reforming Partial oxidation 

Feedstock (GJ/tNH3) 22 - 25 28.8 

Air (kg/kgNH3) 1.1 - 2.2 4 

Fuel (GJ/tNH3) 4 - 9 5.4 - 9.0 
1 The values if expressed in GJ are based on Lower Heating Values (LHV) 

Of the different types of steam reforming, conventional reforming has the lowest 

feedstock consumption and auto-thermal reforming the highest, while the fuel demands 

follow the reverse order (EFMA, 2000b).  In the case of conventional reforming, the 

nitrogen supply equals the ammonia nitrogen content plus the purge losses, while if 
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excess air is used or in auto-thermal reforming the requirements are about 50 % and 

100 % higher, respectively (EC, 2007b). A typical heavy oil-based process uses 1.3 times 

as much as energy as a gas-based process, while a coal-based process 1.7 times (IEA, 

2007). The lower heating values of residual fuel oil and natural gas are shown in Table 6.   

The energy requirements for a stand-alone steam reforming plant with no energy export 

and no other import than feedstock and fuel is 28.8 - 31.5 GJ(LHV)/tNH3 (EFMA, 2000). 

According to the break-down presented by Lako (2009), these energy requirements 

include feedstock, fuel and electricity and deduct the stream produced in the process. In 

the case of auto-thermal reforming the electricity consumed is 0.2 GJ/tNH3 (Lako, 2009). 

According to IEA (2009) the electrical consumption is 0.3 GJ/t in the case of ammonia 

from natural gas, 0.5 GJ/t for ammonia from oil and 3.7 GJ/t for ammonia from coal. In 

partial oxidation plants the total energy requirement including imported power or 

auxiliary steam for driving the machinery is 36.9 GJ (LHV)/tNH3 (EFMA, 2000b).  

Ammonia production accounted for 0.6% of the total EU-28 GHG emissions in 2013 (EEA, 

2015). Total emissions of the ammonia industry in 2013 were 26927 ktCO2.eq (EEA, 2015). 

Germany (25%), Poland (16%) and the Netherlands (14%) had the highest shares in the 

EU28. There has been a decrease in CO2 emissions in this industry of 16% since 1990, 

and between 2012 and 2013 emissions decreased by 3% (EEA, 2015). Estonia, Slovakia 

and Greece were responsible for the highest emission increases, while high reductions 

occurred in Romania, Lithuania and the United Kingdom.  

From steam reforming plants with a fired primary reformer and partial oxidation plants 

the emissions occurring are the following: 

● Flue-gas from the primary reformer (only in the case of steam reforming), 

● Vent gas from CO2 removal,  

● Breathing gas from oil buffers, 

● Fugitive emissions, 

● Purge and flash gases from the synthesis section, 

● Non–continuous emissions (venting and flaring).  

There are two major streams of CO2 emission: fuel-generated and process-generated. 

The fuel-generated CO2 results from the combustion of fuel to supply heat for steam 

reforming, steam boiler process heaters and other equipment. CO2 produced in the 

process is primarily recovered. Around 36 % of the CO2 removed from syngas is used 

inside the industry, mainly in urea production (33 %), and the remaining 2.2 % is sold 

for other uses (Carbon Counts, 2010; Benner et al., 2012). 

According to IPCC (2006b), in the case of steam reforming of natural gas, the CO2 

emission factor of tier 1 for modern plants in Europe varies between 1.666 and 

1.694 tCO2/tNH3, while for partial oxidation it is 2.772 tCO2/tNH3. The values used in our 

study based on the consumptions and the emission factors for each fuel are shown in 

Table 27. 

Table 27. Emission factors for ammonia and urea production 

Process  

Emissions (tCO2.eq/tNH3) 

Electricity 

use 

Thermal 

production 

Steam 

production 

Direct 

process 

Total 

process 

Ammonia: Natural gas-based 0.04 0.36 - 1.25 1.65 

Ammonia: Heavy residue –

based 

0.07 0.56 - 2.15 2.77 

Urea synthesis 0.03 - - 0.01 0.04 

Ammonia is a benchmarked product, with value 1.619 allowance/t (EC, 2011b). The 

system boundaries of benchmarking include all steps of the process, as well as emissions 
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related to the production of the electricity consumed.  As there is a benchmarking curve 

available for this product (Ecofys, 2009), the specific emissions for each plant calculated 

according to literature are calibrated. 

Integrating urea production in the ammonia plant has the potential to reduce GHG 

emissions. According to the stoichiometry, urea production using ammonia requires 

0.733 tCO2/turea and 0.568 tNH3/turea. On the other hand, it consumes energy in the form of 

steam and electric power. Average consumption levels are 0.8-1 tsteam/turea and 58 

kWh/turea electricity (EC, 2007b; Ullmann's Encyclopaedia, 2010a; Kojima et al., 2008).  

According to most references, the main emissions in urea production are ammonia and 

dust (Ullmann's Encyclopaedia, 2010a; EC, 2007b; EPA, 1998). In some references, the 

specific CO2 emissions of urea plants can vary from 0.323 tCO2/turea
 (Kojima et al., 2008) 

up to 0.785 tCO2/turea (Wood & Cowie, 2004). But in all these cases, emission factors 

include the ammonia production step (Wood & Cowie, 2004). It is interesting to note that 

the emission factors of ammonia production (Table 27), if expressed per tonne of urea, 

are 0.476 tCO2/turea for natural gas-based processes and 0.786 tCO2/turea for heavy residue-

based. Some Dutch plants report estimates of diffuse emissions of CO2 (13-15 t/y) (EC, 

2007b), but these values refer only to the particular plants and no further information is 

given about them. Only one reference has been identified (Bhaskar and Das, 2007), 

where the only CO2 emissions mentioned from the urea production process are about 

0.038 tCO2/turea and occur at the medium and low pressure separators. 

5.2.3 Best available techniques (BATs) 

This paragraph describes the techniques considered generally to have potential of 

improving the environmental performance of the industry. There have been not many 

recent studies concerning the ammonia industry. According to (Lako, 2009) state-of-art 

ammonia plants from the main licensors have net energy use similar to the BAT 

suggested by the International Fertiliser Association (IFA). There are several possible 

changes that can lead to reduced energy consumption (Ullmann’s Encyclopaedia, 2011a; 

Rafiqul et al., 2005; EC, 2007). Table 28 lists an overview of the possible BATs available 

for the ammonia industry. Most of them are a combination of a number of smaller scale 

techniques and in these cases, investment costs and energy savings will be calculated 

from the individual technologies, if not mentioned in the literature for the aggregated 

technique. 

Advanced conventional process 

As the ammonia industry has been developing, a considerable reduction in energy 

consumption has been achieved by improving the process itself. Advanced conventional 

process plants are usually characterised by improved CO2 removal systems, preheating of 

combustion air, indirect cooling of the ammonia synthesis reactor, hydrogen recovery 

from the purge gas or use of smaller catalyst particles in ammonia converters (EC, 

2007b). In general, improved process integration can save 3 GJ/tNH3 at additional 

investment costs of 30 EUR2009/tNH3 (Serpec-cc, 2009; de Beer et al., 2001). 

Improved CO2 removal consists of using new solvents or membranes and results in 

energy savings of about 0.9-1.1 GJ/tNH3 at additional investment costs of EUR 15 2009/tNH3 

(Rafiqul et al., 2005; Serpec-cc, 2009; de Beer et al., 2001).  

In the indirect cooling of the ammonia synthesis reactor concept, heat from the catalyst 

beds in the reactor is recovered and then used to produce high-pressure steam or 

preheat the boiler feed-water. The investment cost reported was YEN 150 million1999 for a 

300 kt/y reactor and the payback period 1.5 years (IETD, 2015a), which corresponds to 

EUR 7.14 2013/tNH3.  

Increasing the air preheat with waste heat can lead to energy savings up to 0.9 GJ/tNH3 

but NOx emissions can increase by 120 g/tNH3 (EC, 2007b). The ammonia synthesis 

reaction heat can be used for the production of high pressure steam or by other ways, 
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saving thus energy (up to 0.6 GJ/tNH3) since a higher ammonia conversion rate is 

achievable and catalyst volumes are reduced (NEDO, 2001).  

Hydrogen recovery can be performed using different technologies, such as cryogenic 

separation, membrane technology or pressure swing absorption (EC, 2007b). The 

average improvement is 0.8 GJ/tNH3 in energy with about EUR 2 2005/tNH3 additional costs 

(Rafiqul et al., 2005).    

Process with reduced primary reforming and increased process air 

Some processes are designed for reduced primary reforming by transferring some of the 

process to the secondary reformer, which has higher marginal efficiency. This technique 

is also combining improved CO2 removal systems, indirect cooling of the ammonia 

synthesis reactor and use of gas turbine to drive the process air compressor. If a gas 

turbine is used instead of a condensation steam turbine in order to drive the air process 

compressor, the heat can be used as preheated combustion air in the primary reformer. 

With this configuration considerable energy savings can be achieved. In revamping of a 

1 000 t/d ammonia plant in India, the investment costs reported were USD 2 000 000 

2002, which is equal to EUR 6.57 2013/tNH3 (Vaish & Patel, 2002). The total investment costs 

and performance of this technique are assumed to be the sum of investment costs and 

the energy savings of the three individual technologies that compose it. 

Heat exchange auto-thermal reforming 

Developments in the ammonia industry aim to recycle the heat of the secondary reformer 

outlet gas and the primary reformer flue-gas inside the process itself. Heat exchange 

auto-thermal reforming can lead to significant reductions in emissions by eliminating the 

flue-gas, energy savings up to 10 % and NOx emissions reduction up to 50 % or more 

(EC, 2007b). Energy consumption though will increase in comparison with other steam 

reforming concepts.  

This technique includes replacing the two reformers by a single isothermal medium 

temperature shift reactor, and installing improved CO2 removal systems. By using an 

isothermal shift converter, heat from the catalytic bed is continuously removed and can 

be used for other purposes, while the catalyst used in high temperature conversion is not 

needed. The investment cost reported was YEN 500 million 1999 for a 100 kt facility and 

the payback period is 0.2 years (IETD, 2015b), which corresponds to about EUR 9.5 

2013/tNH3. The total investment cost of this technique is estimated from the individual 

techniques and adds up to about EUR 25.2/tNH3. The net energy savings of these 

improvements is not quantified (Rafiqul et al., 2005), but for this study it is estimated 

according to the individual technologies that compose it (isothermal shift reaction and 

improved CO2 removal systems) and is assumed to be about 1.4 GJ/tNH3.  

Revamp: Increased capacity and energy efficiency 

Revamp of old plants aims to improve the efficiency by extensive preheating of the mixed 

feed entering the furnace and by installing a highly efficient gas turbine. It results in 

reducing NOx emissions and total energy consumption by almost 5 GJ/tNH3 (EC, 2007b). 

The investment was EUR 5 700 000 (28) with reference capacity 1 100 t/d and the pay-

back time was less than a year (EC, 2007b). 

  

                                           
(28) Concerning this investment cost, there is no clear mention about the reference year in the BREF. As a 

result, it is assumed that it is 2006, based on the year of publishing of the BREF. 
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Pre-reforming 

A pre-reformer installed before the primary reformer, in combination with a suitable 

steam saving project, can reduce the heat load up to 5-10% (EC, 2007b). In the case of 

an Indian ammonia plant with capacity 1000 t/d the investment reported was USD 5.4 

million 2002 (Vaish & Patel, 2002). 

 

Table 28. Overview of the possible BATs and ITs in the ammonia industry 

BAT/IT 
Description Investment cost Energy savings GHG 

Reduction  

BAT 
Advanced conventional 

processes 
EUR 31.5/t 10.0 % None 

BAT 

Process with reduced 

primary reforming and 

increased process air 

EUR 29.4/t 5.0 % None 

BAT 
Heat exchange auto-

thermal reforming 
EUR 25.2/t 6.0 % None 

BAT 
Revamp: increase capacity 

and energy efficiency 
EUR 5 235 995 1 16.6 % None 

BAT Pre-reforming EUR 5 830 684 2 7.5 % thermal 

and steam 
None 

BAT Advanced process control Not included in the study as the savings are <5 % 

BAT 
Low pressure catalyst for 

ammonia synthesis 
Not included in the study as the savings are <5 % 

BAT 

Use of S resistant catalysts 

for syngas from partial 

oxidation shift reaction  

No information available 

BAT 

Production using hydrogen 

from water electrolysis EUR 176/t 3 
-14 400 % 

electrical 

66.3 % rest 

98 % 

BAT 
Improvement of the 

reforming section 
EUR 37/t 13.3 % None 

IT 
New reforming concept 

EUR 348.1/t 4 
17 % thermal 

and steam 
None 

IT 

Short contact time catalytic 

partial oxidation 
EUR 835 000 000 

5 

11 % thermal, 

steam and 

feedstock 

None 

IT CO2 removal Not included in the study as the savings are <5 % 

IT 

New ammonia synthesis 

from electricity EUR 241.4 /t 6 
-9000 % 

electrical 

66.3 % rest 

98 % 

1 Reference capacity 361.35 kt/y 
2 Reference capacity 328.5 kt/y 
3 Reference capacity 73 kt/y 
4 Reference capacity 80 kt/y 
5 Reference capacity 500 kt/y 
6 Reference capacity 117 kt/y 
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Advanced process control 

An advanced process control system is model-based or model predictive and provides 

weighted and hierarchical optimisation, which means that solves optimisation problems 

by prioritising them. It can also contribute to energy savings of 0.7 GJ/t, obtained at 

additional costs of EUR 6 2009/tNH3 (Serpec-cc, 2009). The reduction obtained is only 2.3% 

and as a result it is excluded from the analysis.    

Low pressure catalyst for ammonia synthesis 

Conventional catalysts for ammonia synthesis are iron-based. A new catalyst containing 

ruthenium (Rh) and an alkali promoter has much higher activity, that allows energy 

reduction of up to 1.2 GJ/tNH3, but the savings might be offset by the need to refrigerate 

ammonia (EC, 2007b). There is no information about economics available, but since the 

maximum savings are only about 3.9%, the technique is excluded from the analysis. 

Use of sulphur resistant catalysts for shift reaction of syngas from partial 

oxidation 

This is an integrated technique applicable to new partial oxidation plants, which allows for 

the combined removal of CO2 and sulphur compounds in one step, instead of separately. 

There are two configurations available, with different syngas cooling techniques and 

subsequent differences in the process (EC, 2007b). There is no information available on 

the level of energy savings and economics and as a result, the BAT is not included in the 

analysis. 

Ammonia production using hydrogen from water electrolysis 

Water electrolysis can give an extremely pure hydrogen feed-gas, with only small 

amounts of oxygen (0.1-0.2%) that has to be removed as it is poisoning the ammonia 

converter catalyst. This feed-gas can react with nitrogen from the air separation plant. 

Direct emissions from this process are minimal, but the energy consumption is higher 

than traditional processes. It is estimated to be 12 MWh/tNH3 and the thermal energy and 

GHG reductions are 20 GJ/tNH3 and 98% respectively (Holbrook & Leighty, 2009). The 

process is generally not considered economically viable due to the actual price for electric 

power (EC, 2007b), as the price depends on the cost of electricity. With more recent 

developments an ammonia synthesis plant with 100 MW electrical capacity at a 

hydropower facility that produces about 73000 tNH3/y will have average cost that can be 

assumed to be about USD 215 2009/tNH3 (Holbrook & Leighty, 2009), equivalent of about 

EUR 176.0 2013/tNH3. 

Improvement of the reforming section  

Conventional steam reforming is carried out in a fired furnace. The implementation of a 

series of technologies, such as increased pre-heating, the use of enriched air and the 

installation of a pre-reformer, can lead to reduction of energy consumption. The results 

depend on the status of the existing plant and according to a study conducted on Indian 

plants (Trivedi et al., 1998) savings range for plants installed before 1980 between 5 - 

13.4 GJ/t, for plants installed until 1990 between 3.3-4.2 GJ/t and plants installed after 

1991 there are no significant savings. According to (de Beer et al., 2001), overall the 

energy loss in the reformer section can be reduced by 3-5 GJ/tNH3 and investment costs 

are estimated at EUR 65 2001/GJ saved annually, while according to later studies 

investment costs for large improvements in the reformer are EUR 24 2009/tNH3 (Rafiqul et 

al., 2005; Serpec-cc, 2009) and for moderate improvements EUR 5 2009/tNH3 (Serpec-cc, 

2009).  Savings in the case of large improvements are 4 GJ/tNH3 and for moderate 

improvements only 1.4 GJ/tNH3. In this study we consider savings of 4 GJ/tNH3 for average 

investment costs EUR 37 2013/tNH3. 
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5.2.4 Innovative technologies (ITs) 

There are a few innovative technologies concerning ammonia production mentioned in 

the literature and they are summarised in Table 28. 

Membrane methane reforming 

Conventionally the CH4 steam reforming reaction is carried out in multi-tubular fixed-bed 

reactors in high temperatures. The use of reforming membranes can improve energy 

efficiency and reduce some of the drastic operative conditions. In addition, no traditional 

CO2 removal system is needed (Moulijn et al., 2001). The energy savings in hydrogen 

production can be estimated to be 20 % compared to traditional reforming (Iaquaniello 

et al., 2008). Since this is fuel reduction respect of hydrogen, corresponding to 85% of 

the ammonia production energy consumption, the energy savings respect of ammonia 

are assumed to be 17%. The main disadvantage of this technology is low permeability 

and the cost of palladium-based membranes. The investment costs are estimated to be 

about EUR 28.05 million 2008 for a 20 000 Nm3/h hydrogen production scheme reforming 

(Iaquaniello et al., 2008). These investments costs would be about EUR 348.1 2013/tNH3 if 

the ammonia synthesis is based on 100% hydrogen conversion, which is the normal 

case.  

Short contact time catalytic partial oxidation 

Short contact time catalytic partial oxidation of natural gas represents an attractive 

process for syngas production, since it is possible to operate in flameless auto-thermal 

systems with significantly high conversion and selectivity, compared to existing processes 

(Reynier et al., 2007). The main advantages of this innovative technology is technical 

and operational simplicity, flexibility towards feedstock composition and production 

capacity, reduction in investment costs and energy consumption and reduction of CO2 

production (Iaquaniello et al., 2012). Investment costs are expected to be about 10% 

lower than those of a steam methane reforming plant of the same capacity and operating 

costs about 5% less, while the expected reduction in feed and fuel in the hydrogen 

production is 15% (Iaquaniello et al., 2012). This reduction corresponds to 11% less in 

the ammonia production energy consumption. Expected investment costs for this 

technique are EUR 835 000 000 with reference capacity 500 kt/y (OPT Sensor Srl, 2012). 

CO2 removal 

New technologies for CO2 separation are under development, with one of the most 

promising to be the use of membranes. This technique could potentially save 33% of the 

separation energy, decreasing the energy use by 1.1 MJ/Nm3
CO2 or 0.6 GJ/tNH3 (US 

Department of Energy, 2005). According to (Lako, 2009), the hypothetical upgrading of 

three ammonia plants in the Netherlands had estimated energy savings 1 PJ/y and 

tentative investment EUR 50 million 2009. The study concludes that under the considered 

assumptions pay-back time is approximately 7 years and it does not warrant economic 

feasibility. This IT is excluded from the scope of the study as savings are less than 5% 

and the economic feasibility doubtful. 

New ammonia synthesis from electricity 

An innovative ammonia synthesis technology is "solid state ammonia synthesis" (SSAS). 

It combines the functions of the electrolyser and the Haber-Bosch synthesis loop into one 

process and claims significantly higher efficiency and decreased capital costs, as the 

process step of producing hydrogen is omitted (Holbrook & Leighty, 2009). The technique 

is still under development, but it is estimated that the capital costs will be about 

USD 650 /kW of electricity input and that the electrical energy needs will be about 

7.5 MWh/tNH3. A 100-MW ammonia synthesis plant will have about 117 kt/y production 

and would cost USD 145-445 2009/t depending on the electricity cost (Holbrook & Leighty, 

2009), which corresponds to EUR 241.4 2013/tNH3. This IT consists improvement of the 
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"Ammonia production using hydrogen from water electrolysis" BAT, reducing electrical 

consumption by 37.5 %.  

5.3 Steam cracking and Acrylonitrile 

Steam cracking is the most important process worldwide to produce high value chemicals 

(HVCs) by breaking long-chain hydrocarbons into short-chain ones and it is, by far, the 

most important multi-product process in the chemical and petrochemical sector. As a 

result, it represents a particular challenge when modelling the energy use and emissions. 

High value chemicals include ethylene, propylene from pyrolysis gas of steam crackers, 

benzene, butadiene and hydrogen, according to Solomon Associates (IEA, 2009b). The 

products analysed in this paragraph include ethylene, propylene, butadiene, 1-butene 

and acrylonitrile.  

Steam cracking has been the major source of light olefins for more than half a century. 

Olefins are relatively stable compounds that contain one or more pairs of carbon atoms 

linked by a double bond and the most important ones are ethylene and propylene. Over 

85% of the olefins production is used in the production of polymers (Serpec-cc, 2009), as 

when the double bond is broken, the molecules can quickly form two new single bonds, 

stimulating thus a variety of reactions. Global ethylene and propylene production in 2012 

was 220 MT (IEA, 2013). The ethylene and propylene yields of steam cracking vary 

between 24-81% and 1.5-25% respectively, depending mainly on the feedstock type and 

operating conditions (ACC, 2004). 

Ethylene (C2H4 – CH2=CH2) — ethane according to the International Union of Pure and 

Applied Chemistry (IUPAC) — is one of the largest-volume commodity chemicals 

produced worldwide. It is used primarily as raw material in the manufacture of polymer 

plastics, fibres and other organic chemicals ultimately used in the packaging, 

transportation and construction industries (Ullmann's Encyclopaedia, 2009). It is the 

basic chemical for about 30 % of all petrochemicals (Ecofys, 2009). About 60 % of 

ethylene in Western Europe (29) is used for the production of polyethylene (PE) of 

different types, such as low density (LDPE), linear low density (LLDPE) and high density 

(HDPE). Ethylene dichloride (EDC) is the second main derivative of ethylene (15 %), 

used itself for the production of polyvinylchloride (PVC) (Petrochemicals, 2016). Its 

product chain is included in Annex 2. 

Ethylene is sensitive to both economic and energy cycles and because of the size and 

broad use of its market, it is often used as a surrogate for the performance of the 

petrochemical industry at large (IHS, 2014d). Global ethylene consumption reached 129 

Mt in 2012 (Eramo, 2013) and since 2009 it has been growing at an average rate of 

almost 4.5 % (IHS, 2014d). On the other hand, global capacity reached 153.5 Mt in 

2013, with the EU accounting for 16.3 %, the United States for 17.8 % and Saudi Arabia 

for 10.2 % (IHS, 2014a). Projections to 2019 report rates of 4 % per year (IHS, 2014d). 

Global ethylene demand is usually compared to the average world GDP growth rates and 

till the end of this decade it is expected to grow faster than the GDP rates (IHS, 2014d), 

while by 2050 it is expected to grow to 300 % compared to 2010 (ICIS, 2013). GDP is 

expected to have a growth rate of 1.5 % till the end of this decade (EC, 2013), 63 % 

slower compared to the ethylene rate. Due to lack of annual rates up to 2050, in this 

study we assume that the increase in the demand follows the GDP growth rates assumed 

in (EC, 2013) during the whole simulation period.  

Ethylene consumption in western Europe followed the global economic downturn that 

began in late 2007, managed to rebound in 2010 back to the levels of 2008, but has 

been decreasing since 2011 (Petrochemicals, 2016). The European ethylene capacity in 

2013 was 23 862 kt/year and in 2014 it decreased to 23 378 kt/year, while production 

was 18 521 kt/year and 19 279 kt/year respectively in these two years (Petrochemicals, 

2016). The total EU capacity is about 26 000 kt/year, which is about 20 % of the world 

ethylene capacity of 130 million tonnes (Cefic, 2013).  

                                           
(29) Western Europe in Petrochemicals Europe is EU-15 plus Norway.  
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Table 29. Steam crackers (ethylene) in EU-28 in 2013 

Country 
Number of plants Capacity (ktethylene/y) 

Belgium 3 2 240 

Czech Republic 1 580 

Germany 13 5 655 

Spain 3 1 625 

France 7 3 140 

Italy 3 1 675 

Hungary 2 660 

Netherlands 5 3 975 

Austria 1 500 

Poland 1 700 

Portugal 1 410 

Slovakia 1 240 

Finland 1 380 

Sweden 1 620 

United Kingdom 5 2 715 

Total 48 25 125 

Steam cracking covers completely the ethylene and butadiene demand in Europe (Ecofys, 

2009), while worldwide it accounts for the bulk of the commercial production of ethylene 

(Ullmann's Encyclopaedia, 2009). In the EU-28 there are 48 steam crackers in operation 

with a total ethylene production capacity of 25 125 kt/y, as shown in Table 29 (ICIS, 

2012; Ecofys 2009; Petrochemicals, 2016; EC, 2014d; IHS, 2015a). The installed 

capacity considered in this study is in accordance with the Cefic data (Cefic, 2013) and as 

a result the steam cracking list is considered complete. The majority of installations are 

located on large chemical sites or refinery sites (EC, 2014d). 

Propylene (C3H6 – CH2=CHCH3) — propene according to IUPAC — has similar uses as 

ethylene and its product chain is included in Annex 2. Polypropylene is the principal 

driver of propylene demand, as it accounts for 65% of the total global use of propylene 

(CIEC, 2015). In 2013 56 % of the propylene produced in Western Europe was used for 

the production of polypropylene and 16 % for propylene oxide (Petrochemicals, 2016). 

Most of the world's propylene production and consumption has historically been 

concentrated in North America and Western Europe, but in recent years China has gained 

also big share. All three account for about 55 % of global consumption (IHS, 2015b). 

Propylene is sold in three different quality grades: refinery (55-75 %), chemical (92-

96%) and polymer (>99.5 %). Global propylene demand in 2012 was 88 Mt and total 

capacity was estimated to be 100.4 Mt (Pandia, 2014). In 2013 the installed nameplate 

propylene capacity was 105.7 Mt for polymer/chemical grade and 45 Mt for refinery 

grade (IHS, 2014a). Europe accounted for 17.3 % of the polymer/chemical grade 

capacity, having an equal share with the US, and for 11.4 % of the refinery grade 

capacity. In Western Europe, nameplate capacity of steam crackers was 12 270 kt/year 

in 2013 and 12 140 kt/year in 2014, while propylene production (30) was 14 300 kt/year 

and 14 485 kt/y respectively (Petrochemicals, 2016). World consumption of propylene is 

forecast to grow on average by 4.6% per year, higher than ethylene (IHS, 2015b). 

  

                                           
(30) Capacity figures relate to steam crackers only, while production figures relate to other sources too 

(refineries, propane, metathesis) (according to personal communication with Petrochemicals Europe). 
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Table 30. Propylene producing plants in EU-28 in 2013 

Country 
Fluid Catalytic Cracking Steam cracking 

Number 

of plants 

Capacity (kt/y) Number 

of plants 

Capacity (kt/y) 

Belgium 2 325 5 1 690 

Bulgaria 1 70 - - 

Czech Republic 1 60 1 300 

Germany 10 1 180 13 3 265 

Greece 1 120 - - 

Spain 7 560 4 1 115 

France 8 603 7 1 900 

Italy 6 610 4 1 010 

Lithuania 1 20 - - 

Hungary 1 100 2 355 

Netherlands 2 295 5 2 035 

Austria 1 115 1 285 

Poland 1 120 1 385 

Portugal 1 70 1 215 

Romania 2 105 - - 

Slovakia 1 30 1 120 

Finland 1 90 1 193 

Sweden 1 80 1 225 

United Kingdom 7 915 4 785 

Total 55 5 468 50 1 3878 

About 56 % of propylene worldwide production is obtained as a co-product of ethylene 

manufacture, about 33 % is produced as a by-product of petroleum refining and 7 % is 

on-purpose product from the dehydrogenation of propane and metathesis. The remaining 

percentage is from selected gas streams from coal-to-oil processes and from deep 

catalytic cracking of vacuum gas oil. Metathesis can be applied to convert ethylene and 

butylenes to propylene as a stand-alone process or being integrated into a steam cracker 

(Ecofys, 2009). Propylene produced via the refinery catalytic cracking (FCC) process is of 

refinery grade, while propylene obtained from steam cracking and on-purpose techniques 

is chemical-grade purity or polymer grade. 

In Western Europe, the percentage of propylene from steam crackers is about 70 % 

(Petrochemicals, 2016). In the EU-28 the 50 steam crackers have a total capacity of 

13 878 kt/y in propylene, but as propylene is also produced by fluid catalytic cracking 

(FCC), there are also 5 468 kt/y produced by 55 plants, as shown in Table 30 (ICIS, 

2012). The total propylene capacity is 19 346 kt/y. 

Butadiene (C4H6 – CH2=CH–CH=CH2) consumption is driven to a large extent by the 

automotive industry, as the single largest use of it is in the production of synthetic 

elastomers, including styrene-butadiene rubber and polybutadiene rubber. In Western 

Europe butadiene capacity increased from 2 518 kt/y to 2 764 kt/y and production from 

1 915 kt/y to 1 991 kt/y between 2013 and 2014 (Petrochemicals, 2016). Global demand 

was expected to grow at a rate of about 4% per year to 2016 (IHS, 2012a). In Europe all 

of butadiene demand is covered by steam cracking (Ecofys, 2009).   

Butylene (C4H8 – CH2=CHCH2CH3) – 1-butene according to IUPAC — finds applications in 

the manufacturing of a variety of chemicals. Co-polymerisation of ethylene and 1-butene 

produces LLDPE, a form of polyethylene that is more flexible and more resilient. It is also 
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used in the production of polybutene, butylene oxide and in the C4 solvents butyl alcohol 

and methyl ethyl ketone (MEK).     

The steam cracking capacity of Europe was 2808 kt/y concerning butadiene and 703 kt/y 

concerning butenes in 2013 (ICIS, 2012; Petrochemicals, 2016. 

Last but not least, acrylonitrile (C3H3N – CH2=CH-C≡N) – 2-propenenitrile according to 

IUPAC – is used mainly as a monomer for products as polyacrylonitrile for acrylic fibres 

accounting for 42% if its end-uses (Ullmann's Encyclopaedia, 2012). 34 % of acrylonitrile 

produced is consumed in producing acrylonitrile-butadiene-styrene resins, which are used 

in numerous automotive, construction and electronics applications thanks to their high 

strength, colouring characteristics and processing ease (Ullmann's Encyclopaedia, 2012).  

It is not produced via steam cracking, but it is considered in this study, as it is a 

derivative of propylene. 

Thanks to the above mentioned important uses of it, the global installed capacity of 

acrylonitrile was in 2010 5.7 Mt (Reliance Industries, 2015). In 2013 only four 

installations were active in the EU-28 with total capacity 855 kt/y (ICIS, 2012), in 

comparison with 2000 when there were seven operational installations with a nameplate 

capacity of 1165 kt/y (EC, 2003a). A plant in Spain has been idle since 2010 (Repsol, 

2014). It is obvious, that during the last decade the EU acrylonitrile capacity declined by 

more than 20 %.   

5.3.1 Production processes 

As explained already, the most common process applied for lower olefins production is 

steam cracking and this is the only process described in detail in this study. It is also 

known as thermal pyrolysis and is a mature technology that has been the industry 

standard for over 50 years. It can accept a variety of hydrocarbons, ranging from natural 

gas liquids (ethane, propane and butane) to petroleum liquids (naphtha (31) and gas oils). 

The choice of feedstock is heavily influenced by market factors and the availability of 

supplies, but regardless of the feedstock used, steam cracking involves three basic steps 

(EC, 2014d; EC, 2003a; Ren et al., 2006; Ullmann's Encyclopaedia, 2009): 

1. Pyrolysis and cooling,   

2. Primary fractionation / compression and 

3. Cryogenic cooling and product separation 

The feedstock is preheated and vaporised with superheated steam and then passed 

through tubes where the cracking reactions take place. The process is highly endothermic 

and requires high temperatures and therefore continuous external heating, usually to 

750-900oC (Ren et al., 2006). Temperatures up to 1 100 oC can be achieved (EC, 

2014d). The conditions chosen for the furnace temperature and the flow rate of the 

heated reactants depend on the products that are needed. In order to avoid forming 

carbon, the residence time is short and the pressure in the tubes low. The vaporisation 

with steam inhibits carbonisation and prevents mixing with air to form explosive 

mixtures, a danger in case of leak (due to sub-atmospheric pressure) (CIEC, 2015). In 

addition, it lowers the hydrocarbon partial pressure, thus enhancing olefin yield 

(Ullmann's Encyclopaedia, 2009).  

The hot mixture leaving the furnace is quenched to prevent loss via side reactions and 

separated in a series of processes including compression, absorption, drying, 

refrigeration, fractionation and selective hydrogenation. This further processing depends 

on the feedstock type and the number and specifications of the desired products 

(Ullmann's Encyclopaedia, 2009).  

In the first end-section the effluent stream is cooled (the waste heat is recovered). It is 

then condensed to remove heavy hydrocarbon components, compressed and dried, 

                                           
(31) Naphtha is the mixture of hydrocarbons in the boiling range of 30 to 200oC. 
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resulting in a purified gas. Primary fractionation applies only to naphtha and gasoil feed 

(Ren et al., 2006) and compression takes place in four or five stages, thus removing 

condensates and acid gases (H2S, CO2) by scrubbing the stream near the final stages 

(Ullmann's Encyclopaedia, 2009). Most of the dilution steam is recovered and recycled 

(Ren et al., 2006).  

The dried gas is led to the main fractionation section, where it is separated into different 

products. The predominant method in this section is cryogenic separation. There are 

several configurations that can be used, depending on the feedstock and the design 

arrangement. The three most common processes are de-methaniser (to remove methane 

and lighter components), de-ethaniser (to remove ethane, ethylene and some acetylene) 

and de-propaniser (to remove propane and lighter components) (Ullmann's 

Encyclopaedia, 2009). During this process, hydrogen is also recovered and used for 

downstream hydrogenation, hydrotreating of the heavier products or sold (EC, 2014d). 

The methane-containing gas is usually used as fuel gas internally, while ethane and 

propane are generally recycled. Acetylene and propadiene are usually undesired and are 

further processed with hydrogenation so as to yield ethylene and propylene (Ullmann's 

Encyclopaedia, 2009). Butadiene, C4 compounds and aromatic gasoline are separated in 

the end (Ren et al., 2006).  

The choice of feedstock depends on market factors and the availability of supplies. In 

2014, naphtha and condensates provided about 68 % of the feed to European steam 

crackers, while 21 % came from natural gas liquids and the rest from gasoil and other 

sources (Petrochemicals, 2016). The final product yields depend on the feedstock and the 

cracking severity (32). Light olefins are formed primarily from alkanes and naphthenes and 

as a result, light feedstocks containing mainly n-alkanes result in lower co-product yields 

than the heavier feedstocks (Ullmann's Encyclopaedia, 2009). Generally as the molecular 

weight of a feedstock increases, ethylene and propylene yields decrease (EC, 2014d; 

Ullmann's Encyclopaedia, 2009). Typical product streams for the different feedstocks are 

shown in Table 31(33). As naphtha is a mixture of hydrocarbons, the ranges in the case 

of this feedstock are wide. There is a tendency in the industry to use light naphthas and 

other feedstocks, lower-severity conditions (high coil outlet temperature, but low 

hydrocarbon partial oxidation and short residence time) in order to increase the yield of 

ethylene (Ullmann's Encyclopaedia, 2009).  

Concerning propylene production, the four commercially proven routes are: (1) steam 

cracking, (2) fluid catalytic cracking (FCC), (3) propane dehydrogenation and (4) 

metathesis of ethylene and butylenes. 

Fluid catalytic cracking (FCC) is used in refineries primarily to produce gasoline and 

distillate from heavy oils, but it also converts a significant portion of the feed to C1 - C4 

products, including propylene and hydrogen (EC, 2015a). The percentage of propylene 

produced depends on the operating mode of the FCC: if it is operated in gasoline mode 

the average propylene yield is about 5 %wt on fresh feed, while if it is operated in 

propylene mode it can reach up to 20 %wt (Couch et al., 2007). A simplified flow 

diagram for fluid catalytic cracking is shown in Figure 13. 

 

  

                                           
(32) Severity refers to the conditions used during cracking and is a function of the temperature and the 

residence time of the feedstock in the furnace. It depends on the desired product ratios. 
(33) Data representative of relative material balances for an ethylene plant with a capacity of 453 kt per year 

when feeding one feedstock at the assumed severity conditions. Ethane and propane recycle to extinction 
is assumed for all feedstock categories. 
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Table 31. Typical product yields (kt) for different feedstocks for a plant with ethylene 

capacity 453.6 kt/y (ACC, 2004) 

Product (kt) 

Feedstock 

Ethane Propane Naphtha  
Atmospheric 

Gasoil 

Vacuum 

Gasoil 

Cracking severity High 
Medium to 

high 

Medium to 

high 

Medium to 

high 
Medium 

Hydrogen-rich gas 33 17-21 11-14 12-26.5 17-26 

Methane-rich gas 39.5 263-296.5 199-222 183 - 196 175-194 

Ethylene 453.6 453.6 453.6 453.6 453.6 

Propylene1 11 166-293.5 181-260  242.5-83 261 

Butadiene  10 18-32 56-77  76-82  79 

Butenes / Butanes 4.5 13-22  60-128 76-88.5 84 

Pyrolysis gasoline 9 47-71  183-494 294-342.5 299.5 

 Benzene 4.5 17-26.5  51-84 96-109 109 

 Toluene 0.5 5-5.5 19.5 - 71.5 51-54.5 57 

 C8 Aromatics 0 0 26.5 - 43 20-43 
134 

 Other 4 25-39  86 - 295 127-136 

Fuel oil 0 4.5-10  29.5 - 51 289-376.5 544-605.5 

Total 561 982-1 200 1 173 - 1 670 1 614-1 822 1 897-1 977 

Ethylene yield (%) 81 38-46  27 - 39  25-28  23-24  
1 Polymer-grade propylene production is assumed 

Figure 13. Simplified fluid catalytic cracking process (UOP, 2014) 

 

The feed in the catalytic cracking unit can be heavy gas oils from the vacuum distillation 

unit in the refineries or bottom streams from the atmospheric distillation unit. Depending 

on the feedstock, the process is named either fluid catalytic cracking or residue catalytic 

cracking, but often units designed for one type of feedstock can also treat some of the 

other. 

Acrylonitrile is produced in Europe exclusively from propylene with the BP/SOHIO process 

(EC, 2003a), which accounts also for more than 90 % of the worldwide acrylonitrile 

capacity (IPCC, 2006b). It consists of a vapour phase exothermic ammoxidation of 
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propylene using excess of ammonia and oxygen in the presence of an air–fluidised 

catalyst bed, according to the following reaction (Ullmann's Encyclopaedia, 2012): 

C3H6 + NH3 + 1.5 O2 → C3H3N  +  3 H2O   (reaction 17) 

The conditions of the process are temperatures of 400-510 oC, pressures of 50-200 kPa 

and residence time of a few seconds and on a mixture of heavy metals on silica, as 

catalyst. It is a single-pass process with about 98 % conversion of propylene. The reactor 

effluent is quenched with water and the unreacted ammonia is neutralised with sulphuric 

acid, resulting in ammonium sulphate that can be used as fertiliser (Ullmann's 

Encyclopaedia, 2012).  

5.3.2 Current consumption and emission levels 

Steam cracking is the most energy-consuming process in the chemical industry and 

globally uses approximately 40 % of the total energy in the entire petrochemical industry 

(Rahimi and Karimzadeh, 2011). In 2000 it accounted for about 20 % of the final energy 

use (excluding energy content in chemicals) of the global chemical industry and nearly 

200 million tonnes of CO2 emissions due to combustion of fossil fuels (Neelis et al., 2007; 

Ren et al., 2008).  

Depending on what is considered as final product, there are different ways to express 

consumptions and emissions in the case of steam cracking. If ethylene is the final 

product of the process, all energy and feedstock use is allocated only to it and all other 

by-products are hence energy and feedstock neutral. This is not always the best 

indicator, as in the comparison of ethane and naphtha cracking, ethylene yield is higher 

in the case of ethane, but naphtha cracking also yields considerable amounts of other 

valuable by-products (Table 31). The best indicator would be tonnes of high value 

chemicals (HVCs), which usually include ethylene, propylene, butadiene and butenes. The 

feedstock consumptions for steam cracking can be calculated according to the data 

shown in Table 31 and are summarised in Table 32 in both references for comparison. In 

our study the goal is to calculate the energy consumption and the GHG emissions of the 

chemical industry. As a result and in order to avoid double-counting, we will use the 

allocation of all consumptions and emissions to ethylene, since steam crackers capacity 

in the industry refers to this product. This way all other by-products are produced 

without charge but all the consumptions and emissions of this part of the chemical 

industry are taken into consideration in the study. 

Table 32. Feedstock consumption for steam cracking production 

Steam cracking 
Feedstock t/tethylene t/tHVC 

1 

Ethane based2 Ethane 1.2 1.17 

Gas oil based3 Gasoil 4.0 2.07 

Naphtha based4 Naphtha 2.7 1.60 
1 HVCs here include ethylene, propylene, butadiene and butenes 
2 Ethylene yield 81% assumed 
3 Ethylene yield 25% assumed (considering the average of both atmospheric and 

vacuum gasoil) 
4 Ethylene yield 35% assumed 

In the case of acrylonitrile the major raw materials consumed are propylene and 

ammonia and the average values are shown in Table 33 (EC, 2003a; Ullmann's 

Encyclopaedia, 2012).  
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Table 33. Feedstock consumption for acrylonitrile production 

Feedstock 
Consumption (t/tacrylonitrile) 

Propylene  1.09 

Ammonia 0.50 

The process energy use in the case of steam cracking is the sum of the theoretical 

thermodynamic energy requirement (the minimum energy input requirement for 

converting feedstock to desired product in an endothermic reaction) together with any 

energy losses. Losses can occur because of fouling, coking or other reasons. An overview 

of the specific energy consumptions (SEC) for steam cracking (34) in the case of ethane 

and naphtha is included in Table 34 (Ren et al., 2006; IEA, 2007).  

Table 34. Overview of energy use and CO2 emissions of ethane and naphtha steam 

cracking 

Feedstock 
SEC CO2 emissions Losses 

Reference 
(GJ/tethylene) (GJ/tHVC) (tCO2/tethylene) (tCO2/tHVC) (wt%) 

Ethane 
17-21 16-19 1.0-1.2 1.0-1.2 1-2 (Ren et al., 2006) 

15-25 12.5-21    (IEA, 2007) 

Naphtha 
26-31 14-17 1.8-2.0 1.6-1.8 1-2 (Ren et al., 2006) 

25-40 14-22    (IEA, 2007) 

Gasoil 40-50 18-23    (IEA, 2007) 

The breakdown of consumptions and exergy losses can help to identify where energy 

savings are possible. Concerning naphtha cracking, the step of pyrolysis accounts for 

approximately 2/3 of the total energy consumption, while the remaining 1/3 is consumed 

in compression and separation techniques. Compression uses approximately 15% of the 

total energy use and separation approximately 1/5 of the total energy use (Ren at al., 

2006). 75 % of the total exergy losses (about 15 GJ/tethylene) occur in the pyrolysis 

section, where total temperature drop is more than 1 100 oC and total pressure drop is 

nearly 70 bar (Ren et al., 2006). Exergy losses in the compression and separation 

sections, accounting for 25 % of the total losses, are mainly caused by the use of 

electricity for refrigeration and compression, where the conditions are cryogenic 

(temperatures as low as -150oC and pressures up to 30 bar) and are estimated to be 

about 2 GJ/tethylene (Ren et al., 2006). The additional energy (1-2 %) is needed in 

decoking/defouling, shutdowns/restarts and related maintenance.  

As mentioned earlier, fuel gases containing methane and other fuel-grade by-products 

from naphtha steam cracking can be combusted to provide process energy. These fuel 

by-products (amounting to approximately 20-25% of the energy content of naphtha) 

together with flue gases and waste heat can meet approximately 95% of the process 

energy demand in naphtha steam crackers (Ren et al., 2006). The LHV of naphtha is 

44.5 GJ/t (Table 6), which results in about 10 GJ/tnaphtha fuel by-products.  Energy for the 

compression and separation is provided by steam, almost all of which is produced in the 

heat exchangers after the pyrolysis. Typically, there is no net steam import or export 

(Ren et al., 2006). A small amount of electricity, about 1 GJ/tethylene 
(35), is provided from 

external sources. Contrary to naphtha cracking, ethane cracking is not self-sufficient in 

terms of energy and therefore requires energy import of about 15 % of the total SEC 

(Ren et al., 2006).  

                                           
(34) Specific energy consumption refers to process energy use in pyrolysis and separation. 
(35) This value refers to primary energy and conversion 40% is considered.  
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Concerning electricity, according to (IHS, 2014a), naphtha-based steam cracking needs 

44 kWh/tethylene electricity, ethane-based 140 kWh/tethylene and gasoil-based 300 

kWh/tethylene. Using these values and combining all the information in the literature about 

the specific energy consumption of the different types of steam cracking, the total energy 

consumption for ethane-based steam cracking is assumed to be 20.5 GJ/tethylene, for 

naphtha-based to 12 GJ/tethylene and for gasoil-based to 25 GJ/tethylene, which are in 

accordance with the aggregated values from literature (Table 34), if the fact that 

naphtha-based (and also gasoil-based) processes are using by-products for the heating 

demands. If these consumptions need to be expressed per another product of the steam 

cracking process, this is based on the relative yields according to Table 31.  

A large proportion of Europe's propylene demand can be satisfied by steam cracking, but 

the rest is supplied from extraction from refinery Fluidised Catalytic Cracker (FCC) off-

gas. FCC involves up to 20 % less resources consumption and emissions compared to 

steam cracking (Ren et al., 2006). The utility consumption of catalytic crackers per tonne 

of product is estimated to be 120-2 000 MJ of fuel, 2-60 kWh of electricity and 50-20 m3 

of cooling water, while concerning the steam the process consumes about 30-90 kg and 

produces 40-60 kg (EC, 2015a). Attention should be paid, because FCC is producing 

gasoline as well as propylene, with a ratio of about 15.3:1 (IHS, 2014c) and since 

gasoline production is not part of the chemical industry, only the emissions and 

consumptions attributed to propylene should be taken into consideration. The process 

consumes 1.7 kWh/tpropylene electricity, 0.95 GJ/tpropylene fuel for thermal needs and 0.08 

t/tpropylene medium pressure steam (IHS, 2014a). If medium pressure steam is assumed to 

be between 3.5-17.5 bar, its average latent heat would be about 2 000 KJ/kg 

(Engineering Toolbox, 2015a), the steam consumption is converted to 0.16 GJ/tpropylene. 

Feedstock consumption of FCC is 26.3 t of distillate fuel oil per tonne products. The 

amount corresponding to propylene is 1.61 t/tpropylene, calculated by mass allocation 

between gasoline and propylene. The emission factor used for direct emissions is 0.21 

tCO2/tpropylene (IHS, 2014a).    

As far as it concerns acrylonitrile, the ammoxidation of propylene is an exothermic 

reaction. As the heat of reaction is used to generate high pressure steam, acrylonitrile 

plants are net energy exporters, with a range between 340 and 5 700 MJ/tacrylonitrile (EC, 

2003a). This range is wide because of the number of gaseous and liquid effluent streams 

generated and can be recovered. The electrical demands of the process are 1.51 

MJ/kgacrylonitrile, based on an LCA study (Plastics Europe, 2005). This value includes also 

the electricity needed to produce the raw materials, which should be deducted. Ammonia 

production requires 0.3 GJ/tNH3 electricity (see paragraph 5.2.2), while propylene 

production requires 90.5 kWh/tpropylene (calculated according to the procedure explained 

before). The net electric consumption for ammoxidation is calculated to be 277.8 

kWh/tacrylonitrile.  

During steam cracking, emissions arise from the following principal sources (EC, 

2014d): 

● Combustion of fuels to provide heat to the steam cracker; 

● Decoking of the cracker furnace tubes; 

● Regeneration or processing of scrubber liquors used for the clean-up of the 

cracked gases; 

● Fugitive releases of Volatile Organic Carbons (VOCs). 

CO2 emissions of ethylene production from steam cracking can be estimated using the 

feedstock-specific emission factors shown in Table 35 (IPCC, 2006b). These factors 

concern total process and energy feedstock use and are based from plant-specific data 

for steam crackers in Western Europe. As a result, an adjustment factor is necessary for 

other geographical regions (110 % for Eastern Europe not including Russia). In addition, 

they do not include emissions from flaring, which amount to about 7 % of total emissions 



62 

in a well-maintained plant (IPCC, 2006b). The emission factors can be calculated with 

reference to the other products by using the correlations shown in Table 31. 

Table 35. Steam cracking - ethylene production emission factors (IPCC, 2006b) 

Feedstock 
tCO2/tethylene 

Naphtha Gasoil Ethane Propane 

Ethylene 1.73 2.29 0.95 1.04 

— Process feedstock use 1.73 2.17 0.76 1.04 

— Supplemental fuel use 0 0.12 0.19 0 

Overall VOCs emissions from steam cracking are estimated to be 5 kg/tethylene produced 

from naphtha and 10 kg/tethylene produced from ethane, but due to uncertainties the 

default values for CH4 emissions for ethylene production are considered to be 6 kg/tethylene 

in the case of ethane as feedstock and 3 kg/tethylene for all other feedstocks (IPCC, 

2006b).  

Concerning acetonitrile, process vent CO2 emissions can be calculated using the emission 

factors provided in Table 36. These emission factors are based on an average propylene 

feedstock consumption factor of 1.09 t/tacrylonitrile (Table 33) corresponding to a propylene 

conversion rate of 70 %. The default emission factor is based on the assumption that 

secondary products (acetonitrile and hydrogen cyanide) and any hydrocarbon by-product 

in the main absorber vent gas are either burnt for energy recovery or flared to CO2 

(IPCC, 2006b). 

Table 36. Acrylonitrile production CO2 emission factors (IPCC, 2006b) 

Process configuration Emission factor 

(tCO2/tacrylonitrile) 

Secondary products burnt for energy recovery/flare 

(default) 

1.00 

Acetonitrile burnt for energy recovery/flare 0.83 

Acetonitrile and hydrogen cyanide recovered as product 0.79 

Steam cracking products are benchmarked, with value 0.702 allowances/tHVC (EC, 

2011b). The system boundaries of the benchmarking include all steps of the processes, 

including also emissions related to the production of the consumed electricity. 

Nevertheless, there is no benchmarking curve available for steam cracking (Ecofys, 

2009) and as a result, there is no calibration performed in this case. 

5.3.3 Best available techniques (BATs) 

The goal for the techniques to be considered as BATs is to have potential for achieving 

high level of environmental protection (Table 37). As olefin production is a mature 

technology, improvements in terms of energy consumption and GHG emissions that can 

be achieved are only marginal. In the case of acrylonitrile, BAT is to maximise the re-use 

of hydrogen cyanide, acetonitrile and ammonium sulphate by-products. 

Advanced process control 

Advanced process control (APC) has been already implemented in the Shell Chemical 

Ethylene plant in Texas USA (Haarsma & Mutha, 2008). Some APC features include 

robust (bi) linear steady state optimisation, advanced modelling capabilities, such as 

intermediate variables and cascade correction of manipulated variables, and on-line 

updateable model gains. Typical reported benefits from implementation of APC on an 

ethylene plant vary from USD 1 to 10 million per year, depending on the plant capacity, 

its feed slate, the constraints and local economics (Haarsma and Mutha, 2008). The 

payback time is estimated to be one year or even less. On the reference example plant 

the benefits on product recovery and energy consumption add up to USD 3.7 million 
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2007/y (Haarsma and Mutha, 2008). Unfortunately, all literature about advanced process 

control quantifies the benefits only from the financial point of view, but they include 

savings in feedstock, steam and other parts of the process. As there is no information 

concerning the investment costs and the exact energy savings of this technique, it is not 

included in our study. 

Table 37. Overview of the possible BATs and ITs in steam cracking and acrylonitrile 

industry 

BAT or 

IT 

Description Investment cost Energy savings GHG 

Reduction  

BAT Advanced process control No information available 

BAT 
Decoking activities Not included in the study as the savings are 

<5 % 

BAT 
Implementation of LDAR 

methods 

Not included in the study as the savings are 

<5 % 

BAT Improving furnace design EUR 1 442 430 1 10 % None 

BAT 

Improving compression 

and separation section – 

Advanced distillation 

columns 

Not included in the study as the savings are 

<5 % 

BAT 

Improving compression 

and separation section – 

MVR 

EUR 0.57/t 2 5 % None 

BAT 

Acetonitrile and hydrogen 

cyanide recovered as 

product 

No information available 

IT Adsorption Heat Pump  EUR 5 396 827 3 12 % None 

IT 

Improving compression 

and separation sections – 

VSA  

No information available 

IT 

Improving compression 

and separation sections – 

Membranes 

EUR 11 506 984 4 

8 % electric, 

thermal and 

steam 

None 

IT 
Methanol-to-olefin Not included in the study as the savings are 

<5 % 

IT 
Use of biomass Not included in the study due to lack of 

information 
1 Reference capacity 680 kt/y 
2 Reference capacity 344 kt/y 
3 Reference capacity 500 kt/y 
4 Reference capacity 625 kt/y 

Decoking activities 

Coke accumulates in the furnace tubes and reduces the heat transfer efficiency. Decoking 

results in maintaining the furnace at efficient conversion rates without increasing energy 

demand. Proper design and operation of the furnaces to minimise coke formation is the 

only technically feasible mean of minimising GHG emissions (Formosa Plastics, 2012; 

Chevron, 2012; ExxonMobil, 2012). Several licensors are already implementing advanced 

coil-related furnace features (Ren et al., 2006). This BAT is excluded from our analysis as 

it determines savings less than 5%. 
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Implementation of instrument leak detection and repair (LDAR) methods 

GHG emissions from piping fugitives can be controlled by techniques such as installation 

of leak-less technology components, implementation of instrument leak detection and 

repair (LDAR) programmes, implementing alternative monitoring using remote sensing 

technology (Formosa Plastics, 2012; Chevron, 2012; ExxonMobil, 2012). However, these 

methods are only cost-effective for CO2 prices higher than USD 44/tCO2.eq, and the 

incremental GHG emissions controlled is less than 0.3 % (Chevron, 2012). As a result, 

this BAT is also excluded from our analysis, due to low savings. 

Improving furnace design 

In an effort to improve heat transfer and raise severity in the pyrolysis section, several 

innovations have been developed, such as circulating solids (e.g. sand, coke or other 

carriers), circulating beds (Picciotti, 1997), selective radiant coils to allow better control 

of the propylene/ethylene ratio (Nieuwlaar, 2001), ceramic-coated tubes/coils (Kolmetz 

et al., 2002) and other advanced furnace materials. It is estimated that these advanced 

materials can achieve approximately 10 % savings on current average SEC (Ren et al., 

2006). Some of the innovations aim to decrease coke formation (Brayden et al, 2006), 

affect olefin selectivity, and increase the skin temperature on the tubes and surface 

catalytic activity. Total capital costs plus installation costs of a high efficiency coalesce 

and filtration unit in a 680 kt ethylene plant in 2004 were estimated at USD 1.5 

million  2004 and the payback time was less than a year (Brayden et al., 2006). 

Improving compression and separation section 

This includes mechanical vapour recompression (MVR), advanced distillation columns, 

membranes and combined refrigeration systems (Ren et al., 2006). Several advanced 

distillation columns have been developed with different savings that can range between 

60 % and 90 % on the energy consumption of a conventional distillation column (0.1-

0.3 GJ/tethylene), while MVR and membranes can lead to approximately 1 GJ/tethylene and 

1.5 GJ/tethylene savings, respectively (Ren et al., 2006). Capital costs for implementation 

of an advanced distillation column is about USD 1/tethylene (Wu et al., 2012) and in the 

case of MVR costs are almost the same as conventional distillation (Diez et al., 2009), 

estimated at EUR 0.572012/tethylene (OPT Sensor Srl, 2012). Advanced distillation columns 

are excluded from the scope of the study as BAT, as its maximum savings are 1.5 %, 

while MVR has savings about 5 % and falls inside the scope. 

Acrylonitrile: secondary products recovered 

Ammoxidation of propylene to acrylonitrile is not 100 % efficient in utilisation of the 

propylene feedstock. The primary product yield factor is about 70 % (IPCC, 2006b). 

However, the acrylonitrile production process may be configured to operate to produce a 

greater or lesser amount of secondary products (acetonitrile and hydrogen cyanide). In 

the default case by-products are assumed to be burnt for energy recovery or flared to 

CO2 and are not recovered. Nevertheless, if secondary products are recovered for sale 

and are neither flared nor burnt for energy recovery, the overall process yield factor 

increases to 85 % (IPCC, 2006b). The emission factors for the cases of secondary 

products being recovered as products and acetonitrile burnt for energy recovery are 

shown in Table 36. Unfortunately, there is no cost data available for this technique.  

5.3.4 Innovative technologies (ITs) 

Possible advances in steam cracking can include modifications in the pyrolysis section to 

improve heat transfer, reduce coking and raise severity, and introduction of systems for 

recovery and save or of more efficient techniques of compression and separation.  
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Adsorption Heat Pump 

As steam cracking requires a huge amount of low temperature cooling but at the same 

time it discharges a large amount of low temperature heat, it can be used to run an 

Adsorption Heat Pump (AHP) for chilled water generation, of for direct process cooling. A 

type of AHP has been developed by Mitsubishi Plastics Inc. (Hirata and Kakiuchi, 2011). 

Chilled water generation from AHP is considered a promising technique to partially 

replace the existing expensive propylene refrigerant. Applying AHP had a significant 

impact in reducing energy consumption of the propylene refrigerant compressor by 12 % 

(Hirata and Kakiuchi, 2011). Investment costs, consisting of the equipment purchase 

plus the constructions for retrofitting an AHP in an existing plant, are in the order of 

USD 7.4 million 2011 (Hirata and Kakiuchi, 2011). 

Improving compression and separation section 

Possible improvements in these sections include vacuum swing adsorption (VSA) and 

membranes (Ren et al., 2006).  

VSA involves solid sorbents for selective adsorption of ethylene and propylene over 

paraffins and not a lot of information concerning its performances is available. 

Membranes, on the other hand, are often made of polymer or inorganic materials and 

could be used in separation of olefin/paraffin, gases and coke/water (Ren et al., 2006). If 

membranes are used in the C2/C3 separation alone, approximately 8 % savings on 

process energy is expected (Ren et al., 2006). At present, only hydrogen recovery from 

the cracked gas is considered feasible and can contribute to reducing the refrigeration 

load as well as the equipment size of the col-box section. For a 625 kt/y ethylene plant, 

the net power saving is about 9.3 MW and gives net annual savings of about 

USD 2 899 000 2001/y, while it requires USD 13 521 0002001/y capital investment (Al-

Rabiah et al., 2001). 

Olefin production via methanol 

The methanol-to-olefin (MTO) process allows producing olefins from gas or coal instead 

of oil. SEC in the case of MTO technologies is in the range of 5-8 GJ/tHVC, when 

conventional naphtha cracking is in the range 14-17 GJ/tHVC, but they require additional 

23 GJ/tHVC for the methanol production (IEA, 2013). More efficient methanol synthesis 

and more selective catalysts for the MTO process will improve the SEC of the process and 

could lead to GHG savings. For the time being, this technique falls out of the scope of this 

study, as there are no savings achieved with it. 

Use of biomass 

Olefins can be produced from biomass, but the primary feedstock needs intermediate 

transformations. For example, sugar- or starch-rich biomass is fermented to ethanol, 

which is then converted by dehydration to ethylene. The first part of the process is very 

energy intensive and the energy consumption of biomass routes can be 3.5-5 times 

higher than for fossil routes (IEA, 2013). GHG savings could reach 80-90 % compared to 

steam cracking and about 70 % compared to the industry benchmark (36) (Benner et al., 

2012), but it is not yet known to have been applied in industry. This technology is not 

included in the study as it cannot be quantified yet. 

 

                                           
(36) These calculations are based on the Renewable Energy Directive [EC, 2009], which means that direct and 

indirect land use change has not been taken into consideration. According to COM(2012) 595 final [EC, 
2012], the carbon footprint of some types of biomass (including sugar- and starch-rich feedstocks) will be 
lower. 
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5.4 Hydrogen, Syngas and Methanol 

Hydrogen (H2) is the most abundant element in the universe, and it appears naturally on 

the earth's crust bound with other elements instead of being in its molecular form. 

Molecular hydrogen is produced in large quantities both as a principal product and as a 

by-product.  

The term "synthesis gas", usually referred to as syngas, covers all mixtures of carbon 

monoxide and hydrogen, from pure CO to pure H2 (Ecofys, 2009). It is mainly used for 

the synthesis of special chemical products, thus the name (Ullmann's Encyclopaedia, 

2000a). In chemical, oil and energy industries hydrogen and synthesis gas are 

indispensable (Song, 2009). 

Globally, around 45 - 50 million tonnes of hydrogen (5.5-6 EJ) (37) were produced in 

2010, the majority of which is produced using fossil fuel feedstocks (Carbon Counts, 

2010). In 2012, the annual hydrogen production was estimated to be around 6 EJ (IEA, 

2012a). Nearly 96% of hydrogen is derived from fossil fuels: natural gas is the most 

frequently used (about 48 %), followed by liquid hydrocarbons (30 %), coal (18 %) and 

electrolysis and other by-product sources of H2 based on electrolysis with 4% (Kothari et 

al., 2008; IEA, 2012a; IHS, 2015c). Globally, hydrogen is expected to increase by 5-6% 

until 2020 (IHS, 2015c). 

Hydrogen in the refining and chemical industry is almost entirely used as feedstock (IEA, 

2012a). Most of it is used in the synthesis of ammonia and methanol and a significant 

portion in refineries for upgrading crude oils by processes such as hydrocracking and 

hydrotreating desulphurisation units. In Europe, 50% of the total hydrogen is consumed 

by the refinery and 32 % by the ammonia industry. If methanol and metal industries are 

added, these four sectors cover 90 % of the total (Roads2hy, 2007).   

Figure 14. Geographic distribution of identified hydrogen production facilities (Roads2hy, 

2007) 

 

                                           
(37) For H2, standard net enthalpy of 121.4 MJ/kg is assumed [Perry's Handbook, 2008]. 
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The hydrogen market is growing, mainly thanks to regulations pertaining to 

desulphurisation of fuel used in transportation, growth in transportation fuels and 

decreasing crude oil quality (IHS, 2015c). It is one of a few energy carriers capable of 

achieving near-zero CO2 performances (IEA, 2012a) and it is estimated that the overall 

global demand for hydrogen will increase by about 5-6% during the next five years (IHS, 

2015c). The main drivers of the growth are expected to be the lower-quality crude oils 

that are being processed and the rising demand for distillate fuels (IHS, 2015c). 

Around 2005, total European production was estimated at 92 billion m3, 95% of which 

was located in EU-28, 2 % in Turkey and 1.8% in Iceland, Norway and Switzerland 

(Roads2hy, 2007). The captive industry (ammonia and methanol) produced around 64 % 

of the total, followed by the by-product industry (ethylene, acetylene, styrene and coke-

oven gas) with 27 % of the production and merchant companies (38) with 9 % (Roads2hy, 

2007). The geographic distribution of the identified hydrogen production sites is shown in 

Figure 14.  

In 2007/08 there were 83 installations included in the EU ETS concerning hydrogen and 

syngas, including methanol plants and excluding ammonia plants, both in the chemical 

and in the refinery sectors (Ecofys, 2009). Table 38 summarises an overview of the 

plants producing hydrogen and methanol in EU-28 (ICIS, 2012; Ecofys, 2009; Roads2hy, 

2007). 

Table 38. Hydrogen producing plants in the EU-28 in 2013 

Country 
Capacity (kt/y) 

Belgium 372.3 

Bulgaria 9.5 

Czech Republic 40.3 

Denmark 15.7 

Germany 1 448.3 

Ireland 0.2 

Greece 22.5 

Spain 348.5 

France 352.6 

Croatia 58.2 

Italy 539.6 

Lithuania 58.1 

Hungary 38.0 

Netherlands 568.6 

Austria 89.3 

Poland 16.4 

Portugal 67.9 

Romania 15.2 

Slovenia 0.3 

Slovakia 31.9 

Finland 136.0 

Sweden 132.7 

United Kingdom 490.0 

Total 4 825.0 

Methanol (CH3OH) is the simplest alcohol and is also known as methyl alcohol or wood 

alcohol. It has a wide range of derivatives (its product chain is included in Annex 2), but 

it can also be used directly. Its main derivative is formaldehyde accounting for 31% of 

                                           
(38) Merchant companies buy hydrogen from captive or by-products industries and sell it back. 



68 

the world methanol demand in 2012 (MMSA, 2013). Thanks to its low freezing point (-

98oC) and the ability to mix with water in all proportions, it is widely used as antifreeze in 

heating and cooling circuits and refrigeration systems (Ullmann's Encyclopaedia, 2012b). 

It is also used as solvent and as absorption agent in gas scrubbers. It is a promising 

substitute for petroleum products and can be used as fuel, which includes methyl tert-

butyl ether (MTBE)/ tert-amyl methyl ether (TAME), biodiesel, gasoline blending and 

dimethyl ether (DME). The use of methanol in direct fuel applications accounts for 37% 

of its global demand (MMSA, 2013).  

Global methanol installed capacity has been growing since 2009 with an average rate of 

about 10%, while production with a slightly smaller rate of about 7 %, reaching in 2012 

58 Mt according to IEA (2013) and 60.6 Mt according to MMSA (2013). Concerning 

nameplate capacity installed worldwide, in 2012 it was 95.5 Mt (MMSA, 2013) and in 

2013 98.3 Mt, with Europe covering about 3%, most of it residing in Germany (IHS, 

2014a). The European installed capacity is shown in Table 39. China owns about 50 % of 

the world capacity and consumption (IHS, 2014e). China is expected to be the main 

factor in the growth of methanol capacities, followed by North America, while Europe is 

expected to be stable (Berggren, 2013). Concerning feedstocks, about 80 % of methanol 

is natural-gas based, and the rest is coal-based, essentially in China (IEA, 2007). 

Table 39. Methanol producing plants in EU-28 in 2013 

Country 
Number of plants Capacity (kt/y) 

Germany 4 1675 

Netherlands 2 500 

Romania 1 200 

Total 7 2375 

Global methanol demand depends on the demand for the main derivatives. In the next 

five years, global methanol demand for formaldehyde is expected to grow at an average 

rate just over 5 %, but its demand for fuel applications is expected to be raise more 

strongly at a rate of about 12.5 % (IHS, 2014e). 

5.4.1 Production processes 

Hydrogen in molecular form can be produced from a variety of feedstocks and by several 

processes. Feedstocks include fossil resources, such as natural gas, coal and oil, as well 

as renewable sources, such as solar, wind, wave or hydro-power (IEA, 2006). Processes 

include chemical, biological, electrolytic, photolytic and thermo-chemical. Electrolysis of 

water is the oldest known electrochemical process, but the most typical production 

technology today is through steam reforming of natural gas (Lipman, 2011). 

Fuel processing technologies convert a hydrogen containing material, such as 

hydrocarbons, ammonia or methanol, into a hydrogen rich stream. There are three 

primary techniques of hydrocarbon reforming: steam reforming, partial oxidation and 

auto-thermal reforming. The production processes to produce syngas/H2 are similar to 

the initial step in the ammonia production (5.2.1) and these hydrocarbon reforming 

techniques have been presented in detail there already.  

An additional way of producing hydrogen from fossil fuels is gasification. The reaction 

mechanisms of gasification resemble those of partial oxidation (Kothari et al., 2008) and 

in many cases the two processes are considered to be the same. It involves treatment of 

coal or heavy hydrocarbon streams with high temperature steam to produce syngas, a 

catalytic shift conversion and purification of the hydrogen product. Gasification can also 

have biomass as feedstock, a process that is already mature (Holladay et al., 2009).  

The primary advantage of gasification, as well as of partial oxidation, is that useful 

products can be generated as raw synthesis gas from heavier refinery hydrocarbons or 

heavy fossil fuels, that otherwise would not have been used (EC, 2015a). However, 
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hydrogen can only be considered as by-product of the gasification process, due to the 

fact that the H2/CO ratio can be quite low, since the heavier hydrocarbon streams may 

not have enough hydrogen to produce the required quantity (EC, 2015a). Figure 15 

shows this ratio for the main hydrogen production techniques.  

Figure 15. H2/CO ratio for the main hydrogen production processes and for two types of 

feedstock (EC, 2015a) 

 

Hydrogen can also occur as by-product in different industries, such as the production of 

ethylene, chlorine, acetylene and other (Roads2hy, 2007). The case of ethylene 

production has been already explained in paragraph 5.3.1. Hydrogen is usually produced 

at a rate of 370 m3/tethylene and consumed later at a rate of 180 m3/tethylene, leading to a 

net production of 190 m3/tethylene (Roads2hy, 2007). The chlor-alkali process will be 

described in detail in paragraph 5.9 and results typically in producing hydrogen at a rate 

of 300 m3/tchlorine (Roads2hy, 2007). 

Concerning methanol, there are several alternative processes for its production, such as 

conventional reforming, combined reforming and partial oxidation. The conventional 

reforming involves steam reforming and methanol synthesis. The latter is done according 

to the following reactions: 

CO + 2 H2 → CH3OH     (reaction 18) 

CO2 + 3 H2 → CH3OH + H2O    (reaction 19) 

Conventional reforming process may utilise CO2 captured from other industrial processes 

as a supplemental feedstock (IPCC, 2006b).  

Combined reforming process combines conventional steam reforming with catalytic 

partial oxidation and can produce synthesis gas with a more balanced ratio of hydrogen 

to carbon oxides (IPCC, 2006b), according to the following reaction: 

CH4 + ½ O2 → CO + 2 H2 → CH3OH   (reaction 20) 

The first catalysts used in the methanol synthesis were ZnO/Cr2O3 and operated at 350oC 

and 250-350 bar, but they have been abandoned since the introduction of Cu/ZnO/Al2O3 

that operates at lower temperatures (220-275oC) and pressure (50-100 bar). The 
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synthesis of the catalyst, usually, varies depending on the manufacturer (Spath & 

Dayton, 2008).  

Due to production economics, primary feedstock for syngas is natural gas (58 % of the 

world's methanol production in 2013), but it can be produced also from naphtha, 

petroleum residues, coal and, at least potentially, methane-containing gases from 

landfills (IPCC, 2006b). The reaction producing methanol is highly exothermic and a 

major challenge is to remove the excess heat in order to shift the equilibrium towards the 

products and avoid side reactions and catalyst sintering (Spath & Dayton, 2008; 

Ullmann's Encyclopaedia, 2012b).  

Within the last decade, some new types of large methanol plants have been built, 

particularly in regions rich in natural gas, such as the Middle East, known as "mega-

methanol" plants. These plants offer significant economies of scale and are able to 

produce methanol at a lower cost (Olah et al., 2009). An example of such a commercial 

process is the Lurgi MegaMethanol process, developed for methanol plants with capacities 

greater than 1 million tonnes per year (Air Liquide, 2013). 

5.4.2 Current consumption and emission levels 

As mentioned already, global hydrogen production relies mainly on processes based on 

fossil fuels. An overview of the main inputs of the hydrogen production methods is shown 

in Table 40. Avoided steam is the steam that can be recovered from the excess of heat of 

some streams. In the case of coal gasification, since the process is exothermic, there is 

excess of energy that can be recovered as electricity, and therefore the negative value 

(Dufour et al., 2011). 

In order to compare energy consumptions of the different hydrogen production 

processes, the energy efficiency of each process is needed. The efficiency is defined as 

the total energy produced by the hydrogen plant divided by the total energy that enters 

into the plant. According to (Holladay et al., 2009) steam reforming can have efficiencies 

up to 85% (based on HHV) and auto-thermal reforming and partial oxidation have similar 

efficiencies 60 - 75% (based on HHV).  The efficiency of coal gasification is on average 

around 60% (Abanades, 2012). 

Table 40. Main inputs in the different hydrogen production methods (Dufour et al., 

2011; Wu & Tungpanututh, 2012; EC, 2015a; Linde, 2015; LePrince, 2001) 

 
Steam 

reforming 

NG 

Steam 

reforming 

Naphtha 

Auto-thermal 

reforming NG 

Gasification  

Coal 

Partial 

oxidation 

Natural gas 

(kg/kgH2) 

2.67  4.12   

Naphtha (kg/kgH2)  3.04    

Coal (kg/kgH2)    4.34  

Heavy residue 

(kg/kgH2) 

    3.88 

Oxygen (kg/kgH2)     5.78 

Heat (MJ/kgH2) 25 30 20   

Electricity (MJ/kgH2) 0.68 0.76 1.24 -8.23 2.13 

Steam consumption 

(kg/kgH2) 

6.12 6.42 3.0 11.57 0 

Avoided steam 

(kg/kgH2) 

2.56 N.F.1 7.57 7.79 N.F.1 

1 N.F.: the value has not been found in the literature or the values found are not in a 

comparable format to the rest of the production methods. 
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In the case of some facilities it is not clear which process they follow for producing 

hydrogen. For these cases a fictional process is considered with the average 

consumptions of steam reforming and partial oxidation. For feedstock, the average needs 

in GJ per tonne of hydrogen are calculated and it is assumed that half of them are 

covered by natural gas and half by heavy residue. For these facilities, the type of fuel 

used cannot be determined from the process and as a result the energy mix of the 

country in which they are located is used. The calculation of the energy mix and its 

characteristics is explained in detail in Annex 3. 

The main emissions from hydrogen production are CO2. The emission factors that occur 

in the different processes are included in Table 41. Steam reforming has lower emissions 

than partial oxidation and gasification. It is also obvious that emissions are associated 

with the chain length of the hydrocarbons, increasing from light to heavy fossil 

feedstocks (Kothari et al., 2008). 

Table 41. CO2 emissions factors for different hydrogen production processes (Kothari et 

al., 2008; Spath & Mann, 2001, Dufour et al., 2011) 

Process configuration Emission factor (tCO2/thydrogen) 

Steam reforming – Natural gas 8.89 

Steam reforming – Methane 7.33 

Steam reforming – Naphtha 9.46 

Auto-thermal reforming – Natural gas 9.61 

Partial oxidation – Octane  12.35 

Gasification – Coal  29.33 

As mentioned earlier, some of the hydrogen produced derives as by-product and is taken 

into consideration in the database. These fictitious units do not use any of the processes 

mentioned earlier and therefore the consumptions and emission levels are not the same. 

Energy and feedstock consumptions and GHG emissions for these facilities are 

constructed as the average of two processes: sodium chlorate production process and 

chlorine electrolysis. The values for these processes have been taken from Ecoinvent 

v.2.0 (Ecoinvent, 2009).  

In the case of the sodium chlorate process, hydrogen is not considered as by-product in 

Ecoinvent. As a result, the values had to derive by assuming all hydrogen produced as a 

by-product and re-allocating consumptions and emissions based on the following mass 

allocation factors: 94.7 for NaClO3 and 5.3 for H2.  

Concerning chlorine electrolysis, hydrogen is produced by three different electrolytic 

processes: mercury cell, diaphragm cell and membrane cell. Consumptions and emissions 

have been calculated considering the share of use of these three processes (55% for 

mercury cell, 24% for diaphragm cell and 21% for membrane cell). The mass allocation 

factors depend on whether there is NaCl or KCl electrolysed. For NaCl electrolysis, the 

allocation factors are 46.4% for NaOH, 52.3% for Cl2 and 1.3% for H2, while for KCl the 

allocation factors are 60.5% for KOH, 38.4% for Cl2 and 1.1% for H2.  

The total emission factors for this cluster of facilities, calculated according to the 

procedure explained before and based on the Ecoinvent values are: 1.24 tCO2.eq/thydrogen 

for emissions from electricity and 0.001 tCO2.eq/thydrogen for direct process emissions 

(Ecoinvent, 2009). There is no thermal or steam consumption, so there are no emissions, 

while emissions due to electricity use are not considered, since the hydrogen produced in 

these processes is reused to generate the electricity required.  

The typical feedstock requirements in the case of methanol production are shown in 

Table 42. Typical fuel consumption is converted to 0.76 tNG/tmethanol for steam reforming 

without primary reform or 0.70 tNG/tmethanol with primary reform and 0.92 tfuel oil/tmethanol for 

partial oxidation, by taking into consideration the net calorific values (Table 6). The rest 

of feedstocks required (water and oxygen if needed), as well as the energy requirements 
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in terms of electricity and heat, are considered to be the same as for hydrogen 

production. 

 

Table 42. Feedstock consumption and CO2 emission factors for methanol production 

(IPCC, 2006b) 

 Feedstock Consumption  

(GJ/tmethanol) 

CO2 emissions  

(tCO2.eq/tmethanol) 

Conventional steam 

reforming 
Partial 

oxidation 

Conventional steam 

reforming 
Partial 

oxidation 
without 

primary 

reform 

with 

primary 

reform 

without 

primary 

reform 

with 

primary 

reform 

Natural gas 36.5 33.4  0.67 0.497  

Oil   37.15   1.376 

Coal   71.6   5.285 

Lignite   57.6   5.020 

CO2 emissions from methanol production from steam reforming and partial oxidation 

processes can be estimated according to the IPCC 2006 default emission factors (Table 

42), which are based on the average of plant-specific emissions data (IPCC, 2006b). 

Conventional steam reforming process for methanol production can be integrated with an 

ammonia production process, in which case the default CO2 emission factor is 1.02 

tCO2/tmethanol (IPCC, 2006b). 

5.4.3 Best available techniques (BATs) 

The continuous growth of the hydrogen producing industry has led to the necessity of 

obtaining quality products at the lowest possible costs (Rafiqul et al., 2005). It should be 

kept in consideration, though, that steam reforming is a mature technology. Table 43 

lists an overview of the possible BATs identified during this study. Most of these 

technologies are common with the ammonia production process and are repeated here. 

Air preheat 

Combustion air preheating is a method of recovering heat from the exhaust gas of the 

combustion system through heat exchange with combustion air before it enters the 

combustion chamber. It results in reduced amount of fuel required in the furnace and 

therefore energy efficiency improvements, more than 5 % according to the European 

Commission (EC, 2003b), and typically between 10-15% according to EPA (Air Products, 

2012). Reducing the fuel required results in less CO2 emissions, but increased overall 

combustion temperatures can give rise in NOx emissions (EIGA, 2009). As a result the 

positive effect of air preheating has to be balanced against this negative effect, and in 

order to be conservative in the present study we consider the lower value for energy 

efficiency improvement (5 %). Investment costs depend on the specific project situation 

(EIGA, 2009). The capital cost of a recuperative air preheater used in an integrated 

hydrogen production of 13 tH2/hr (corresponding to 102.5 kt/y) was USD 640 000 2000 

(Energy 2000, 2000), corresponding to EUR 693 674 2013. 

Minimal steam: carbon ratio and associated measures 

The molar ratio of steam to hydrocarbon feedstock entering the reformer is of 

importance. It is not stoichiometric, due to risks with both steam reforming (carbon 

depositions) and the shift reaction (production of by-products, such as alkanes and 

alcohols). Too high ratio means more steam than is reacting, and therefore the unreacted 

portion is heated up only to be cooled down again, so reduced thermal efficiency. Too low 
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ration increases the quantity of unreacted hydrocarbon, thus reducing the plant product 

efficiency (EIGA, 2009). The optimum operating range is mainly defined by the H2/CO 

ratio in the syngas produced and if steam is considered a valuable product or not. 

Limitation of the maximum operating range of steam/carbon ratio leads to improved 

thermal efficiency by reducing fuel, cooling water and electricity consumptions, but it 

might have an effect on NOx formation and the concentration of some by-products, such 

as methanol and acetic acid (EIGA, 2009).  Energy savings are estimated to be about 

0.14 GJ/thydrogen (Rafiqul et al., 2005), which is less than 5% and as a result the 

technique falls out of the scope of this study. Reducing the ratio will also reduce both 

operating and investment costs, but the net investment costs depend on production 

capacity and the value of steam (EIGA, 2009). 

Table 43. Overview of the possible BATs and ITs in the hydrogen and methanol 

industries 

BAT 

or 

IT 

Description Investment cost Energy savings GHG 

Reduction  

BAT Air preheat EUR 693 674 1 5 % None 

BAT 
Minimal steam/carbon ratio 

and associated measurements 
Not included in the study as the savings are <5 % 

BAT Isothermal shift conversion No information available 

BAT Hydrogen from electrolysis EUR 729 862 2 

-12 720 % 

electrical3 100 % 

rest 

100 % 

IT Membrane methane reforming EUR 27 850 705 4 

20 % electrical, 

thermal and 

steam 

None 

IT 
Biological water gas shift 

reaction 

Not included in the study due to lack of 

information 

IT 
Photosynthetic/Photobiological 

production 

Not included in the study due to lack of 

information 

IT 

Short contact time catalytic 

partial oxidation EUR 27 533 784 5 

15 % thermal, 

steam and 

feedstock 

None 

IT 
Biomass pyrolysis and 

gasification 
EUR 2.3 EUR/kg None 100 % 

IT Sulphur – iodine cycle No information available 
1 Reference capacity 102.5 kt/y 
2 Reference capacity 0.33 kt/y 
3 In comparison to the average electrical consumption of natural gas steam reforming and partial oxidation 
4 Reference capacity 14.08 kt/y 
5 Reference capacity39.6 kt /y 

Isothermal shift conversion 

Lower temperatures favour the strongly exothermic shift conversion. In conventional 

plants, the head is removed in two stages, but the two reactors can be replaced by a 

single isothermal medium temperature shift reactor (EC, 2007b). The isothermal shift 

reaction occurs without a chromium-based catalyst, which is needed in the conventional 

process, and therefore the risk of hydrogen reacting with CO or CO2 (Fischer-Tropsch 

reaction) to form carbon compounds is low. The net energy savings of isothermal shift 

conversion is not quantified (Rafiqul et al., 2005). Investment costs for a facility with 

reference capacity 100 kt/y is YEN 500 million 1999 (IETD, 2014). 
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Hydrogen from electrolysis 

Water electrolysis occurs according to the following reaction: 

H2O + electricity → H2 + ½ O2    (reaction 21) 

The two most common types of electrolysers are alkaline (use a potassium hydroxide 

electrolyte) and polymer electrolyte membrane (PEM) (Lipman, 2011). Alkaline 

electrolysers are suited for stationary applications and are operating at up to 25 bar 

pressures (IEA, 2006), with efficiencies 50-60 % based on LHV of hydrogen (Holladay et 

al., 2009). PEM electrolysers require no liquid electrolyte, which simplifies the design and 

is suited for both stationary and mobile applications, but the membranes have a limited 

lifetime (IEA, 2006). They are more efficient than alkaline electrolysers (efficiencies of 

55-70 %), but cost more (Holladay et al., 2009). Both alkaline and PEM electrolysers 

have energy requirements in the order of 50 kWh/kgH2 (NREL, 2009).  

A more recent type of electrolysis is high-temperature electrolysis, based on the fact that 

the total energy demand for water electrolysis increases slightly with temperature, while 

the electrical energy demand decreases (IEA, 2006). A typical technology is the solid 

oxide electrolyser cell (SOEC), operating normally at 700-1 000 oC. At these 

temperatures, efficiency is increased by decreasing the power loss in electrolysis 

(Holladay et al., 2009). An increase in temperature from 100 to 775 oC reduced the 

combined thermal and electrical energy requirements by close to 35 % (Holladay et al., 

2009). The efficiency of the process depends on temperature and the thermal source, but 

can be as high as 85-90 % as a function of electrical input only, but if the thermal source 

is included the efficiency drops significantly to 40-60 % (Holladay et al., 2009).  

Due to the variety of technologies it is difficult to establish a relationship between capital 

cost and capacity. A range of the capital costs as a function of capacity can be seen in 

Figure 16, according to a study carried out in the US (NREL, 2009). Within the 

uncertainty of the information collected in the NREL study, the capital cost of electrolysis 

is estimated to be about USD 800 2005 per kg/d unit capacity for an electrolyser not 

exceeding 1 000 kg/d (forecourt case in Figure 16) (NREL, 2009) (corresponding to 

EUR 729  862 2013 for capacity 328.5 t/y). 

Figure 16. Ranges of capital costs of electrolysis (NREL, 2009) 
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5.4.4 Innovative technologies (ITs) 

There is high interest in hydrogen production technologies, especially focusing on the use 

of biomass or biological ways. Unfortunately, the research in many cases seems to be in 

too early stages. In this paragraph, a collection of innovative technologies is presented, 

even if their stage of development is not so close to commercialisation. Some of the 

technologies that are considered innovative in the hydrogen industry are shared with the 

ammonia industry and have been already described there, such as the membrane 

reforming concept and the CO2 removal concept. From these technologies, only the ones 

that are taken into consideration in our study are mentioned again and only as far as it 

concerns the benefits achieved and their economics, so as to be expressed on hydrogen 

base.  

Membrane methane reforming 

This innovative technology is about a hybrid system based on the membrane reforming 

concept to convert natural gas to hydrogen and electricity. It has been described already 

in the paragraph about ammonia (5.2.4). The technology was still at demonstrative 

stage, achieving energy savings about 20% and with investment costs about EUR 28.05 

million 2008 for a 20 000 nm3/h hydrogen production (Iaquaniello et al., 2008). 

Biological water gas shift reaction 

The biological water-gas shift reaction is an innovative route to hydrogen production via 

photo-heterotrophic bacteria, such as Rubrivivax gelatinosus. These bacteria are capable 

of performing water gas shift reactions at ambient temperature and atmospheric 

pressure by fermentation (Babu et al., 2013). Under normal light phase conditions, they 

obtain energy through photosynthesis, using solar energy to convert CO2 and electrons 

from water to sugars and O2. In the dark, though, they survive through anaerobic 

fermentation pathways, performing biological water gas shift reaction (Amos, 2003), 

which can be explained according to the following reactions (Swanson et al., 2011): 

CO + H2O → 2 e- + 2 H+ + CO2    (reaction 22) 

2 e- + 2 H+ → H2      (reaction 23) 

CO + H2O → CO2 + H2     (reaction 24) 

Hydrogen synthesis rate by biological water gas shift reaction has been found to be 96 

mmolH2/(l*h), compared to 20-50 mmolH2/(l*h) by dark anaerobic fermentation (Saxena 

et al., 2009). According to the same study, processing costs of H2 production would be 

USD 3.4/kg. Nevertheless, research of biological processes has not yielded any practical 

or conceptual process and it is considered to need further advancements before it is 

economically feasible (Bartels, 2008). As a result, this technology cannot be included in 

our study, since its year of availability will probably be further than 2030 and there are 

no information available concerning the energy consumed. 

Photosynthetic/Photobiological hydrogen production 

Hydrogen can be produced photo synthetically, by reduction of H+ ions in an aqueous 

solution to H2. Green algae contribute to the reduction by producing the catalyst 

(hydrogenase enzymes) and by providing an electron source. Growth of these algae 

under controlled conditions can stimulate the production of the hydrogenase enzyme, 

while electrons are provided by suppression of the first step of photosynthesis (sulphur 

deprivation), which would normally pull electrons from water to produce oxygen (Melis & 

Happe, 2001; Hemschemeier et al., 2009). Under anaerobic conditions, hydrogenase can 

accept electrons and use them to reduce protons to molecular hydrogen, but there are 
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two major research challenges: the optimum level of light intensity and kinetic limitations 

on electron transport to the enzyme (Allakhverdiev et al, 2010). The technology still 

needs further research in order to be optimised (Allakhverdiev et al, 2010), as a result its 

availability cannot be assumed to be before 2030 and there is no estimation of its energy 

consumption, so it falls out of scope of the present study. 

Short contact time catalytic partial oxidation 

This technology is also described in the ammonia paragraph (5.2.4). As explained there, 

expected environmental benefits of it are 15 % reduction in feed and fuel in hydrogen 

production, accompanied by 15 % lower investment costs compared to steam reforming 

(Iaquaniello et al., 2012). Direct capital costs of a typical facility producing hydrogen 

from steam-methane reforming (120500 kgH2/d) were estimated to USD 30 million 2002 

(Molburg & Doctor, 2003), corresponding to EUR 32.4 million 2013. As a result, capital 

costs for this innovative technology are estimated at about EUR 27.5 million 2013. 

Biomass pyrolysis and gasification 

In biomass conversion processes, a hydrogen-containing gas is produced in a manner 

similar to coal gasification. The difference between pyrolysis and gasification is that the 

first is done in an inert environment, while the latter in a reactive environment (Bartels, 

2008). The pathways followed are steam gasification (direct or indirect), entrained flow 

gasification or more advanced concepts such as gasification in supercritical water, 

application of thermo-chemical cycles, or the conversion of intermediates, such as 

ethanol, or torrified wood (IEA, 2006). The gasification process typically suffers from low 

thermal efficiency, since moisture contained in biomass should also be vaporised, and the 

production of tar if it takes place at high temperatures. Typical efficiencies are between 

35 and 50% based on lower heating value (Holladay et al., 2009). The cost of hydrogen 

from pyrolysis is expected to be USD 2.57 2007/kg, while from gasification it is expected 

to be USD 2.83 2007/kg (Bartels, 2008). 

Sulphur – iodine cycle 

One of the promising approaches to produce large quantities of hydrogen from nuclear 

energy efficiently is the sulphur – iodine thermochemical water-splitting cycle, which 

generates hydrogen from water and thermal energy through the following chemical 

reactions (Brown et al., 2003): 

2 H2O + SO2 + I2 → H2SO4 + 2 HI   (reaction 25) 

H2SO4 → H2O + SO2 + ½ O2   (reaction 26) 

2 HI →H2 + I2      (reaction 27) 

This technology has a lot of advantages, such as no by-products or effluents, except from 

hydrogen and oxygen, suitability to be used with solar, nuclear or hybrid sources of heat 

and efficiencies that are about 47%. But it has also serious disadvantages, such as 

requiring high temperatures (about 800oC) and the presence of corrosive reagents 

(iodine, sulphuric acid) (Mathias and Brown, 2003). The technology has not been 

demonstrated outside laboratories and the process economics have not been verified 

(Mathias and Brown, 2003; Terada et al., 2007). 

 

5.5 Adipic acid 

Adipic acid (AA) (C6H10O4 – HOOC(CH2)4COOH), is a derivative of benzene and a white 

crystalline solid with acid taste and very soluble in acetone. Other names of it are 1,4–
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butane dicarboxylic acid and according to IUPAC hexanedioic acid. It is used in the 

manufacture of a large number of products including synthetic fibres, coatings, plastics, 

urethane foams, elastomers and synthetic fabrics.  

Global production in 2014 was 2 839 kt (PCI WoodMackenzie, 2016), with nylon 6,6 fibre 

and resin accounting for 83.3 % of it (Grand view Research, 2014; Ullmann's 

Encyclopaedia, 2000b). Other applications of it include polyurethanes, plasticisers, 

coatings, synthetic lubricants and food additives (PCI WoodMackenzie, 2016). Global 

market distribution per product in 2013 is shown in Figure 17 (Grand view Research, 

2014), while world consumption is expected to have growth rates of 2.8 % per year to 

2019 (IHS, 2015d) 

Europe and the United States are fairly mature markets for adipic acid, but China and 

India are dominating the adipic acid consumption, accounting for over 35 % of it in 2013, 

while Europe accounted for 27 % of the consumption and the US for 24 % (Grand view 

Research, 2014). The European Union and the Unied States have been the most 

important exporters and China the largest importer (Schneider et al., 2010), but Asia has 

been developing rapidly in recent years. Over 60 % of the world's adipic acid supply is 

owned and operated by four main companies (39), having sites around the world (Grand 

view Research, 2014).  

Figure 17. Adipic acid world market distribution per product in 2013 (Grand view 

Research, 2014) 

 

In 2010, there were 23 adipic acid plants throughout the world, located mainly in the US 

(30%), the EU (29%) and China (22%) (Schneider et al., 2010). The rest were in Brazil, 

Japan, Singapore, South Korea, Ukraine and India (Schneider et al., 2010). In 2013, in 

the EU-28 there are only 5 adipic acid installations (Table 44), with a total capacity of 

969 kt/y (ICIS, 2012; Ecofys, 2009). 

Table 44. Adipic acid plants in EU-28 in 2013 

Country 
Number of plants Capacity (kt/y) 

Germany 3 440 

France 1 340 

Italy 1 92 

Total 5 872 

 

5.5.1 Production processes 

Of worldwide adipic acid production, 91 % is made via cyclohexane and the rest mainly 

from phenol (PCI Wood Mackenzie, 2016). It is manufactured in two steps: during the 

                                           
(39) In 2012 BASF, Rhodia, Invista and Ascend Performance Materials accounted for 60% of the total adipic acid 

production [Grand view Research, 2014] 
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first one a mixture of cyclohexanone ((CH2)5CO) and cyclohexanol ((CH2)5CHOH) is 

produced either from oxidation of cyclohexane or hydrogenation of phenol, and in the 

second one this mixture is catalytically oxidised with nitric acid (EC, 2003a). The 

cyclohexanone - cyclohexanol mixture is known as ketone alcohol oil (KA oil). The 

reaction producing adipic acid is the following: 

 (CH2)5CO + (CH2)5CHOH + x HNO3 → HOOC(CH2)4COOH + y N2O + w H2O 

 (reaction 28) 

The reaction of KA oil requires 50-60% nitric acid and the presence of copper and 

vanadium catalysts (EPA, 1995; Ecofys 2009). As the reaction is highly exothermic, 

process control is achieved with the use of large amounts of nitric acid (EPA, 1994). By-

products from this reaction are pentanedioic or glutaric acid, butanedioic or a succinic 

acid and nitrous oxides (Ullmann's Encyclopaedia, 200b; EC, 2003a; Ecofys, 2009).  

Following the two reaction steps, the wet adipic crystals are separated from water and 

nitric acid by a two-stage crystallisation/centrifugation. Water is removed from the 

reaction mixture by distillation. The yield in adipic acid of the process is more than 90% 

(Ecofys, 2009; EC, 2003a).   

The predominant method of cyclohexane oxidation is metal-catalysed oxidation in 

moderate temperatures and pressures, with a small amount of cobalt, chromium or 

copper as catalyst (EPA, 1995). When phenol is the feedstock, it is typically 

hydrogenated at 140 oC and 200 - 1800 kPa hydrogen pressures over a nickel, copper or 

chromium oxide catalyst (EPA, 1995). The phenol route has some advantage such as that 

the equipment is simpler and the process safer (Chemical Weekly, 2009), but the costs 

are higher.  

In addition to these established approaches, there have been many attempts over the 

years to improve adipic acid production technologies. In the past, adipic acid was 

produced via air oxidation, however, this process produced low quality product and is not 

considered commercial anymore (Ullmann's Encyclopaedia, 200b; EC, 2003a). Some of 

the new methods include the one developed by Nagoya University and the Asahi 

Chemical process. The latter is commercialised and is based on partial hydrogenation of 

benzene to cyclohexene, over a complex ruthenium catalyst under high pressure 

(Chemical Weekly, 2009). 

5.5.2 Current consumption and emission levels 

Feedstock (cyclohexane or phenol), nitric acid and air or hydrogen are the raw materials 

required for adipic acid production. As explained before, the main route for producing 

adipic acid is from cyclohexane, while a secondary route is from phenol. All but two of 

the European plants use cyclohexane as feedstock (ICIS, 2012). The consumptions in the 

two routes are shown in Table 45. 

The main environmental issue related to adipic acid production is N2O that occur during 

the reaction with nitric acid.  Other by-products that constitute emissions are CO, CO2, 

non-methane volatile organic compounds (NMVOCs). The default emission factor for the 

nitric acid oxidation, according to (IPCC, 2006b), is 300 kgN2O/tadipic acid ±10 %, which 

translates to 80.5-98.3 tCO2.eq/tadipic acid. The uncontrolled emission factors proposed by 

EPA (1995) for the two steps of the adipic acid production are shown in Table 46. It can 

be seen that the main emissions are N2O. 
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Table 45. Typical consumptions for adipic acid production (US NRC, 1990; IEA, 2009b; 

Towler & Sinnott, 2013) 

Raw materials / Energy 

Consumption 

Cyclohexane KA 

oxidation1 

Phenol KA 

oxidation 

Cyclohexane (t/tadipic acid) 0.74  

Phenol (t/tadipic acid)  0.72 

Nitric acid (t/tadipic acid) 0.83 0.72 

Air (t/tadipic acid) 1.67  

Hydrogen (t/tadipic acid)  0.035 

Electricity (kWh/tadipic acid) 388.9 206.0 

Fuel (GJ/tadipic acid) 1.2 1 

Steam (GJ/tadipic acid) 25.7 15.22 
1 Assuming that the overall yield of the process is 90% and that the air in the HNO3 feed is 

25%.  
2 The process needs medium pressure steam (Towler & Sinnott, 2013) and latent heat of 

2000 kJ/kg is assumed (Engineering Toolbox, 2015a) 

 

Table 46. Uncontrolled emission factors for adipic acid production (EPA, 1995) 

Source 
Emissions (kg/tadipic acid) 

CO2 CH4 N2O 

1st step 
High-pressure scrubber 14 0.08  

Low-pressure scrubber 3.7 0.05  

2nd step 
Oxidation reactor 60  290 

Nitric acid tank fume sweep 2.6  1.3 

Nevertheless, the adipic acid industry has made effort, applying the BAIs that will be 

described in the following paragraph, so as to control N2O emissions. As a result, the 

values reported in both (EPA, 1995) and (IPCC.2006b) are considered not to represent 

the current situation of the industry. For the current study, we will assume that the 

process emissions of the adipic acid production are 60 % lower than the (IPCC, 2006b) 

values. Taking into consideration the information about consumptions and emissions, the 

emission factors for the adipic production process are shown in Table 47. 

Table 47. Emission factors for adipic acid production 

Emissions 

Value (tCO2.eq/tadipic acid) 

Cyclohexane KA oxidation Phenol KA 

oxidation 

Electricity use 0.15 0.10 

Thermal production 0.07 0.06 

Steam production 1.44 0.90 

Direct process emissions1 32.0 32.0 

Total  33.66 33.06 
1 The direct process emissions were assumed to be 60% reduced compared to the lower 

end of the emission factors according to IPCC is used 

Adipic acid is a benchmarked product with value 2.79 allowances/tonne (EC, 2011b), but 

the industry's emissions have changed remarkably, and therefore no calibration is 

applied to the specific emissions from this industry.  
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5.5.3 Best available techniques (BATs) 

N2O, which is the most important contaminant from the adipic acid industry, can be 

either re-used or abated. The best available techniques for this industry are based 

exactly on these two possibilities. All the BATs are summarised in Table 48.  

Table 48. Overview of the possible BATs and ITs in the adipic acid industry 

BAT 

or 

IT 

Description Investment cost Energy 

savings 

GHG Reduction  

BAT Catalytic decomposition EUR 12 914 914 1 None 82.3 % 

BAT Thermal destruction EUR 9 637 996 2 None 95.5 % 

BAT 
Partial recycling of waste 

gas 
EUR 13 396 814 3 None 88.1 % 

IT One-step process EUR 18 147 900 30 % 99 % 

IT Bio-based techniques No information available 
1 Reference capacity 330 kt/y 
2 Reference capacity 88 kt/y 
3 Reference capacity 371 kt/y 

The two most widely used end-of-pipe abatement techniques are catalytic decomposition 

and thermal destruction. For the first one, metal oxide catalysts, such as MgO, are used 

to decompose N2O to N2 and O2, in a highly exothermic reaction (EC, 2003a). The 

catalyst needs replacement twice a year. Thermal destruction involves combustion of the 

off-gases in the presence of methane, thus reducing N2O to N2, but giving emissions of 

NOx and some residual N2O (EC, 2003a). The destruction factors in the two cases can be 

seen in Table 49. 

Table 49. N2O destruction factors for the main abatement techniques (IPCC, 2006b) 

Abatement technique N2O Destruction factor1 Utilisation factor 

Catalytic destruction 92.5 % 89 % 

Thermal destruction 98.5 % 97 % 

Recycle to nitric acid 98.5 % 94 % 

Recycle to adipic acid 94 % 89 % 
1 The destruction factor should be multiplied by an abatement system utilisation factor 

Abatement costs for the two techniques are reported to range between EUR 0.10-0.40 

2010/tCO2.eq, with thermal destruction costs to be at the lower range and catalytic 

destruction costs at the higher range (Schneider et al., 2010). The investment costs of 

the two abatement techniques from plants that have installed them are EUR 13.4 million 

2010 for catalytic destruction and EUR 10-13.4 million 2010 for thermal destruction 

(Schneider et al., 2010). 

Another way of reducing the environmental effect of N2O is to partially recycle the waste 

gas. The N2O rich off-gas can be re-used in two ways, either by valorisation as nitric acid 

or by using it to selectively oxidise benzene to phenol (EC, 2003a).  

Valorisation as nitric acid consists of thermal conversion in conditions that encourage the 

NOx formation reaction and minimise the reaction to N2 and O2, as the NOx produced are 

recyclable in the form of nitric acid upstream in the adipic acid process (Klinger, 2001). 

This technique was tried in a plant in France, where the off-gas was collected and treated 

in high temperatures for a short period, triggering the decomposition reaction of N2O. 

The products gas mixture contains N2, O2, CO2 and NOx and is converted into nitric acid 

in an oxyadsorption column. This technique is interesting especially for industrial sites 

that are lacking in nitric acid (Klinger, 2001).  
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The alternative route is direct oxidation of benzene with N2O, a process mainly developed 

by Solutia in collaboration with the Boreskov Institute of Catalysis in Russia (Parmon et 

al., 2005). The reaction takes place on zeolite catalysts in the gas phase at 300-450 oC. 

The idea behind this technique is also to incorporate the reaction in a new modified adipic 

acid production scheme, where benzene reacts with N2O to produce phenol (40). It has 

also been also tested at a pilot plant, in Pensacola, Florida, and its productivity is 400 g 

phenol per 1 kg of catalyst per hour, but the conversion of N2O to phenol is only 85 % 

(Parmon et al., 2005).  

Since the information available in the literature are a bit restricted concerning the two 

routes of partial recycling, in this study they are considered as one BAT with investment 

costs about EUR 13.9 million2010 (Schneider et al., 2010) and average GHG reduction of 

88.13 %.  

The theoretical N2O destruction factors for the abatement techniques mentioned above 

are summarised in Table 49 (IPCC, 2006b). 

It has been common practice since 1990 in Europe and the US to install N2O abatement 

technologies on a voluntary basis (Schneider et al., 2010). Three of the plants have 

installed different technologies (catalytic or thermal destruction, or partial recycling) 

since 2008 (Schneider et al., 2010). The reported efficiencies achieved vary from 86 % 

for catalytic destruction (BASF, 2010; 2012a; 2012b; 2013) to 99.99 % for thermal 

destruction (Schneider et al., 2010). 

This practice can explain the reductions in N2O emissions that have been reported for this 

industry. N2O emissions from the EU-28 adipic acid industry have decreased from 

8.96 MtCO2.eq in 2007 (EEA, 2009) to 0.61 MtCO2.eq in 2013 (Figure 18) (EEA, 2015). 

Nevertheless, it should be noted that both the nitric and the adipic acid industries have 

gone through structural changes and decreased their N2O emissions to quite low levels, 

but it cannot be expected that this type of change can be replicated in the future. 

Figure 18. EU-28 emissions from adipic acid production (EEA, 2015) 

 

 

5.5.4 Innovative technologies (ITs) 

The emerging technologies concerning the adipic acid industry can be divided into 

techniques that are based on alternative synthetic pathways or innovative catalysts and 

bio-based techniques.  

Research has been aiming at developing a green route for adipic acid that could be 

environmentally friendly and efficient, as an alternative to the contemporary industrial 

process, focusing on the direct oxidation of cyclohexane with air or oxygen, also called 

                                           
(40) This scheme is explained in detail in [Parmon et al., 2005].    
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"one-step AA process". Single stage air oxidation has been studied by a number of 

research groups, typically involving systems with catalysts, such as lipophilic catalyst 

(Bonnet et al., 2006) metal-doped nanoporous aluminophosphates (Li et al., 2010), 

carbon nanotubes (Yu et al., 2011), polyoxoanions (Lü et al., 2012) and 

metalloporphyrins (Li et al., 2012), but only a few of them can be considered 

environmentally and economically sustainable (Lü et al., 2012). All of these processes 

are still in the research phase and there is no information about their economic 

feasibility, with the only exception being the one-step process with H2O2 as oxidant, 

which achieves 30 % lower total energy consumption and 55% lower investment costs 

(Vural-Güsel et al., 2012). Because of using hydrogen peroxide, the only expected by-

product is water, thus achieving clean operation and the investment costs amount to 

EUR 18.35 million 2012 (Vural-Güsel et al., 2012).  

A fundamental change in chemical synthesis can also be achieved by elaboration of new, 

environmentally benign routes that can replace environmentally problematic routes. 

Currently adipic acid is assessed among the most promising bio-based chemicals for 

market penetration (IEA, 2012b). There have been three biotechnological process 

suggested within the BREW Project (Brew, 2006) for biotechnical production of adipic 

acid: (1) biosynthesis of cis,cis-muconic acid from glucose, followed by catalytic 

hydrogenation to adipic acid, (2) biosynthesis of adipic acid from cyclohexanol and (3) 

enzymatic conversion of adiponitrile to ammonium adipate by nitrilase. The first one 

relies on the use of genetically manipulated microbes as synthetic catalysts and begins 

with the conversion of glucose into cis, cis-muconic acid (Chemical Weekly, 2009). The 

second one is based on enzymes isolated from Acinetobacter sp., which are expected to 

convert cyclohexanol to adipic acid. Last but not least, the third one is aiming to convert 

nitriles to carboxylates enzymatically (Brew, 2006). Only the first of these 

biotechnological processes, also known as Draths-Frost syntheses, has been tested, but 

the yields are quite low (15-23 %), since the theoretical yield can be limited by the 

toxicity of the aromatic intermediates (Brew, 2006).  

In the last years several companies have claimed processes for adipic acid (IEA, 2012b), 

including Verdezyne Inc. with a proprietary metabolic pathways that can utilise 

carbohydrates, plant-based oils or alkanes (Gibson, 2010), BioAmber with a 

breakthrough succinic acid purification process to adipic acid (Sheridan, 2011), 

Genomatica with a patent concerning the third biotechnological process described above 

(Burgard et al., 2010) and Rennovia developing a chemo-catalytic process for production 

of adipic acid from renewable raw materials (Westerveld, 2010). All these projects, 

though, are in early stages and there is no information about their performance and their 

environmental and economic feasibility. As a result this technology cannot be included in 

the study. 

 

5.6 Soda ash 

Soda ash or sodium carbonate (Na2CO3) is the neutral sodium salt of carbonic acid. It is a 

white crystalline solid and is used as a fundamental raw material to the glass, detergent 

and chemical industries, as well as the pulp and paper industry. Glass production 

accounts for about 55% of the world soda ash consumption, while detergents and 

cleaners account for about 14% and the chemical sector for about 10% (IHS, 2015e). In 

the chemical industry its main uses are as an alkali source and as feedstock in the 

production of sodium chemicals.  

The annual production of soda ash worldwide in 2013 was about 51.3 Mt, 1.2 % higher 

than in 2011 (50.7 Mt) (USGS, 2015; 2013). In 2012 42% of the production was 

concentrated in Asia, 24% in North America and 18% in Europe (IHS, 2012c), while in 

2015 China accounted for 46 % of world production and the US for 22% (IHS, 2015e). 

The percentage of soda ash production in the European Union has slightly decreased 

during the last decade, as in 2000 it was 18.5 % (Cefic, 2004).  
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Since the 1920s, several deposits of minerals containing sodium carbonate or 

bicarbonate have enhanced the production of soda ash from trona (41). Only Botswana, 

Kenya, Mexico, Turkey and the United States produced soda ash from natural sources in 

2013 (USGS, 2015). As trona deposits are not available in Europe, though, soda ash is 

almost entirely manufactured synthetically (EC, 2007b). In 2013, about 72 % of world 

soda ash production derived from synthetic processes and 28 % was recovered from 

natural trona deposits and surface brines (USGS, 2015). 

Over many decades demand for Na2CO3 had been increasing at an average rate of 2 % 

per year in the European Union (EC, 2007c), but more recently it is expected to grow 

slightly slower (around 1.5 – 2.0 % annually) (IHS, 2015e). Local availability of raw 

materials, the price of energy and the environmental impact of its production are key 

drivers for improvements in the soda industry worldwide.  

In 2013 in the EU-28, 12 plants were in operation with a total production capacity of 

8 285 kt, as shown in Table 50 (ICIS, 2012; Ecofys 2009; Cefic, 2004; IHS, 2015a). 

These plants cover 16% of the global annual production of soda ash. The boundaries of 

this study exclude plants based on special processes (e.g. soda ash plant in 

Ludwingshafen, Germany that is based on the production of carpolactam). The European 

Soda Ash Producers Association (ESAPA) includes also soda producers from Turkey and 

Bosnia-Herzegovina (ESAPA, 2011).  

Table 50. Soda ash plants in EU-28 in 2013 

Country 
Number of plants Capacity (kt/y) 

Bulgaria 1 1 100 

Germany 3 1 710 

Spain 1 1 020 

France 2 1 300 

Italy 1 1 020 

Poland 2 1200 

Romania 1 435 

United Kingdom 1 500 

Total 12 8 285 

 

5.6.1 Production processes 

As mentioned already, soda ash can be produced from natural sodium carbonate-bearing 

deposits, referred to as natural processes. The principal ore from which natural soda ash 

is made is called trona and it is calcinated in a rotary kiln and chemically transformed 

into crude soda ash, according to the following reaction: 

2 N2CO3.NaHCO3.2H2O (Trona) → 3 Na2CO3 + 5 H2O + CO2  (reaction 29) 

Other natural processes are based on nahcolite, or on mixed minerals (nepheline syenite 

process). The first one is applied in Colorado USA and the second one in Russia. Small 

quantities of soda ash are produced also by carbonation of caustic soda and as by-

product from the production of carpolactam (EC, 2007c). There are no plants based on 

natural processes in the EU, as there are no big natural deposits and only one plant (in 

Germany with capacity 50kt) producing soda ash as co-product of carpolactam (IHS, 

2015a). 

                                           
(41) Trona (Na3(CO3)(HCO3)·2H2O) is a naturally occurring mineral known as sodium sesquicarbonate 

[Mineralogy, 2015]. 
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Practically all European soda ash is produced using the Solvay process, also called the 

ammonia soda process, which was developed in the 19th century by the Belgian Ernest 

Solvay and replaced the Leblanc process that was used until then (Ullmann's 

Encyclopaedia, 2000c). The Solvay process can be summarised by the following 

theoretical equation: 

2 NaCl + CaCO3 →Na2CO3 + CaCl2    (reaction 30) 

Raw materials in this process are salt and limestone (CaCO3). Ammonia is also used in 

the process, but it is almost totally regenerated and recycled. The reactions taking place 

in reality follow the pattern shown below (Ecofys, 2009): 

CaCO3 + heat → CaO + CO2     (reaction 31) 

CaO + H2O → Ca(OH)2      (reaction 32) 

NaCl + H2O + NH3 → NaCl + NH4OH    (reaction 33) 

2 NH4OH + CO2 → (NH4)2CO3 + H2O    (reaction 34) 

(NH4)2CO3 + CO2 + H2O → 2 NH4HCO3    (reaction 35) 

2 NH4HCO3 + 2 NaCl → 2 NaHCO3 + 2 NH4Cl   (reaction 36) 

2 NaHCO3 + heat → Na2CO3 + H2O + CO2   (reaction 37) 

The ammonia used in the beginning is recovered from the ammonium chloride filtrate 

(NH4Cl) by reacting with alkali (Ca(OH)2). The reaction is exothermic and cooling of the 

liquid is needed in order to maintain efficiency. More information about the Solvay 

process can be found in the BREF (EC, 2007c), the Cefic Bref for soda ash (Cefic, 2004) 

and in (Ullman's Encyclopaedia, 2000).  

The main advantage of the Solvay process is that the raw materials are available almost 

everywhere in the world relatively pure and therefore the production can be close to the 

market (EC, 2007c). Sodium chloride can be obtained by conventional or solution mining, 

but it contains inorganic impurities that can lead to production problems and should, 

therefore, be removed. 

Soda ash is manufactured in two grades: light soda ash and dense soda ash. The Solvay 

process produces light soda ash, with a pouring density of about 500 kg/m3 (EC, 2007c). 

This grade is used mainly in the detergent industry and for certain chemical 

intermediates. Dense soda is the preferred form for use in the glass industry and has 

about double density. It is produced from light soda ash by recrystallisation to sodium 

carbonate monohydrate and drying, but it is not considered in this study, as the focus is 

only for the chemical industry.  

There are several modifications to the original process, such as the "Akzo" or "dry lime" 

process, which uses dry lime instead of lime milk for the recovery of ammonia, and the 

"dual process", which allows co-production of ammonium chloride, which is used as 

fertiliser in rice cultivation (EC, 2007c). 
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5.6.2 Current consumption and emission levels 

Since almost all the European plants use the Solvay process, the discussion will be 

focused only on this process. Synthetic production is more energy-intensive and more 

costly than natural soda.  

As mentioned already, the main raw materials needed are salt (in the form of brine), 

limestone and ammonia. Typical composition ranges of raw brine is 120-125 g/l for Na+ 

and 186-192 g/l Cl-, while a high content of CaCO3 in the limestone can reduce costs and 

improve production efficiency (Cefic, 2004). There is no typical composition of limestone 

used in the European plants, as CaCO3 content varies between 84 and 99 % (EC, 2007c). 

Purification of brine results is losses of about 5 g/l. Ammonia is in the form of aqueous 

solution 10-35% or as of anhydrous gas or even as aqueous solution of ammonium 

disulphide. Table 51 provides indicative ranges for the inputs in the Solvay process 

(Cefic, 2004). The data in this table do not include consumptions concerning brine and 

limestone extraction or transportation.  

Except from raw materials, the process requires also utilities, such as steam, water and 

electricity. Steam is used at several steps of the Solvay process: Low pressure steam (<5 

bar) in ammonia distillation at rates between 1 300 to 2 400 kg/tsoda ash and intermediate 

pressure steam (10-14 bar) in thermal decomposition and drying during the reactions at 

rates between 1100-1300 kg/tsoda ash (decomposition of bicarbonate) and 350-450 kg/tsoda 

ash (drying monohydrate – dense soda ash) (EC, 2007c). Total thermal consumption for 

the production of soda ash, ranges between 9.25 and 13.2 GJ/tsoda ash (EC, 2007c), as a 

result the average thermal consumption of the Solvay process considered in this study is 

11,23 GJ/tsoda ash. Electricity is used at the CO2 gas compressors and consumptions 

depend on the gas concentration, but range between 50 and 130 kWh/tsoda ash (Cefic, 

2004).  

Table 51. Input in the Solvay process 

Main input 
Range  

Limestone (kg/tsoda ash) 1 090-1 8201  

Raw brine (kg/tsoda ash) 1 530-1 800 (NaCl) / 4 500-5 200 (water) 

NH3 addition (kg/tsoda ash) 0.8-2.1  

Electricity (kWh/ tsoda ash) 50-130 (for dense soda ash) 

Thermal Energy (GJ/tsoda ash) 9.25-13.2 
1 This range refers to the plant gate. The quantity entering the lime kilns is reduced by 4-12 % 

(1 050-1 600 kg/tsoda ash) due to homogenisation. 

Water is consumed either in the processes or for cooling. The quantity of process water is 

in the range of 1.9-2.4 m3/ tsoda ash and is normally taken from the outlet of the cooling 

system. Cooling water is in the range of 50-100 m3/tsoda ash depending on the temperature 

(Cefic, 2004). The main quantity of water enters the process in the form of brine, which 

is in liquid phase and represents 4500-5200 kg/tsoda ash (Cefic, 2004). 

Concerning emissions, CO2 is generated in two pyrolysis reactions (reaction 31 and 

reaction 37), but it is captured, compressed and directed back to be used in the 

carbonation stage, so in theory the Solvay process is neutral. In practice, though, some 

CO2 is emitted because its production is higher than what is stoichiometrically necessary 

(IPCC, 2006b). In a stand-alone soda ash process, these emissions range between 200 

and 300 kg/tsoda ash. The calcination process also produces some CO (4-20 kg/tsoda ash), 

depending on the extent of the conversion of CO into CO2 (Boudart reaction (Cefic, 

2004).   

Other emissions include nitrogen, sulphur oxides and ammonia, but the first two are 

rather limited, as the temperatures in the kiln are rather moderate and the sulphur 

content of the fuels used in limestone burning is low (EC, 2007c). Ammonia slip is usually 
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less than 1.5 kg/tsoda ash, but there are fluctuations depending on the performance of the 

process (Cefic, 2004).  

The emissions factors used in this study are summarised in Table 52. There are big 

differences in the emission factors of the different plants, depending on the fuel type 

used. The most emission intensive plants, using coal as fuel, report specific emission 

factor of about 2 tCO2/tsoda ash, while the most emission efficient plant emits only about 0.7 

tCO2/tsoda ash (Ecofys, 2009). For the present study, we assume that the total emission 

factor for soda ash production is the average of this range (1.35 tCO2/tsoda ash) 

Table 52. Emissions from the Solvay process for production of soda ash 

Emissions 
Value (tCO2.eq/tsoda ash) 

Electricity use 0.04 

Thermal production 0.63 

Direct Process emissions  0.68 

Total 1.350 

Soda ash is a benchmarked product, with value 0.843 allowance/t (EC, 2011b). The 

system boundaries of the benchmarking include all steps of the process, but exclude 

emissions related to the production of the consumed electricity. The specific emissions 

for each facility producing soda ash are calibrated according to the benchmarking curve 

for this product. 

5.6.3 Best available techniques (BATs) 

This paragraph describes the techniques considered generally to have potential in 

achieving high level of environmental protection in the soda ash industry, with focus 

mainly on the techniques referring to air emission abatement and on reducing energy 

consumption.  

Table 53 lists an overview of the possible BATs available for the soda ash industry. In 

general, improvements in this industry are usually long term investments as a common 

characteristic of all abatement techniques is the high capital cost due to the large 

volumes involved. In addition technologies are usually interdependent, which means that 

they might be mutually exclusive (Cefic, 2004). 

Soda ash plants do not require often shut downs for planned maintenance and can 

maintain continuous steady operation for a number of years. An integrated design of the 

plants with a required degree of standby equipment allows for operational flexibility, 

which is characteristic of this industry (EC, 2007c). The benefits from careful designing 

are higher raw materials and energy savings and a reduced environmental impact. The 

lower values of the consumptions (Table 51) and emissions presented in the previous 

paragraph can only be achieved via integrated design and operation of the plant (Cefic, 

2004). The plant in Spain can be considered as example of this BAT (EC, 2007c) and the 

estimated investment costs are EUR 13 200 000 for reference capacity 330 kt/y (OPT 

Sensor Srl, 2012).   

Since large amounts of steam are required for the production of soda ash, the inclusion 

of a cogeneration unit is a favourable technique. Higher energy efficiency is achieved, 

resulting also in lower emissions.  The efficiency levels achieved are about 90 %, since 

almost all the steam leaving the turbines can be used in the process (EC, 2007c). The 

applicability of CHP in soda plants does not depend on the type of fuel used and the data 

concerning the presence of CHP in the European soda ash industry are based on the 

databases available (ESAP, 2012).  
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Table 53. Overview of the possible BATs and ITs in the soda ash industry 

BAT/IT 
Description Investment cost1 

(EUR) 

Energy 

savings (%) 

GHG 

Reduction (%) 

BAT Integrated design and 

operation 
13 200  000 

44.6 Electric 

17.6 Thermal 
None 

BAT Energy conversion of primary 

fuels (CHP) 
General reference in 4.5.1 

BAT Optimisation of the process 

to avoid excessive CO2 

emissions 

54 280 000 None 48.15 

BAT Vertical shaft kiln for the 

production of concentrated 

CO2 gas and reactive lime 

5 280 000 2.7 Thermal None 

BAT Centrifugation of crude 

sodium carbonate 
Not included in the study as the savings are < 5% 

BAT Ammonia recovery in the 

distillation section 
0 24 Feedstock None 

IT Integration with ammonia 

plant 
No information available 

IT Innovation in the carbonation 

section 
No information available 

IT Soda ash production from 

Na2SO4 
No information available 

1 Reference capacity 330 kt/y. 

As mentioned earlier, CO2 emissions at this industry occur due to excessive production 

and are relatively moderate, but the main part of CO2 stored in soda ash is emitted in the 

downstream industries, such as the glass industry (EC, 2007c). Optimisation of the soda 

ash process can therefore lead to substantial savings in the global sense of 

environmental protection and to decrease in the manufacturing cost of production. The 

optimisation includes actions such as narrow possible temperature profile in the kiln, the 

selection of optimum quality limestone and fuel and if the market permits, an increased 

degree of integration with refined sodium bicarbonate plants (EC, 2007c). The financial 

benefit for the soda ash plant, can be calculated according to the CO2 pricing, whose 

average in 2013 was EUR 4.38/tCO2 (Figure 4) (EEX, 2015), while the environmental 

benefit can be estimated from the range of emissions in the different European plants 

(Ecofys, 2009).  There are several plants (in Spain, France, Italy and the UK) that are 

considered as examples for this BAT (EC, 2007c) and the estimated investment costs are 

EUR  54 280 000 for reference capacity 330 kt/y (OPT Sensor Srl, 2012).  

Another BAT is the choice of vertical shaft kiln, instead of the other types available. The 

decomposition of limestone to produce soda ash sets a number of constraints on the type 

and design of the kiln to be used. Most European plants were already using vertical shaft 

kilns before 2007 that satisfy all the constraints placed by the decomposition of limestone 
(42) (EC, 2007c). The main environmental benefit from this type of kiln is a higher 

concentration of CO2 in the lime kiln gas that has an important impact on the energy 

efficiency of the soda ash process. Energy intensity in the lime kiln section of a typical 

plant amounts to 2.2-2.8 GJ/tsoda ash, and vertical shaft kilns can achieve the lowest value 

                                           
(42) These constrains include for example maximum thermal efficiency, sufficient supply of CO2, ability to 

accept a wide particle size distribution of limestone, high yield to reactive lime etc. More information can 
be found in the literature [EC, 2007; Cefic, 2004]. 
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of the emissions range (EC, 2007c). Estimated investment costs for this BAT are about 

EUR 5 280 000 for reference capacity 330 kt/y (OPT Sensor Srl, 2012). 

Another technique involves the centrifugation of the crude sodium bicarbonate before the 

calcination section. Centrifugation decreases the water content in the sodium 

bicarbonate, thus minimising the steam requirements for its thermal decomposition. As a 

result, besides decreased energy consumption, the emissions of CO2, SOx and NOx are 

also reduced (EC, 2007c). The average water content in crude sodium bicarbonate in 

Europe is 15-19 %, but after centrifugation contents of 12-14 % H2O can be achieved, 

reducing the energy required for its decomposition by 5-6 % (EC, 2007c). The Polish 

plants had already installed this technology before 2007 (EC, 2007c).  

The last technique examined in this study is ammonia recovery in the distillation section. 

Ammonia is in principle a reaction aid, which can be recovered in most part, although 

some quantity still needs to be added (Table 51). Distillation is the primary abatement 

technique for ammonia recovery, with efficiencies over 99.5% and ammonia slip ranging 

between 0.3 and 1.9 kg/tsoda ash, if operated properly (EC, 2007c). The environmental 

benefit can be calculated from this range. Proper operation also minimises the impact of 

liquid effluents. The lowest ammonia slip is achieved with the highest quantity of steam, 

but an increase in energy used will lead to increased CO2 emissions and as a result an 

optimum to be reached between the two effects (EC, 2007c).  

5.6.4 Innovative technologies (ITs) 

No emerging techniques were reported based on the Solvay process (EC, 2007c), but a 

few potential improvements have been identified in the literature.  

The first one is utilisation of excess CO2 from the ammonia process for production of soda 

ash, by integrating the soda ash plant with an ammonia plant. The ammonia industry 

emits approximately 1.25 tCO2/tNH3, if it is not integrated with a downstream urea plant 

(EC, 2007c) and can therefore be used in the production of soda ash. The application of 

this technique has many restrictions, as the ammonia and soda plants need to be in 

proximity, the ammonia plant should not be integrated with urea production and a cheap 

source of lime should be also available. As a result, it cannot be considered generally 

applicable and it falls out of the scope of this study. An example plant of this technology 

is though mentioned to exist in Haldia, India (EC, 2007c). 

The second technique concerns innovations in the carbonation section of the soda ash 

plant (reaction 34). In Japan a new type of carbonator was reported in 1983, with 

production capacity of 250 tsoda ash/d in each carbonation tower, with the ability to operate 

more than 8 months, overall heat transfer coefficient five times higher than the one is 

Solvay towers and remarkably reduced equipment costs (EC, 2007c). The two plants 

mentioned as examples, though, were closed (EC, 2007c) and therefore the innovative 

technique is not considered due to lack of information on performances.  

In addition to these improvements to the Solvay process, an alternative route based on 

the Leblanc process has been suggested. According to this process, soda ash can be 

produced from sodium sulphate, according to the following reactions: 

Na2SO4 + 2 NH4HCO3 → 2 NaHCO3 + (NH4)2SO4  (reaction 38) 

2 NaHCO3 → Na2CO3 + H2O + CO2    (reaction 39) 

This process has 50-65% less investment costs than the conventional Solvay process, 

but 60-89% higher production costs (Kumar et al., 2013). In addition, it is not 

economical for producing soda ash, but for producing baking soda (sodium bicarbonate). 

Based on this conclusion, as well as the fact that there is no information available for its 

environmental performance compared to the Solvay process, this technique is also not 

considered in this study. 
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5.7 Aromatics 

The term ‘aromatics’ is mainly used to describe benzene, toluene and xylenes, also 

known as BTX. They all have the common characteristic of an aromatic ring (a six-

member Kekule ring) in their molecule, named like this due to a specific smell that they 

have. Nevertheless, aromatic chemical plants also produce a number of intermediate 

chemicals, apart from BTX, including cyclohexane (EC, 2014d). They are all important in 

the production of polymers, other chemicals and several consumer products, such as 

solvents, paints, polishes, pharmaceuticals. They are often produced together in the 

same process, mainly from fractions obtained by oil distillation (CIEC, 2015), so they can 

be considered as a group (Kirk-Othmer, 1999).  

Benzene (C6H6) is one of the largest-volume petrochemicals and the largest of the 

aromatics. It is used as raw material for a wide range of other chemical products (its 

product chain is included in Annex 2). In 2013, global production of benzene increased to 

43.7 Mt (IHS, 2014f) from 43 Mt, in 2012 (IEA, 2013). Western Europe, China and the 

US accounted for about 50% of the total world consumption (IHS, 2014g). Benzene has 

been used as solvent and as a component of motor fuel for improving gasoline quality, 

but because of its high toxicity its use has decreased drastically (Ullmann's 

Encyclopaedia, 2000d). In Europe, the maximum benzene present in petrol can be 3.7 % 

m/m (EC, 2009c). The main application of benzene is as chemical feedstock. 70-75 % of 

benzene is consumed globally for the production of ethyl benzene and cumene (IHS, 

2014g) Ethylbenzene is used primarily for the production of polystyrene and cumene for 

phenol and acetone (CIEC, 2015). Cyclohexane and nitrobenzene account for about 15-

20 % (IHS, 2014f). Benzene consumption growth rates are expected to be around 2-3 % 

up to 2019 (IHS, 2014f). 

Toluene (C6H5-CH3) is used as a raw material to produce benzene and xylenes, solid-

state resins and toluene diisocyanates (TDI) for polyurethane applications (EC, 2014d). 

Its product chain can be found in Annex 2. Some of the toluene produced is added in 

gasoline not isolated in its pure form, but as a mixture with other aromatics (Ullmann's 

Encyclopaedia, 2011b). Over 50 % of toluene produced in the refinery is converted into 

benzene by dealkylation and disproportionation (CIEC, 2015).  

Xylene (C8H10) is the name of three isomeric forms, depending on the relative place of 

the methyl groups: ortho–xylene or 1,2–dimethyl benzene, meta–xylene or 1,3–dimethyl 

benzene and para–xylene or 1,4–dimethyl benzene (Figure 19). The most widely used 

isomers are ortho– and para–xylene, the latter being the main focus of producers as it is 

used in the production of polyethylene terephthalate (PET) (EC, 2014d). Ortho–xylene is 

used almost entirely to make phthalic anhydride, an intermediate in the synthesis of PVC 

plasticisers, pharmaceuticals and other chemicals (US Department of Energy, 2000). 

Xylene product chain is included in Annex 2. Mixed xylenes contain a blend of the three 

isomers, in varied compositions, but typically rich in m-xylene, which is the least valuable 

component (IHS, 2015f). Consumption of p-xylene accounted for 81 % of global mixed 

xylenes demand in 2015 (IHS, 2015f). During 2010-2015 both consumption and capacity 

of mixed xylenes increased globally, the first one at an average annual rate of 3.5 % and 

the latter by 23 % (IHS, 2015f). In the period 2015-2020, consumption of mixed xylenes 

is expected to grow at an average rate of 4.5 % per year (IHS, 2015f). 
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Figure 19. Xylene isomers: para–, meta– and ortho– 

 

Information about aromatics production and capacity is reported by Petrochemicals 

Europe, but only about their members, which include EU-15, Norway and Switzerland. In 

2013 benzene capacity and production was 10.1 Mt and 6.9 Mt respectively, while in 

2014 they were 9.8 Mt and 6.7 Mt respectively (Petrochemicals, 2016). Concerning 

toluene, total capacity in 2013 was 2.1 Mt, while total production amounted to 1.80 Mt, 

while in 2014 they were 2.2 Mt and 1.66 Mt respectively (Petrochemicals, 2016). Mixed 

xylenes capacity in 2014 was 4.3 Mt (48 % para–xylene and 13.2% ortho–xylene) and 

production reached 2.7 Mt (70.1 % para–xylene and 18.7 % ortho–xylene) (Aromatics 

Online, 2016; Petrochemicals, 2016). 

Like most petrochemicals, the demand of BTX is strongly linked with consumer demand 

for plastics (US Department of Energy, 2000). Benzene is expected to grow at a rate of 

3 % annually until 2018 (IHS, 2014f), while the estimated growth in overall toluene 

consumption was less than 3% per year (ThyssenKrupp, 2009b).  In the case of xylenes, 

consumption is expected to grow at 4.5 % annually until 2020 (IHS, 2015f).   

There are aromatics plants in 15 member states in the EU-28 as shown in Table 54 (IHS, 

2015a; ICIS, 2012; EC, 2003a). Not all plants are producing all three BTX, but since 

most countries have more than one plants, usually in the aggregated case, all BTX are 

produced in most member states. Since there are three products to be taken into 

consideration, the databases are not reporting individual plants but production lines. As a 

result, Table 54 does not include the number of plants. In the analysis each production 

line has been considered separately.  

In 2013 total benzene toluene and xylenes capacities were 10.4 Mt/y, 3.0 Mt/y and 8.7 

Mt/y respectively (IHS, 2015a; ICIS, 2012; EC, 2003a). The capacities per product 

included in the database, if compared with the capacities reported by Cefic 

(Petrochemicals, 2016), are slightly higher, since the data from Cefic refer only to EU-15, 

but the database is considered to be complete. In the case of xylenes, the difference is 

higher, since (Petrochemicals, 2016) report only mixed xylenes, but in our analysis we 

have taken into consideration also the production of p-xylene and o-xylene. 
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Table 54. Aromatics plants in EU-28 in 2013 

Country 
Benzene 

(kt/y) 

Toluene 

(kt/y) 

Xylenes 

(kt/y) 

Belgium 885 95 1 085 

Czech Republic 350 31 10 

Germany 2 720 980 900 

Spain 981 330 250 

France 900 96 580 

Italy 470 325 400 

Hungary 195 110 85 

Netherlands 2 515 325 1 140 

Austria  4  

Poland 390 220 100 

Portugal 95 245 220 

Romania 40 85  

Slovakia 30 86 60 

Finland 150   

United Kingdom 650 80 100 

Total 10 371 2 967 4 930 

Most of the units in Table 54 are built geographically close to or inside a refinery and 

therefore they can share most of the environmental abatement installations with the 

refinery (EC, 2014d). 

5.7.1 Production processes 

There is a large variety of plant configurations for the production of aromatics and 

aromatic complexes are often designed and built with different plant arrangements 

depending on the feedstocks used and the mix of products. The processes are usually not 

selective and produce a mixture of benzene, toluene and xylenes that has to be 

separated and purified (IL&FS, 2010). However, the routes producing aromatics often 

have some scope for upgrading the products according to the market needs, so the 

choice of production route depends on the feedstock availability, its cost and the 

aromatics demand (EC, 2003a).  

Benzene was originally produced as a by-product from coal in the process to produce 

coke for the steel industry, until new processes began to emerge in the 1930s (Ullmann's 

Encyclopaedia, 2000d). Currently, the two main sources of feedstock for the production 

of aromatics are pyrolysis gasoline (43) and reformate from reformers (Ecofys, 2009). 

About 72 % of aromatics came from reformate, 24 % from pyrolysis gasoline (pygas) 

and the remaining 4 % from coke oven light oil from coke oven plants (IEA, 2007). 

Reformers are typically located in refineries and as a result refineries produce a 

significant proportion of the overall aromatics production. The fraction coming from coke 

oven operations is minor and this operation is not typically associated to conventional 

petrochemical industries, but rather with the iron and steel industry (EC, 2003a). 

The main processing schemes in aromatic production are: 

● Catalytic reforming of naphtha or steam cracking of naphtha for production of 

pygas 

● Solvent extraction for separation of non-aromatics from aromatics 

                                           
(43) Pyrolysis gasoline or pygas is a naphtha-range product with a high aromatic content. It is produced in naphtha or gasoil steam 

crackers (not from ethane-based steam crackers).   
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● Pre-treatment of pygas, which includes two stage selective hydrogenation 

● Separation of benzene, toluene and C8 fractions 

● Further separation of C8 hydrocarbons 

Pyrolysis gasoline (pygas) is produced by steam cracking of naphtha or paraffin gases 

and contains a high proportion of aromatics, primarily benzene and toluene, and a 

smaller amount of C8 aromatics that contain up to 40 % ethyl benzene (Table 55). The 

yield in aromatics depends on the feedstock chosen (Table 31). This process has been 

already described in paragraph 5.3, with the steam cracking products. Raw pygas 

contains large quantities of diolefins and olefins.  

The main purpose of reforming is to upgrade the octane of the streams for use as a 

gasoline blendstock (EC, 2015a). In a typical case, naphtha feed enters one or a series of 

reactors containing platinum catalysts in a gas atmosphere, after being hydrotreated to 

remove sulphur, nitrogen and metallic contaminants. Products from a reformer include 

hydrogen, refinery fuel gas, LPG, isobutene, n-butane and reformate. Reformate can be 

blended to gasoline or further separated into BTX and naphtha cracker feeds (EC, 

2015a).  

Table 55. Typical composition of the aromatics feedstocks (ThyssenKrupp, 2009b)  

Component (% w/w) Pygas Reformate Light reformate Coke oven Light oil 

Benzene 30 3 24 65 

Toluene 20 13 46 18 

Xylenes 4 18 < 0.5 6 

Ethylbenzene 3 5 < 0.5 2 

C9+ aromatics 3 16 0 7 

Naphthenes High Low Low High 

Olefins High High Low High 

Paraffins Low High High Low 

Sulphur Up to 1 000 ppm < 1 ppm Low Up to 1% wt 

The following step is aromatics extraction, regardless of the feedstock. Since the 

composition of the aromatics mix is dictated by the feedstock (Table 55), the composition 

of the different feedstocks dictates different procedures to be followed. 

Raw pygas has high concentrations in olefins and ethyl benzene and low concentration in 

xylenes, therefore it is mainly used to recover benzene or benzene/toluene 

(ThyssenKrupp, 2009b). The first step is hydrogenation in order to avoid polymerisation 

of the diolefins, followed by a series of distillation operations to prepare the desired cuts 

(C6 for benzene and C7 for toluene) for extraction (Ecofys, 2009). Olefins and impurities, 

such as nitrogen, sulphur and other components, are then completely hydrogenated and 

the H2S containing off-gas is separated. Aromatics are extracted using either liquid – 

liquid extraction or extraction distillation technologies (Ecofys, 2009; ThyssenKrupp, 

2009b). If C7+ aromatics are to be converted into benzene, a thermal hydrodealkylation 

unit is integrated in such a way that the extracted toluene is dealkylated to form benzene 

(ThyssenKrupp, 2009b).  

Reformate has relatively lower benzene content and relatively higher toluene and xylenes 

content (Table 55). It is therefore used mainly for producing p-xylene (ThyssenKrupp, 

2009b). Since (light) reformate contains lower quantities of olefins and sulphur 

impurities, hydrogenation is not required as first step. On the contrary, the typical 

process route includes fractionation by distillation to produce a C7- and a C8+ fraction. 

From the C7- fraction benzene and toluene are extracted from the non-aromatics with the 

same technologies as described before, while the C8+ fraction is sent to the p-xylene loop 

without extraction since the non-aromatics content in this fraction is very low 

(ThyssenKrupp, 2009b). The product, either extracted benzene and toluene or mixed 

xylenes, is treated with clay to remove olefins and then distilled (Ecofys, 2009). C8 
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aromatic isomers have close boiling points and chemical properties, so the separation in 

individual xylenes needs techniques such as shape selective adsorption of p-xylene or 

crystallisation of the p-xylene molecule at temperatures between -4 and -60 oC (Ecofys, 

2009). The remaining xylenes are sent to the isomerisation unit to be converted to p-

xylene. If o-xylene is also a desirable product; it must be removed as pure product by 

distillation before isomerisation (ThyssenKrupp, 2009b).   

5.7.2 Current consumption and emission levels 

As already explained, aromatics feedstocks are reformate, pyrolysis gasoline and coal tar 

processing. It should be noted that there are several different configurations for aromatic 

plants even for the same feedstock and the characteristics of all individual processes are 

not always available.  

Table 56. Overall material balances of aromatics complexes 

 Feed Basis Arabian Light 

Crude 

Mideast Naphtha 

Heartcut 

 Product objectives Maximise p-xylene 

Naphtha 

feedstock 

properties 

Specific gravity 0.735 0.753 

Initial boiling point ( oC) 83 82 

Endpoint ( oC) 166 176 

Paraffins/naphthenes/ 

aromatics (vol%)  

66/23/11 48/37/15 

Overall 

material 

balance 

(kt/y) 

Naphtha 940 1535 

Benzene 164 238 

p-xylene 400 700 

o-xylene  100 

C10+ aromatics 50 9 

Sulfolane raffinate 140 174 

Hydrogen–rich gas 82  

Pure hydrogen  40 

LPG 68 22 

Light ends 36 252 

Due to the variety of available configurations, typical product compositions can also vary. 

Typical products yields of solvent extraction from naphtha reformate are 8.5 % benzene, 

26.3 % toluene, 26.1 % xylenes (Energetics, 2000). According to (Serpec-cc, 2009), 

reformate can typically contain 12-23% benzene, up to 30% toluene and 23-48% p-

xylene. Overall material balances for typical aromatics complexes with configuration for 

maximising p-xylene production are shown in Table 56, along with the properties of the 

naphtha feedstock used to prepare the cases (Meyers, 2004; UOP, 2006). The typical 

yields from pyrolysis gasoline were already included in Table 31. 

Aromatics extraction is a process that yields several products and therefore there are 

several measures of consumptions and emissions, depending on what is considered the 

final product, as in the case of steam cracking (paragraph 5.3.2). Contrary to steam 

cracking, the aromatics industry is not only benzene orientated, but all three aromatics 

are considered as products. Even in the database, the aromatic plants are recorded 

according to the production lines for each aromatic (IHS, 2015a; ICIS, 2012; EC, 2003a). 

As a result, in this case consumptions and emissions are allocated to each one of them 

based on their mass ratio. Of course with this general allocation, it is not possible to 

account for each of the different plant configurations. We have to assume that aromatics 

are produced by a generic process. If a facility is reporting producing only benzene, then 

the values per tonne of benzene will be used, but if it is reporting producing toluene, 
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xylenes or all BTX the values per tonne of aromatics will be applied, attributed to each 

aromatic by mass allocation based on the ratios mentioned before. 

In order to apply mass allocation, the ratio of benzene: toluene: xylenes is needed. This 

ratio in the case of pygas-based is 85:49.2:33.2 (44) and in the case of reformate-based 

25:0:75 in the case of p-xylene oriented configuration (Table 56), 14:43.2:42.8 in the 

case of solvent extraction (45)
 and 23:30:48 according to (Serpec-cc, 2009). For our 

study, we will apply the ratio by (Serpec-cc, 2009), as the values used are also from the 

same source.  

Feedstock and energy consumptions are shown in Table 57 for both references: total 

aromatics and only benzene. Feedstock consumptions in the case of pygas and naphtha 

can be calculated according to the average of the data reported in Table 31 and Table 56 

respectively, while utilities consumptions are average consumptions in European benzene 

plants (Serpec-cc, 2009) adjusted to the material balances of the two processes.  

Table 57. Feedstock and average energy consumption for aromatics production 

processes 

 Aromatics pygas based Aromatics reformate based 

 Unit/taromatics Unit/tbenzene Unit/taromatics Unit/tbenzene 

Feedstock  

Pygas (t) 2.311 4.74   

Naphtha (t)   1.52 6.08 

Utilities3 

Fuel (GJ) 1.47 2.9 0.35 1.5 

Steam (GJ) 3.9 7.8     3.45 15.0 

Electricity (kWh) 15.0 30 9.2 40 
1 Calculation based on Table 31 (the average of naphtha and atmospheric gasoil pygas) 
2 Calculation based on the average of the two types of feedstock in Table 56 
3 Values per tonne benzene from (Serpec-cc, 2009). The values per tonne of aromatics are calculated according 

to the ratio or BTX, as explained in the text. 

Emissions from aromatic plants are mainly due to energy needed by aromatics separation 

processes, combustion processes (to supply energy) (EC, 2003a; EC, 2014d), or 

leakages (Energetics, 2000). As aromatic plants are usually integrated into refinery 

auxiliary facilities, the process emissions of the aromatic plant will most commonly go to 

the end-of-pipe devices shared with or belonging to the refinery (EC, 2014d).  

In 2011, the total process and steam emissions related to the aromatics production 

process were estimated to add up to 6.6 MtCO2.eq, on a total BTX production of 11.7 Mt, 

which equals an average value of 0.56 tCO2/taromatics (Benner et al., 2012). Each process 

has different benchmark emissions that are shown in Table 58. The range of the value 

occurs due to two methods identified by Cefic in the case of BTX from pygas (Ecofys, 

2009).  

Table 58. Benchmark values for BTX production in Europe (Ecofys, 2009) 

Benchmarked section Region 
Direct + heat 

(tCO2/taromatics) 

Direct +  heat + electricity 

(tCO2/taromatics) 

BTX from pygas Europe  0.34-0.38 0.37-0.43 

BTX from reformate World 0.26 0.28 

Xylenes loop Europe 0.50 0.65 

                                           
(44) Calculation based on Table 31 (the average of naphtha and atmospheric gasoil pygas).  
(45) Calculation based on the information in [Energetics, 2000].  
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Table 59 shows the emission factors used in this study, which are calculated according 

the energy consumptions (Table 57) and the emission factors shown in Table 58. The 

average of the two processes (from pygas and reformate) is 0.34 tCO2/taromatics, thus about 

40% less than the average emission factor according to real emissions. This difference is 

taken into consideration too.  

Table 59. Emission factors for the processes producing aromatics 

Emissions 
Aromatics pygas based Aromatics reformate based 

Value (tCO2.eq/taromatics) Value (tCO2.eq/taromatics) 

Electricity use 0.007 0.005 

Thermal production 0.08 0.02 

Steam production 0.28 0.27 

Direct Process 0.19 0.09 

Total 0.56 0.39 

Aromatics are benchmarked products, but in order to ensure a level playing field for their 

production in refineries and in chemical plants, the free allocation of emission allowances 

is based on the ‘CO2 weighted tonne’ (CWT) approach and the benchmark value of the 

refineries product benchmark should be applied (EC, 2011b). The benchmark value for 

refinery products is 0.0295 allowancesCWT/tprod and the CWT factor for aromatic solvent 

extraction is 5.25 kt/y covering all feeds including pygas after hydrotreatment. Pygas 

hydrotreating is accounted under naphtha hydrotreatment with 1.10 kt/y CWT factor, 

while p-xylene production has CWT factor 6.40 kt/y (EC, 2011b). There is no 

benchmarking curve available for aromatics and therefore no calibration can be 

performed for the specific emissions per facility.   

5.7.3 Best available techniques (BATs) 

The majority of the techniques used in aromatic plants are horizontal or generic and 

some of them are shared with the steam cracking process (paragraph 5.3.3). An 

overview of the techniques that have been identified as having potential for reducing 

GHG emissions and improve energy efficiency is summarised in Table 60. 

As mentioned several times already, aromatic plants can be built close to or inside a 

refinery, since refineries are usually integrated with other petrochemical processes. 

Process integration originates from the petrochemical industry, where it has been applied 

successfully (Serpec-cc, 2009). The general aim is to reduce energy requirements and it 

involves schemes such as heat recovery from product streams and use of waste heat. 

Typical savings achieved are 20 % in energy consumption, but can reach 50 % (Serpec-

cc, 2009). It is a technique applicable to aromatic plants, as well as surrounding units 

(EC, 2003a). Process integration applied in a refinery, with capacity of 2 105 barrels per 

day, including aromatics extraction and BTX fractionation, resulted in energy 

consumption reduction by more than 422 GJ/hr, worth more than USD 20 million/y 

(Wolschlag et al., 2009). It has been applied also at the Samsung Total Aromatics 

Complex in Daesan, Korea with 2006 capacity 480 ktp-xylene/y, 240 ktbenzene/y and 100 

kttoluene/y. The complex-wide revamping project for energy optimisation reports energy 

savings 20% that sum up to USD 12 million 2006/y, while the investment costs were 

USD 9.1 million 2006 and the payback time less than a year (AspenTech, 2006). The 

energy consumption achievable if such a BAT is applied is estimated to be at 7.1 

GJ/tbenzene steam and 0.03 MWh/tbenzene electricity for the production of aromatics from 

pygas and at 12.0 GJ/tbenzene steam and 0.03 MWh/tbenzene for the production of aromatics 

from reformate (Serpec-cc, 2009). 
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Table 60. Overview of the possible BATs and ITs in aromatics production 

BAT/IT Description 
Investment 

cost (EUR) 

Energy 

savings (%) 

GHG Reduction 

(%) 

BAT 

Energy integration – reformate 

based process 
7 780 383 1 

25 % electric 

20 % thermal 
None 

Energy integration – pygas based 

process 
9 % thermal 

BAT Styrene recovery from pygas No information available 

IT Xylenes separation processes No information available 

IT 

Split–feed two–stage parallel 

aromatisation for maximum p–

xylene yield  

No information available 

IT 
Composite solvent for extraction 

distillation 
No information available 

IT 
Conversion of methane to higher 

hydrocarbons 
No information available 

IT Bio–based aromatics  No information available 
1 Reference capacity 820 ktaromatics/y 

Styrene is present in the pyrolysis gasoline, but it cannot be purified by conventional 

distillation because of the presence of other components or isomers with similar boiling 

points (IHS, 2005). It is usually hydrogenated to ethyl benzene in order to reduce the 

gum-forming potential of gasoline. New technologies, though, that recover styrene from 

pygas via extractive distillation are being commercialised (Gentry and Zeng, 2009). A 

proprietary solvent system is used to change the relative volatility of the pygas 

components and allow styrene to be selectively extracted (Lee et al., 1998). This process 

has been successfully tested in a pilot plant, but has not yet been demonstrated on a 

commercial scale (IHS, 2005). The extraction technology provides profitable production 

of styrene at relatively small capacities and is appropriate for at least 15 kt/y contained 

styrene in pygas (Gentry and Zeng, 2009). The prospective economics of the process for 

reference capacity 250 ktstyrene/y includes capital cost of USD 30 million 2009 (Gentry and 

Zeng, 2009), but since there are no data concerning its GHG or energy savings, the 

technique cannot be included in this analysis. 

5.7.4 Innovative technologies (ITs) 

In recent years various studies have been carried out aiming at improving the 

performances of aromatics production processes, focusing mainly on increasing product 

yield or on new feedstocks that can substitute petroleum derivatives.  Recovery 

techniques can increase the product yield and membranes can have an outstanding role 

in separation industries in the near future, thanks to their simplicity, low energy cost and 

not causing environmental pollution (Takht Ravanchi et al., 2009).  

Xylenes are difficult to be isolated, because the three isomers, as well as ethyl benzene 

have close boiling points. Various commercial processes for separation of p-xylene from 

C8 aromatics have been developed as alternative to fractional distillation, which include 

fractional crystallisation (differences of the freezing points) or zeolites for selective 

absorption (Huff et al., 2005). Separation using aromatic-selective polymeric membranes 

can be proved to particularly useful for recovery of m-xylene and p-xylene (Miller et al., 

2008). The technique sounds promising, but there is no information concerning its 

performances available. 

Increased p-xylene yield can also be achieved via split-feed two-stage parallel 

aromatisation (Nacamuli and Thom, 1998). This invention relates to a process for 
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reforming a full–boiling range hydrocarbon feed to enhance p-xylene and benzene 

production and it is based on the fact that an adverse effect on production of p-xylene 

can happen with the help of catalysts. The catalysts comprise of at least one Group VIII 

metal and a non-acidic zeolite support, in the case of C6-C7 cuts catalytic aromatisation, 

and of at least one Group VII metal and a metallic oxide support, in the case of C8+ cut 

catalytic aromatisation (Nacamuli and Thom, 1998). Also for this technology there are no 

data available that refer to its performances.  

Improvements in extractive distillation involve new solvents. A new application provides 

a composite solvent that has higher solubility and relatively wide boiling range, so that it 

allows moderation of the operation conditions and therefore energy savings (Tian et al., 

2006). The composite solvent comprises a main solvent, a modifier, which can be 

selected from sulpholane derivatives, N–formyl morpholine and N–methyl pyrrolidone 

provided that the acidity and basicity of the modifier are opposite to those of the main 

solvent, and a solutiser, which can be selected from aromatics C8-C11.  

An innovative possible utilisation of CH4 is the production of higher hydrocarbons with a 

number of strategies that include among others the syngas pathway followed by Fischer 

– Tropsch chemistry and the direct conversion to aromatics and hydrogen in the absence 

of oxygen (Lunsford, 2000). Currently, no direct processes have progressed to a 

commercial stage, probably due to the fact that product yields are generally small and 

the considerable difficulties existing in an economical way (Lunsford, 2000; Eliasson et 

al., 2000).  

Biomass is considered to be a feedstock possible to substitute petroleum resources. A 

potential breakthrough technology is catalytic pyrolysis of lignin.  Some routes that are 

being explored are catalytic hydrocracking, catalytic pyrolysis over a zeolite catalyst and 

liquefaction with a mixture of supercritical water and phenol (Benner et al., 2012). 

Catalytic fast pyrolysis seems to be the most advanced technology for direct conversion 

of biomass to olefins and aromatics in one reactor. Zeolite catalysts with micropores 

present good catalytic characteristics in this process, but large-molecule oxygenates that 

are produced during pyrolysis cannot enter their pores and form coke on the catalyst 

surface, thus deactivating it (Zhang et al., 2013). The initial estimations of the 

investment costs amount to USD 220 million (Bennet et al., 2012). Another possibility is 

bio-based p-xylene, of which there are few scale–up production units (Lin et al., 2013). 

Gevo Inc. is converting isobutanol derived from biomass fermentation (Peters et al., 

2011), Virent Energy system Inc. developed a process to convert a series of chemical via 

hydrocarbon oxidation (Cortright & Blommel, 2011) and Lin et al. (2013) suggest 

producing p-xylene from 5–hydroxymethylfurfural an intermediate deriving from 

lignocellulosic biomass. The overall yield has been reported to be up to 88 % and its 

capital costs have been estimated to be USD 100.63 million (Lin et al., 2013). 

Unfortunately, the data available for these technologies are quite restricted and as a 

result they cannot be considered in this study.  

 

5.8 Carbon black 

Carbon black (CB) is the name of a group of manufactured fine-particle products that 

have a variety of different trade names and physicochemical properties, but share a 

chemical composition of nearly pure elemental carbon. It is usually in the form of 

colloidal particles and is produced by incomplete combustion or thermal decomposition of 

gaseous or liquid hydrocarbons under controlled conditions.  Its chemical composition is 

shown in Table 61 (Long et al., 2013).  

Rubber applications dominate carbon black uses worldwide. Approximately 90 % of 

carbon black is used in the tire and automotive industry, while the remaining 10 % is 

divided among other special carbon black applications that include pigment, UV 

absorbing, conducting agent in inks, coatings and plastics (EC, 2007c). 
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Table 61. Carbon black chemical composition 

Component 
Content 

Total carbon 97-99 % 

Elemental carbon >97 % 

Organic carbon <1 % 

Hydrogen to Carbon ratio <0.008 

Inorganic Species <1 % 

Since carbon black is predominantly used in rubber products, most carbon black 

production facilities are located in countries with large automotive industries. Until middle 

2014, 17 carbon black installations have been reported in the EU-28 (Table 62). Their 

total capacity was 1 248 kt/y (ICIS, 2012).  

Table 62. Carbon black plants in EU-28 in 2013 

Country 
Number of plants Capacity (kt/y) 

Belgium 1 10 

Czech Republic 1 135 

Germany 3 330 

Spain 2 60 

France 2 165 

Croatia 1 38 

Italy 3 240 

Hungary 1 100 

Netherlands 1 90 

Poland 1 40 

Sweden 1 40 

Total 17 1 248 

 

5.8.1 Production processes 

Carbon black can be produced by two chemical processes: (1) incomplete or partial 

combustion, or (2) thermal cracking. The main difference between the two types of 

processes is that in partial combustion, air is used to burn part of the feedstock, thus 

producing the energy required to carry out the pyrolysis, whereas in thermal cracking 

processes, heat is generated externally and introduced into the process.   

The main manufacturing processes for producing carbon black belong to the partial 

combustion processes and are the following three (Ecofys, 2009): 

Furnace black process 

It allows the production of all grades of carbon black required by the rubber industry. 

Carbon black is produced by injecting the primary feedstock (petrochemical or chemo-

chemical heavy aromatic oils), usually as an atomised spray, into a high temperature 

zone of high energy density, which is achieved by burning a secondary feedstock (natural 

gas, oil or other gases) with air. The oxygen present is not sufficient for complete 

combustion of the primary feedstock, which is therefore pyrolysed to form carbon black. 

Yields depend on the type of carbon black and of primary feedstock and range from 40 to 

65 % (EC, 2007c). 
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Gas black process 

This process was developed in order to exploit coal tar oils as feedstock, which are 

partially vaporised and transported to the production apparatus by a combustible carrier 

gas (hydrogen, coke oven gas or methane). The type of burner used influences the 

carbon black properties. The production rate and the yield depend on the grade of carbon 

black produced, but for a typical reinforcing black, the yield is 60 %. In the case of high 

quality pigment blacks the yield is considerably lower. 

Lamp black process 

It is the oldest industrial scale production process. 

The yield in general depends strongly on the produced quality. More information about 

the carbon black manufacturing processes can be found in the BREF for Large Inorganic 

Chemicals – Solids and others (EC, 2007b).  

The furnace black process is currently the most important production route and accounts 

for more than 95 % of the production worldwide. It is a continuous process, with great 

flexibility and better economy compared to other processes. Within the EU-ETS scheme, 

most carbon black plants use the black furnace process. The gas black and the lamp 

black processes are only used in order to produce special grades of carbon black that 

cannot be manufactured through the furnace black process, and account for less than 

5 % of worldwide production. In 2009 only two plants in Europe were reported to use the 

latter two processes, one each (Ecofys, 2009). 

5.8.2 Current consumption and emission levels 

Since the majority of black carbon plants use the furnace black process, our discussion 

will be focused on only this process.  

An accurate mass and energy balance for the black furnace process is challenging, due to 

the fact that it is not clearly known which part of the feedstock is converted into 

products. In addition, feedstock and operating conditions depend on the grade of carbon 

black produced and are frequently changed, while energy recovery for internal and 

external use can be done under different forms (EC, 2007c).   

Table 63. Typical raw materials consumption in a furnace black plant (Ullmann's 

Encyclopaedia, 2010b) 

Raw material Semi-reinforcing  

Carbon Black 

Reinforcing  

Carbon Black 

Average  

(t/tCB) 

Oil 2.5-3.3 t/h 1-1.5 t/h 1.83 

Natural gas 300-550 m3/h 280-440 m3/h 0.211 

Air 7 000-10 000 m3/h 6 000-7 500 m3/h 6.152 

Carbon black 1.5-2 t/h 1-1.5 t/h  
1 For the EU-mix natural gas 0.8 kt/Nm3 is assumed (JEC, 2014) 
2 Density of air is assumed to be 1.2 kg/m3 in STP (Engineering toolbox, 2015b) 

Natural gas is the most important fuel in the furnace black process, but other gases and 

oils can also be used. These can be oil from fluid catalytic cracking of gas oils, ethylene 

tar or ethylene cracker residue. Typical raw material consumption of a furnace black 

plant is shown in Table 63. 
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Table 64. Energy consumption and emission factor for the carbon black manufacturing 

process 

Process 

Energy consumptions1 Emission 

factor 2 

(tCO2.eq/tCB) 

Electrical 

(kWh/t) 

Thermal 

(GJ/t) 

Steam 

(GJ/t} 

Furnace black 500 52.7 0.00 2.62 
1 (IEA, 2009b) 
2 (IPCC, 2006b) 

    

The electrical consumption for carbon black plants depends on production and ranges 

from 430 kWh/tCB for production more than 75 kt/y to 550 kWh/tCB for production less 

than 50 kt/y (EC, 2007c). Table 64 reports the values of energy consumption for the 

furnace black process used in this study. 

As mentioned earlier, the yield and therefore the emissions depend on the quality of 

carbon black produced. Under normal operating conditions, the furnace black process 

does not form toxic solid or liquid by-products (EC, 2007c). An important potential source 

of emissions to the air is the tail-gas, which comes from the reactor after product 

separation and is a low calorific gas with high moisture that can vary from 30 to 50 vol-

% wet. Its composition depends on the feedstock used, as well as on the CB quality 

grade. Typical tail-gas contains mainly moisture, nitrogen (32-46 vol- % wet), hydrogen 

(6.6-14 vol- % wet) and carbon monoxide (6-11.7 vol-% wet) (EC, 2007c). The total 

emission factor used in this study is shown in Table 64. 

Carbon black produced by furnace black is a benchmarked product, with the value of 

1.954 allowances/t. The system boundaries of the benchmarking are all processes 

directly or indirectly linked to the production of furnace carbon black as well as finishing, 

packaging and flaring (EC, 2011b). In particular the emissions included are: (i) the CO2 

emissions related to the combustion of tail-gas, (ii) the CO2 emissions due to combustion 

of fuels used, (iii) emissions related to purchase heat from external suppliers and (iv) the 

indirect emissions from electricity consumption. 

5.8.3 Best available techniques (BATs) 

In this paragraph the possible Best Available Technologies (BATs) available for the 

carbon black industry are described. Table 65 lists an overview of the possible BATs 

available for the carbon black industry.  

Most of the BATs mentioned are not widely used in the European carbon black industry. 

NOx and SOx emissions are mainly related to combustion of the tail-gas in dedicated 

combustors. Primary NOx reduction is considered only for the use in enclosed thermal 

combustors and not in the carbon black reactor, as it interferes with the production 

process and not useful, due to the relatively low amount of such type emissions in the 

reactor. There is very little experience within the carbon black industry with the 

application of this BAT (EC, 2007c) and as a result it will not be considered for this study. 

The main process-integrated mechanism for SOx reduction is the use of low sulphur 

feedstock, but this is a technique that is not included inside the boundaries of the carbon 

black industry, and therefore cannot be considered for this study either.  
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Table 65. Overview of the possible BATs and ITs in the carbon black industry 

BAT/IT Description 
Investment cost 

(EUR) 

Energy 

savings (%) 

GHG Reduction 

(%) 

BAT Primary NOx reduction No information available 

BAT Primary SOx reduction Outside the scope of this study 

BAT Selective catalytic reduction Not applicable in this industry 

BAT Selective non-catalytic 

reduction 
No information available 

BAT Dust removal/ separation 

operation 
No savings  

BAT Tail-gas combustion 

devices and energy 

recovery  

Flare No savings 

CHP 16 118 600 General reference in 4.4 

IT Hydrocarbon decomposition by 

plasma 
Outside the scope of this study 

Selective Catalytic Reduction (SCR) is not used in the carbon black industry, due to low 

NOx level in the gases from the reactor and expected interferences with the operation of 

the plant, while Selective Non-Catalytic Reduction (SNCR) is reported to exist only in the 

carbon black plant in Sweden, and as a result neither is considered as successfully 

demonstrated techniques (EC, 2006). Dust removal/separation is not a BAT affecting 

energy efficiency or GHG emissions, and therefore falls out of the scope of this study.  

The most common technique in Europe is the use of tail-gas combustion devices with 

energy recovery. The main source of emissions, as mentioned before, is tail-gas.  It is 

not allowed to vent uncombusted tail-gas unless in case of emergency.  Nearly all carbon 

black plants reuse part of the tail-gas in dryers, but the remaining tail-gas can be used in 

different ways. Some plants sell it directly, whereas others combust it in a CHP or a 

boiler. There are four types of devices, currently in use to combust tail-gases at carbon 

black facilities: (1) product dryer combustion chambers, (2) boilers or combined heat and 

power (CHP) installations, (3) flares and (4) other thermal combustors. In general, this 

technique is included in this study uniformly as CHP.  

From the 16 CB plants in the EU-28, at least 9 have CHP installed (EC, 2007c). CHP 

capacities were provided in the general case by ESAP (ESAP, 2012). In the special case 

of these plants, though, data were available for only 4 of them. The CHP installed 

capacities of the plants for which no data were available was, therefore, calculated, by 

using the weighted average of the four known CHP capacities.  

If tail-gas is burnt in boilers, high pressure superheated steam can be generated and 

subsequently used, but usually the carbon black industry cannot use all of the steam 

produced itself, and therefore exports it. Flares are also used in the industry, where tail-

gas is combusted without energy recovery. Therefore it is used only to facilitate the 

disposal of excess tail-gas.  

Energy recovery from the tail-gas affects the energy efficiency of the plant. The potential 

energy that can be recovered depends on the calorific value of the tail-gas and can vary 

between 17 and 30 GJ/tCB (EC, 2007c). In addition, combustion of the tail-gas results in 

reducing GHG emissions, as it reduces NOx emissions.  

The economic viability of a CHP is depending on the local electricity costs and the price 

that can be obtained for the surplus electricity, while in the case of a boiler, it depends 

on the need for steam in the plant and the revenues that can obtained by selling the 

excess. Investment costs of a boiler producing steam (100 bar, 530oC) varies between 

EUR 115 000 2002/(tsteam/h) for an installation of 100 t/h and EUR 70 000 2002/(tsteam/h) for 

an installation of 200 t/h. Units in the carbon black industry are rather in the range of 
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100 t/h. The gross investment cost in the CB industry is estimated to be for flares in the 

range EUR 0.5-1.5 million 2002, for incinerators EUR 5-15 million 2002, for boilers EUR 10-

15 million 2002 and for CHP units EUR 15-25 million 2002 (EC, 2007c).  

5.8.4 Innovative technologies (ITs) 

As mentioned already, carbon black can be produced also by thermal cracking, but this 

process is not used in the industry. New developments in technologies tend to improve 

this category of chemical processes. According to literature (Sun et al., 2016; Yuan et al., 

2014), methods have been proposed for producing carbon black from decomposition of 

hydrocarbons, usually methane, by plasma. The different plasma technologies can be 

generally distinguished in two main categories: thermal plasma and non-thermal plasma.  

The thermal-plasma concept for carbon black production has induced the development of 

two patented and competing processes and several other non-patented processes. The 

first patented process was developed in Norway by Kvaerner Engineering and is 

converting methane to hydrogen and CB on the basis of a direct current carbon electrode 

plasma generator (Gaudernack and Lynum, 1998; Bakken et al., 1998). The second one 

was developed in France at Ecole de Mines de Paris in partnership with CNRS and TIMCAL 

Belgium and consists of a 3-phase plasma process (Fulcheri et al., 1997; 2002). A team 

from Seoul National University, South Korea has also developed a continuous production 

of carbon black and hydrogen by thermal decomposition of methane using direct current 

– radio frequency hybrid thermal plasma (Kim et al., 2005), which has the advantage of 

synthesising new nanostructured materials by providing high-temperature environment 

and longer residence time for reactant gases. CNRS and TIMCAL Belgium have developed 

another variation of the thermal dissociation of methane, using solar energy (Rodat et 

al., 2011a; 2011b).  

Concerning the non-thermal plasma processes, a novel process was introduced by a 

team in France at Ecole de Mines de Paris (Moreno-Couranjou et al., 2009), based on low 

current-high voltage discharges. This process can also produce a broad range of 

products. 

From all these processes, only the "Carbon Black and Hydrogen" process by Kvaerner 

Engineering has been scaled up and it is based on a graphite plasma torch invented by 

SINTEF with coaxial graphite electrodes. Its benefit is environmental, as there are no CO2 

or NOx emissions from this process. There are three patterns concerning this process 

(Kvaerner Engineering, 1992; 1993a; 1993b) and was commercially utilised in a plant 

outside Montreal, Canada for the period 1998-2001. The designed operational capacity of 

the Kvaerner's Karbomont plant was 20 ktCB/y and 2.5 billion cubic feet of hydrogen per 

year, which was used in an adjacent petroleum refinery. The plant is though 

decommissioned and no information on it is available.  

Gasplas AS has also configured this plasma technology to produce a novel reactor design, 

with shorter residency time, higher quality output and efficiency at small scale, compared 

to the Kvaerner reactor (Gasplas, 2011).  They report the following performance: 4 kg 

CH4 → 1 kg H2 + 3 kg C with electric energy consumption 10 kWhel. The total OPEX is 

EUR 920/tCB with reference capacity 200 kg H2/d and 600 kg C/d. The economic aspects 

of the process are based on hydrogen production and the carbon black produced is 

considered only in the form of by-product credits. 

As mentioned earlier, this is the only innovative technology that has been scaled up, but 

from the economics of the technology it is made clear that there is also hydrogen 

produced. This makes the IT appropriate for carbon black plants that have a market for 

hydrogen too, as it was demonstrated by the pilot plant of Kvaerner. As a result, it 

cannot be regarded as a possible solution for all plants, and therefore it is not considered 

to be inside the scope of this study. 
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5.9 Chlor-alkali 

Chlorine (Cl) is a chemical element with atomic number 17 and belonging to the halogen 

group in the periodic table. Molecular chlorine (Cl2) is a greenish gas, but due to its high 

reactivity, in nature it is usually found bound with other elements (Euro Chlor, 2014). It 

is one of the most abundant elements on earth, with about 50 quadrillion tonnes of 

dissolved sodium chloride (NaCl) found in oceans and seas. However, the majority of salt 

comes from rock saltmines (Euro Chlor, 2014). From the readily available rock salt, 

chlorine and sodium hydroxide (NaOH, also known as caustic soda) is produced; as a 

result, the industry co-produces both these substances and is called chlor-alkali. 

Chlorine is an essential component in many industrial and commercial applications, as it 

can be seen in its product chain in Annex 2. World chlorine installed capacity in 2012 was 

estimated to be about 76.8 Mt (EC, 2014c), but the global annual production in 2011 was 

estimated to be about 56 Mt (CIEC, 2015) and in 2013 about 65 Mt (CEPS, 2014b). 

China was the driver of global chlor-alkali capacity expansion with a share of 41% in 

2012. U.S and Europe are following with shares of 18 % and 16 % respectively (EC, 

2014c). Most new larger chlorine plants are built to supply feedstock to ethylene 

dichloride facilities (IHS, 2014h). 

In the EU-28+ (46) total capacity in 2012 was 12.2 MT/y (EC, 2014c) and production 9.7 

Mt (Euro Chlor, 2013). In 2013 production decreased to 9.5 Mt (Euro Chlor, 2014), but in 

2014 it increased by 1.7 % (Euro Chlor, 2015). 3-4 % of the chlorine production capacity 

is coupled with the production of potassium hydroxide and approximately 96-97 % with 

the production of sodium hydroxide (EC, 2014c).  

Chlorine is well known for its use in sterilising drinking water and swimming pool water, 

but it has a huge variety of uses. It is largely used in the synthesis of chlorinated organic 

compounds with polyvinylchloride (PVC) and isocyanates being the major drivers of the 

industry (EC, 2014c). Chlorinated substances intervene in many agrochemicals and in the 

manufacturing of pharmaceuticals, as well as paints, rubbers and detergents. The main 

chlorine applications in the EU-28+ are shown in Figure 20(a) and amounted in total to 

9.6 Mt (Euro Chlor, 2014).  

Figure 20. (a) Chlorine and (b) caustic soda applications in the EU-28+ in 2013 

 

The output of sodium hydroxide is proportional to that of chlorine and equal to the ratio 

of molecular weights 1.128, but is influenced by factors side-reactions and factors that 

depend on the method of production (EC, 2014c). It is usually produced commercially in 

the form of 50 % wt solution and its main uses are shown in Figure 20(b) in (Euro Chlor, 

                                           
(46) EU-28+ includes EU-28, Iceland, Norway, Switzerland and Lichtenstein.  
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2014). In 2013 the applications of caustic soda in the EU-28+ were 9.3 Mt in total (Euro 

Chlor, 2014). Large quantities are used within the chemical industry, but two specific end 

uses are influencing its demand: alumina production and the pulp and paper industry. 

Chlorine and caustic soda are co-products and the demand for one highly influences the 

demand for the other. Over the last several decades, the industry has proved to be 

cyclical, with chlorine demand driving it mainly, as it can be noticed by comparing the 

EU-28+ consumptions of the two co-products (Euro Chlor, 2013; 2014; 2015). Another 

forcing affecting the market is environmental regulations, but as long as no non-chlorine 

replacement for PVC is developed, demand will remain strong (US Department of Energy, 

2000).  

The EU-28+ chlor-alkali industry consisted in 2013 of 66 sites in 21 countries, 19 of 

which are members of the EU-27, with total capacity of 12.36 Mt and 12.55 Mt 

respectively (Figure 21) (Euro Chlor, 2012; 2013). More than 40 % of the nominal 

capacity is located in Germany, followed by Belgium and the Netherlands (15%) and 

France (more than 10%). Almost 2 million jobs are directly or indirectly related to 

chlorine and caustic soda (Euro Chlor, 2012). 

Figure 21. Chlor-alkali production sites in EU-28+ in January 2014 (Euro Chlor, 2014) 
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In our study only the 19 member states of the EU-28 are taken into consideration. The 

overview of these plants is given in Table 66 (ICIS, 2012; Euro Chlor, 2014). The number 

of production lines is slightly higher than the sites reported by Euro Chlor, due to the fact 

that the different production process accounts as a different production line, but the 

nominal capacities are consistent.  

 

Table 66. Chlor-alkali plants in EU-28 in 2013 

Country 
Number of production lines Capacity (kt/y) 

Belgium 5 1 109 

Czech Republic 2 196 

Germany 21 5 063 

Ireland 1 9 

Greece 2 24 

Spain 10 717 

France 12 1 474 

Italy 6 301 

Hungary 2 323 

Netherlands 3 847 

Austria 1 70 

Poland 3 340 

Portugal 3 142 

Romania 3 384 

Slovakia 1 76 

Slovenia 1 16 

Finland 2 115 

Sweden 1 120 

United Kingdom 3 729 

Total 82 12 055 

 

5.9.1 Production processes 

Since the 1960s electrolysis has been the predominant technique employed to produce 

chlorine and sodium hydroxide (US Department of Energy, 2000). In the chlor-alkali 

electrolysis process, a chloride salt solution (brine) is decomposed electrolytically by 

direct current, according to the following reaction: 

2 NaCl + 2 H2O → Cl2 + H2 + 2 NaOH   (reaction 40) 

The most common feedstock is sodium chloride (NaCl), but also potassium chloride (KCl) 

can be used. KCl involves much higher raw material costs; it is therefore only used when 

KOH is the desired product and represents only 3-4 % of the European chlorine 

production capacity (EC, 2014c).   

There are three electrolysis technologies for producing chlorine and caustic soda: 

membrane, mercury and diaphragm. All cells produce elemental chlorine gas at the 

anode and a solution of NaOH at the cathode. Brine is continually fed to the anode 

compartment, liberating chlorine gas and flows through the separator to the cathode 

compartment, forming hydroxide. The three technologies differ in the separator, causing 
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different electrode reactions and keeping the co-products separate differently (EC, 

2014c; CEPS, 2014b).  

Mercury flows along the floor of a chamber with the anode suspended from the top and 

acts as cathode, causing the following reactions in cathode and decomposer respectively: 

Na+ + e- + Hgx→ Na–Hgx      (reaction 41) 

2 Na–Hgx + 2 H2O → 2 NaOH + H2 + 2 Hgx   (reaction 42) 

A porous diaphragm divides the electrolytic cell in the two compartments, allowing the 

flow of the brine through it from the anode to cathode. The membrane cell is similar to 

the diaphragm one, but the two electrodes are separated by an ion-selective membrane 

and not a diaphragm. The cathode reaction occurring in both cases is the following: 

2 Na+ + 2 e- + 2 H2O→ 2 NaOH + H2   (reaction 43) 

The products of electrolysis are proportional in a fixed ratio: 1 070-1 128 kgNaOH (100% 

wt)/tCl2 and 28 kgH2/tCl2. The ratio for the production of KOH is about 1.583, but in both 

cases it is influenced by side reactions taking place at the electrodes and in the case of 

the diaphragm and membrane cells, the diffusion of hydroxide through the separator 

(EC, 2014c). 

The mercury cell technique is the oldest and has the advantage of producing Cl2 gas with 

nearly no oxygen and a 50% wt NaOH solution, but operates in higher voltage and 

current density than the other techniques. It also requires high brine purity, in order to 

avoid the risk of explosion through H2 generation in the cell, and of course involves 

environmental releases of Hg. On the contrary, the diaphragm cell has low electrical 

consumptions, but high steam consumption and although the brine purity is not 

important, the quality of NaOH and Cl2 produced is low. If asbestos diaphragm is used, it 

involves environmental releases of asbestos. Last but not least, the membrane cell 

technique is the least energy consuming of the three cells and produces very pure NaOH, 

but it may require evaporation to increase its concentration. It also requires high brine 

purity and the chlorine produced contains oxygen, but since brine depletion in membrane 

cells is two or three times greater than mercury cells, it allows lower recycling rates and 

less equipment is needed. The advantages and disadvantages of these three technologies 

are summarised in Table 67. 
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Figure 22. Chlorine manufacturing technologies in Europe (Euro Chlor, 2014) 

 

In 2000, the mercury process accounted for 54% of the European capacity, but in 2013 it 

was only 25 % and in 2014, 22.6 % (Euro Chlor 2014; 2015). On the contrary 

membrane process is increasing and accounted in 2013 for 59% of the European capacity 

(Euro Chlor, 2014). Global chlorine installed capacity of mercury cell plants in 2012 was 

estimated to be about 5 Mt/y (UNEP, 2013). In the EU-28, 13 of the member states are 

still using mercury cells with total capacity about 3.0 Mt/y (Euro Chlor, 2014), equivalent 

to 25.1 % of the total chlor–alkali capacity. The downward trend in using the mercury 

cell technique is depicted in Figure 22 and can be attributed to environmental reasons 

connected with mercury emissions and energy efficiency (CEPS, 2014b). In 2013 only 

one plant in the EU-27 was still using asbestos diaphragms (EC, 2014c). 

5.9.2 Current consumption and emission levels 

Consumptions and emissions in the chlor-alkali industry depend on the cell technique 

used and on the specifications of the products and the purity of the brine (EC, 2014c).  

As mentioned earlier, the most common feedstock to produce brine is NaCl, and 

secondary KCl. The stoichiometric consumption of the salts is 1.65 tNaCl/tCl2 and 2.10 

tKCl/tCl2 respectively, but the real consumption can be either higher (due to losses via the 

brine purge) or lower (due to addition of HCl and hydroxide to the brine system). Salt 

consumption in European plants is shown in Table 67 (EC, 2014c). Most plants use brine 

recirculation, thus saving raw material consumption. If a once-through brine process is 

used, salt consumption is about twice and according to reports it ranges from 3.1 to 3.8 

tNaCl/tCl2 (EC, 2014c). Due to the higher price of KCl, plants using it do not waste brine. 

Besides brine, raw materials are also water, which is added in the process in order to 

prepare the brine, and some reagents used for its purification. Water is used for the 

production of caustic, its dilution if needed and the cooling of chlorine (EC, 2014c). 

The main energy source for the production process is electricity, which fuels the 

electrolysis process. The amount required depends on the design of the cell, the 

operating current, the electrolyte concentration, temperature and pressure (US 

Department of Energy, 2000). The chlor-alkali industry is an energy-intensive one and 

consumed in 2010 total electricity equal to 35 TWh, equivalent to 17% of the total final 

electrical consumption of the European chemical and petrochemical industry (EC, 2014c).  
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Table 67. Consumptions, emissions and advantages and disadvantages of chlor–alkali 

production technologies 

 Mercury cell Diaphragm cell Membrane cell 

Raw materials 

NaCl (kg/tCl2) 1 610-2 340 

KCl (kg/tCl2) 2 070-2 200 

Water (m3/tCl2) 0-2.7  

Utilities 

Electricity 

(kWh/tcl2) 
3 000-4 400 2 600-3 100 2 300-3 000 

Steam (t/tCl2) 
1 – 2.7-5.3  0.5-1.7  

Emissions 

Electricity use 

(tCO2.eq/tCl2)  
1.721 1.325 1.232 

Steam 

production 

(tCO2.eq/tCl2) 

- 0.123 0.036 

Total 1.721 1.448 1.269 

Advantages and disadvantages 

Advantages 

High purity products 

and simple brine 

purification 

Low quality 

requirements of brine 

and low electrical 

consumption 

Low total energy 

consumption, low 

investment and 

operation costs, high 

purity NaOH 

Disadvantages 

Use of Hg, high 

costs, costly 

environmental 

protection and large 

floor space 

High steam 

consumption, low 

purity NaOH, low Cl2 

quality and in some 

cases asbestos based  

High purity brine 

required, low Cl2 

quality and high 

costs of membranes 

1 For producing NaOH 50% wt 

Other processes that require energy are the preparation and purification of raw 

materials, the preparation of caustic soda (or potash) to commercial concentrations and 

other auxiliary equipment (EC, 2014c). Except for electricity, energy in the form of heat 

(steam) is also needed to produce the salt and concentrate the NaOH solution. As 

mercury cells produce directly caustic soda in commercial requirements, there is no need 

for steam, but in the case of diaphragm and membrane cells steam consumptions are 

2 196 MJ/tCl2 and 648 MJ/tCl2 respectively (Euro Chlor, 2010; IEA, 2007). The energy 

consumption of the chlor-alkali process is summarised in Table 67 (EC, 2014c). 

Concerning emissions, all three technologies emit chlorine to air, about  0.010-15 g/tCl2, 
through leakages and channelled emissions (EC, 2014c). In addition, mercury cells can 

be significant sources of environmental pollution, due to losses of mercury, usually at a 

range of 0.1-1.78 g/t (EC, 2014c). Overall European emissions in 2013 amounted to 

about 0.68 gHg/tCl2, with only one plant being above the target of 1.5 gHg/tCl2 for total 

emissions (Euro Chlor 2014). 

None of the emissions mentioned above are considered to be GHG emissions. The only 

GHG emissions from chlor-alkali plants are fugitive CO2 emissions that can occur due to 

brine acidification, but they are very low and are not taken into account (EC, 2014c). The 
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emissions considered in this study are summarised in Table 67, based on the 

consumptions of the processes and with the relevant emission factors.  

5.9.3 Best available techniques (BATs) 

This paragraph consists of a short description of the techniques that have been identified 

as having potential to improve energy efficiency and reduce GHG emissions, without 

implying that the list summarised in Table 68 is exhaustive. 

Table 68. Overview of the possible BATs and ITs in the chlor-alkali industry 

BAT/IT Description 
Investment 

cost 

Energy savings 

(%) 

GHG Reduction 

(%) 

BAT Conversion of mercury cell 

plants to membrane cell 

plants 

EUR 426.2/t 1 

28.4 % electric 

& – 68 400% 

steam 

None 

BAT Conversion of asbestos 

diaphragm cell plants to 

membrane cell plants 

EUR 367/t 2 

7.02 % electric 

& 70.5 % 

steam 

None 

BAT Asbestos-free diaphragms Not included in the study as the savings are < 

5 % 

BAT High performance bipolar 

membrane cells 
EUR 21/t 3 13.6 % electric None 

BAT High performance electrodes 

and coatings 

Not included in the study as the savings are < 

5 % 

BAT  Use of hydrogen Not included in the study as the savings are < 

5 % 

IT Oxygen-depolarised cathodes 
EUR 89/t 4 

15 % electric & 

steam 
None 

IT Four-stage caustic 

evaporator in membrane 

plants 

No information available 

1 Reference capacity 100 kt/y 
2 Reference capacity 160 kt/y 
3 Reference capacity 500 kt/y 
4 

Reference capacity 100 kt/y 

The chlor-alkali industry consumes big quantities of electricity. About 90% of the electric 

current used is raw material, though, and cannot be substituted, limiting therefore the 

reduction potential (Euro Chlor, 2010). Reduction can be achieved due to a technology 

shift from mercury and diaphragm cell technologies to membrane technology. Besides 

energy reductions, which can be in the range of 20-45%, also prevention of emissions 

can be achieved, mercury in the case of mercury cells and asbestos in the case of 

diaphragm cells. However, total energy consumptions also depend on the steam 

consumption, which in the case of mercury cells is increased if it is transformed to 

membrane cell. Average energy savings in electricity are calculated according to the data 

in Table 67 and are shown in Table 68. Conversions include changes in electrolysers, 

transformers and rectifiers, additional brine purification and dechlorination, and inclusion 

of a cell room caustic soda recirculation system (EC, 2014c). Investment costs depend on 

a lot of factors, such as current density, plant size and others. For converting a mercury 

cell plant with chlorine capacity of 100 kt/y and design current density variation of 4-6 

kA/m2, the total investment costs range is EUR 203-6102009/tCl2 (EC, 2014c) or on 

average about EUR 400/tCl2 (Serpec-cc, 2009),  while the conversion of a diaphragm cell 

plant requires investment costs of EUR 300-400 2009/tCl2 (EC, 2014c). For comparison, the 
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costs of a completely new membrane cell plant are estimated to be about EUR 1000 

2009/tCl2 (EC, 2014c).  

Another technique concerning diaphragm cells is using asbestos–free ones. They are 

often referred to as synthetic diaphragms and are typically made of perfluorinated 

polymeric fibres and metal oxide fillers that are resistant to the corrosive environment of 

the operating chlor-alkali cell (Bachot and Stutzmann, 1995; DuBois and Dilmore, 1997). 

Asbestos-free diaphragms have longer lifetimes and show stability to load variations (EC, 

2014c). Their environmental benefits constitute of reductions in energy consumption and 

avoiding asbestos emissions and wastes. The specific electrical energy consumptions is 

reduced by 100-150 kWh/tCl2 (4.4% savings) and the cost for converting a diaphragm 

cell plant with chlorine capacity 160 kt/y to a non-asbestos diaphragm was, in 1999, 

EUR 1.4-2 million (EC, 2014c).  

Within the membrane cells there are a couple of configurations or materials that can be 

considered as BATs. These are: 

High–performance bipolar membrane cells 

These cells make use of serial electrical arrangement and small gaps between the 

electrodes, instead of parallel electrical arrangement that is characteristic of monopolar 

cells. Due to the shorter current path in bipolar cells, ohmic losses are much lower than 

in equivalent monopolar electrolysers, leading to decreased energy consumption, that 

range from 2 280 to 2 535 kWh/tCl2 for current densities range of 4 to 7 kA/m2 (EC, 

2014c). Typical costs of membranes are EUR 20 2009/tCl2 (EC, 2014c) 

High–performance electrodes and coatings 

Developments in the performance of electrodes and coatings include improvements in 

gas release, leading to reduced electrical resistance caused by gas bubbles for the first 

and optimisation in terms of mechanical and electrochemical robustness for the latter, 

leading to lower overpotentials and lower production of chlorate (EC, 2014c). These 

changes result in reductions of energy consumption and chlorate emissions. Overall 

energy reductions reported amount to 3-4% and the costs of electrode recoatings may 

amount to several thousand euros per m2 (EC, 2014c). 

As already mentioned, the chlor–alkali process has hydrogen as second by-product, 

produced in a ratio of about 28 kg/tCl2. Hydrogen can be either used as a chemical 

reagent, for example in the production of NH3, methanol, H2O2 or hydrochloric acid or in 

hydrogenations and hydrosulphurisations, or as fuel for the production of steam and 

electricity, or it can be emitted in the atmosphere. The use of hydrogen is considered to 

be a BAT, with potential to reduce energy consumption, raw material consumption for the 

production of hydrogen and of course hydrogen emissions (EC, 2014c). From the 

hydrogen produced, approximately 12 % in 2012 and 2013 was not valorised as chemical 

reagent or fuel and was emitted to air (Euro Chlor 2014). This technique depends on the 

presence of a market for hydrogen close to the chlor-alkali plant and on the demand for 

chemicals or steam. References from a plant in Austria with chlorine capacity 70 kt/y 

mention fuel oil savings of approximately 500 t/y (EC, 2014c). Steam production from 

hydrogen, which can be used to generate electricity, requires considerable investments 

for boilers and turbines and it is typically seen as an unattractive investment for a 'non–

core' business with a limited quantity of hydrogen compared to what industrial gas 

companies are handling (EC, 2014c). Due to small savings achieved and the restrictions 

in applicability, this technique is not taken into consideration in this study. 

Except from the BATs described above, there are several more in the literature, for whom 

though not enough data are available for a complete economic and environmental 

evaluation, so they are not considered in the analysis. For these techniques, more 

information can be found in the BREF for the chlor-alkali industry (EC, 2014c). 
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5.9.4 Innovative technologies (ITs) 

Two emerging technologies have been identified concerning the chlor-alkali industry: 

Oxygen–depolarised cathodes  

This technology is a variant of membrane electrolysis, but differs in the fact that the 

conventional cathode is replaced by an oxygen depolarised cathode (ODC), in which 

added oxygen reacts with water in a 3-phase process, forming hydroxyl ions (Martelli & 

Federico, 2004). The reaction takes place at voltage roughly one volt lower than standard 

electrolysis process, which is the reason for reduced electrical consumption, at the range 

of 1 600-1 700 kWh/tCl2 (Woltering et al., 2013), which means savings more than 30% 

(Woltering et al., 2013; US Department of Energy, 2006). However, the overall reduction 

of energy consumption is lower, as some energy is required to produce pure oxygen and 

because the savings due to hydrogen cannot be claimed as there is no hydrogen co-

produced (EC, 2014c). If a modern membrane cell is converted to the ODC technology, 

energy savings are estimated to be 15 %, with the condition that hydrogen is produced 

via steam reforming (Bulan et al., 2009). Investment costs for converting a chlor-alkali 

plant with capacity 100 kt/y to the ODC technology would be EUR 0.7-1.0 million 2009 

(Moussallem et al., 2009). The viability of the technology depends on the price of 

electricity and oxygen and the lower the price of electricity, the more attractive the 

technology (Moussallem et al., 2009). 

Four-stage caustic evaporator in membrane cell plants 

This technology is aiming at improving the step of producing caustic soda in 50 % wt 

solution. In the membrane cell technology the NaOH solution produced is about 32 % wt 

and requires concentration. This innovative technology has been installed in an 

AkzoNobel plant in Germany and it is claimed to achieve 20 % energy savings 

(AkzoNobel, 2012). In general, the more stages a system has, the less heating steam is 

required, but due to increased investment costs, sometimes a three-stage evaporation 

plant is more economical than a four-stage one (Körting, 2014). There is no data 

concerning the economical assessment of this technology, and therefore it cannot be 

included in this study. 

 

5.10 Ethylene oxide and Ethylene glycol 

Ethylene oxide (EO – C2H4O) – oxirane according to IUPAC but also known as 

epoxyethane – is the simplest cyclic ether and a colourless gas (at temperatures above 

11oC) with a sweet smell. It is frequently used as an intermediate in the chemical 

industry, as it contains a strained epoxy (47) group that can be easily broken (Ullmann's 

Encyclopaedia, 2001). It is, though, also highly toxic and flammable and has been 

involved in a number of serious incidents (Ullmann's Encyclopaedia, 2001).  

Ethylene oxide can directly be used as a disinfectant, sterilising agent and as a fumigant 

when in non-explosive mixtures with N2, CO2 or diclorofluor methane. It is used also as 

an intermediate for the production of ethylene glycols, ethylo amines and glycol ethers. 

It was first produced by eliminating hydrochloric acid from ethylene chlorohydrin using 

potassium hydroxide solution, but direct catalytic oxidation of ethylene has replaced the 

first production route totally (Ullmann's Encyclopaedia, 2001).  

In 2000, the global capacity of ethylene oxide was around 15 000 kt (Ullmann's 

Encyclopaedia, 2001), while in 2011 it approximated 27 Mt (Business Wire, 2012). In 

2012, 25% of the global capacity was located in the Middle East, 16% in China and 12% 

in the United States (IHS, 2013d). In 2011, consumption reached 22.5 Mt (Business 

Wire, 2012), with the largest market being mono-, di- and tri-ethylene glycols, 

representing in 2012 more than 75 % of the total ethylene oxide consumption (IHS, 

                                           
(47) Epoxy groups contain a bond of –C–C– triangulated with oxygen. 
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2013d). The ethylene oxide market was projected to grow at an annual rate of 5.7 % 

between 2013 and 2018 (Global processing, 2013). 

Information concerning Europe is available by Petrochemicals Europe, but it covers only 

Western Europe (Petrochemicals, 2016) In 2013 ethylene oxide capacity was 2.9 Mt and 

has not changed since 2010, while production reached 2,6 Mt (Petrochemicals, 2016). In 

EU-28 there were 12 production sites, with total capacity 3.0 Mt/y as shown in Table 69 

(ICIS, 2012). 

Table 69. Ethylene oxide production sites in EU-28 in  

Country 
Number of plants Capacity (kt/y) 

Belgium 2 940 

Germany 4 1 070 

Spain 1 100 

France 1 220 

Netherlands 2 500 

Poland 1 115 

Sweden 1 100 

Total 12 3 045 

Ethylene glycols or dihydroxy alcohols, as mentioned earlier, are the main derivative of 

ethylene oxide. Monoethylene glycol (MEG – C2H6O2) – ethane-1,2-diol according to 

IUPAC – is the simplest diol and is usually referred to with the name of group (ethylene 

glycol) or just glycol. It is a clear, colourless, odourless liquid with a sweet taste and it is 

used in the production of polyester fibres and polyethylene teraphtalate (PET) or as 

antifreeze in automobile radiators (Ullmann's Encyclopaedia, 2000e). In 2013, 86 % of 

MEG produced globally was consumed in the production of PET, 7.5% as antifreeze and 

6.5 % in other uses (IHS, 2013e). Concerning world distribution of MEG consumption, 

75 % was in Asia, 10 % in North America and only 6 % in Western Europe (IHS, 2013e).  

Due to its relation with ethylene oxide, production plants of the two substances are 

located close to each other. It is estimated that about 60% of the total world production 

of ethylene oxide is converted to MEG (Ullmann's Encyclopaedia, 2000e). In 2010 MEG 

capacity was 25 Mt, with operating rates averaging about 77% (Chemweek, 2011). In 

2012 global capacity was estimated to be about 28 000 kt with global demand of 22 000 

kt (CPMA, 2012). Its annual growth by 2018 was projected at 6.1 % (Global processing, 

2013). 

In western Europe, capacities of MEG have been stable between 2010 and 2013 at 1227 

kt, while production has been growing from 926 kt in 2010 to 1 016 kt in 2013 

(Petrochemicals, 2016). In EU-28 in 2013 there were 9 plants producing ethylene glycol, 

with total capacity 1365 kt (Table 70) (ICIS, 2012).  

Table 70. Ethylene glycol production sites in EU-28 in 2013 

Country Number of plants Capacity (kt/y) 

Belgium 2 665 

Germany 2 300 

Spain 1 75 

France 1 25 

Netherlands 1 155 

Poland 1 110 

Sweden 1 10 

Total 9 1 340 
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5.10.1 Production processes 

Ethylene oxide used to be produced via a chlorohydrin route, but this method is totally 

out of use in industrial scale, due to its pollution problems. It is produced by direct 

oxidation of ethylene over a silver oxide catalyst, according to the following reaction 

(Ullmann's Encyclopaedia, 2001; EC, 2003a; IPCC, 2006b):  

C2H4 + ½ O2 → C2H4O    (reaction 44) 

Oxygen can be supplied either through air or as pure oxygen. The reaction is exothermic 

and is carried out at elevated temperatures (200-300oC) and pressure (15-25 bar) with 

residence times of one second. Although the reactor contains metallic silver, the actual 

catalyst is silver oxide that precipitates under the reaction conditions. Excess heat is 

recovered to produce steam for the process.   

Besides the production of ethylene oxide (partial oxidation), also complete oxidation (or 

combustion) of ethylene takes place: 

C2H4 + 3 O2 → 2 CO2 + 2 H2O   (reaction 45) 

This reaction is also highly exothermic. The ratio between the two reactions defines the 

selectivity of the EO process. Control of the temperature in the reactor is important to 

ensure that complete oxidation is minimised (US Department of Energy, 2000). As 

temperature increases reaction 45 is favoured and it produces about 15 times more 

energy than reaction 44 (enthalpy of partial oxidation -106.7 kJ/mol and enthalpy of 

complete oxidation -1 323 kJ/mol at 250 oC and 15 bar) (Ullmann's Encyclopaedia, 

2001). The selectivity to EO is 65-75 % in the case of air or 70-80 % in the case of 

oxygen, at an ethylene conversion of 8-10% (EC, 2003a). For ethylene conversion 7-

15%, the EO selectivity in the oxygen-based process reaches 80-90 % (Ullmann's 

Encyclopaedia, 2001). Selectivity decreases almost linearly with increasing ethylene 

conversion, thus the highest selectivities are achieved with minimum conversion 

(Ullmann's Encyclopaedia, 2001).  

The gases from the reactor are cooled and the ethylene oxide produced in dissolved in 

water together with small amounts of CO2, N2 and aldehydes (US Department of Energy, 

2000). EO is obtained from this mixture by distillation. The gases, on the other hand, are 

rich in ethylene, as the per-pass conversion to EO is low. As a result, recycling of these 

gases is essential to improve the yield and the economics of the process (US Department 

of Energy, 2000).  

In industrial scale monoethylene glycol (MEG) is produced only by hydrolysis of ethylene 

oxide, according to the following reaction (Ullmann's Encyclopaedia, 2000e; EC, 2003a; 

US Department of Energy, 2000): 

C2H4O + H2O → C2H6O2 (OH–C2H4–OH)  (reaction 46) 

The reaction is exothermic and takes place either without catalyst at temperature 200 oC, 

pressure 12.5 bar and with residence time of one hour, or with sulphuric acid as catalyst 

at temperature 50-70 οC and residence time of 30 minutes (Speight, 2002). The non-

catalytic process is preferred, as it needs no corrosion resistance and no acid separation 

step (US Department of Energy, 2000). 

Although the main product is MEG, also diethylene glycol (DEG) and triethylene glycol 

(TEG) or heavier glycols can be formed from consequent reactions of the lighter glycols, 

as the following reactions: 



114 

OH–C2H4–OH + C2H4O → OH–C2H4–O–C2H4–OH (DEG)  (reaction 47) 

DEG + C2H4O → OH–C2H4–O– C2H4–O–C2H4–OH (TEG)  (reaction 48) 

These reactions are inevitable, as EO reacts more readily with MEG than with water, but 

their production can be minimised if excess of water is used (Ullmann's Encyclopaedia, 

2000e). The yield of the process in MEG is usually more than 80 % with molar ratio 

EO:water higher than 1:10. Usually a 20-fold molar excess is employed. MEG is 

separated from water and the higher glycols by successive distillations with decreasing 

pressures. The glycols are separated by vacuum distillation.  

The modern ethylene oxide/ethylene glycols plants are highly integrated units, focusing 

either on producing one of the two products or both. Focusing on producing both high 

purity EO and MEG is usually adopted, as MEG, the most important product of EO, is 

safer to transfer than EO itself and this configuration provides efficient heat integration 

for the two processes. Although all the reactions are exothermic, the purification of MEG 

is highly energy consuming. 

5.10.2 Current consumption and emission levels 

As explained before, ethylene oxide is produced from the reaction of ethylene with 

oxygen and there are two processes, based on the way oxygen is provided: as pure 

oxygen or as air. Typical raw material consumptions of the EO production processes can 

be seen in Table 71: 

Table 71. Typical raw materials consumption for ethylene oxide production (EC, 2003a) 

Raw material Oxygen-based 

process 

Air-based process 

Selectivity (%) 75-85  70-80  

Ethylene (kg/tEO) 750-850  800-900  

Oxygen (kg/tEO) 750-1100  

Both ethylene and oxygen are required to be of high purity (Ullmann's Encyclopaedia, 

2001).  

For the production of monoethylene glycol, ethylene oxide reacts with water, as 

explained before. For molar ratio water:EO 20:1, MEG yield of 90 % can be assumed 

(Ullmann's Encyclopaedia, 2000e). Raw materials consumption calculated according to 

these assumptions is used in this study and is shown in Table 72. 

Table 72. Typical raw materials consumption for monoethylene glycol production 

Raw material MEG production 

Ethylene oxide (kg/tMEG) 789  

Water (kg/tMEG) 322 

The integrated EO/MEG process is both producing and consuming energy. As explained in 

the previous paragraph, production of ethylene oxide is typically a net energy producer 

and production of monoethylene glycol is typically a net energy consumer, due to the 

distillation part (EC, 2003a). The energy produced in the first section of the process 

depends on selectivity (the ratio between partial and total oxidation), which is highly 

dependent itself on the type and age of the catalyst.  

The total performance of the plant depends on the relative sizes of the EO and MEG 

sections (EC, 2003a). As a result, different performances are reported from different 

plants. In the present study, the energy consumptions estimated by (IEA, 2009b) are 

used (Table 73). 
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Table 73. Energy consumption for producing ethylene oxide and monoethylene glycol 

(IEA, 2009b) 

Consumption 
Ethylene oxide 

production 

Monoethylene glycol 

production 

Electricity (kWh/t) 333.3 83.3 

Thermal (GJ/t) 3.1 1.1 

Steam (GJ/t)  8 

Primary emissions from the formation of ethylene oxide by direct oxidation are ethylene, 

ethylene oxide, carbon dioxide and ethane. The default emission factors suggested in the 

literature (Table 74) depend on the catalyst selectivity and derive by using stoichiometric 

principles and are based on the assumption that all carbon contained in the ethylene 

feedstock is converted either into ethylene oxide or to CO2 emissions (IPCC, 2006b).  

Table 74. Default emission factors for the production of ethylene oxide (IPCC, 2006b; 

EC, 2003a) 

 Oxygen-based 

process 

Air-based process 

Selectivity (%) 75 80 85 70 75 80 

Ethylene consumption (t/tEO) 0.85 0.80 0.75 0.90 0.85 0.80 

CO2 emission factor (tCO2.eq/tEO) 0.663 0.5 0.35 0.863 0.663 0.5 

CH4 emission factor (kgCH4/tEO) 
1.79 (without thermal treatment) 

0.79 (with thermal treatment) 

Small amounts of CH4 might also be present in the emissions (EC, 2003a). The default 

emission factors are also shown in Table 74. In many cases, the gaseous effluent stream 

is flared, oxidised (thermally or catalytically) or sent to a boiler or a power plant, thus 

decreasing final emissions. 

Table 75 includes the detailed emission factors used in this study. In Europe only the first 

generation of EO plants used air-based processes and since then most of them have been 

converted to oxygen-based process (EC, 2003a). In 2013, only direct oxidation using 

oxygen is used in the EU (EC, 2014d). Thus only the case of oxygen-based production 

will be considered. According to the information in Table 71, the average selectivity in the 

case of the oxygen-based process is 80% and the average ethylene consumption 

800 kg/tEO, thus the emission factor used in this study is 0.55 tCO2.eq/tEO, taking in 

consideration also methane emissions. Information concerning MEG production emissions 

refer to particular plants in the Netherlands and only ethylene and acetaldehyde are 

identified (EC, 2003a). Since no general conclusion can be reached, in this study we 

assume the same emission factor as in the ethylene oxide production, as in general 

plants are integrated. The conversion to emissions per tonne of MEG is done according to 

the stoichiometry of reaction, considering yield 90 %, as explained before.  

Table 75. Emission factors in the case of ethylene oxide production and monoethylene 

glycol production 

Emissions 
Ethylene oxide production Monoethylene glycol production 

Value (tCO2.eq/tEO) Value (tCO2.eq/tMEG) 

Electricity use 0.16 0.04 

Thermal production 0.17 0.06 

Steam production  0.58 

Direct Process 0.55 0.43 

Total 0.88 1.11 
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Ethylene oxide is a benchmarked product, with value 0.512 allowance/t (EC, 2011b). The 

benchmark covers besides EO, also mono-, di- and tri-ethylene glycols. The system 

boundaries of benchmarking include all steps of the process, as well as the emissions 

related to the production of the electricity consumed. The specific emissions per plant, 

calculated according to the literature vales explained in this paragraph, are calibrated 

according to the benchmarking curve. 

5.10.3 Best available techniques (BATs) 

This paragraph includes the techniques considered generally to have potential of 

improving the environmental performance or the energy efficiency of the industry (Table 

76). According to the BREF still in force (EC, 2003a), BAT for ethylene oxide (EO) 

production is direct oxidation of ethylene by pure oxygen and BAT for monoethylene 

glycol (MEG) production is the hydrolysis reaction of ethylene oxide. 

Table 76. Overview of the possible BATs and ITs in the ethylene oxide/ethylene glycols 

industry 

BAT Description 
Investment cost 

(EUR) 

Energy savings (%) GHG Reduction 

(%) 

BAT OMEGA 

process 
134 626 790 1 -10 % electric, 20 % 

steam & 19 % feedstock 
None 

BAT METEOR 

process 
No information available 

1 Reference capacity 600 ktMEG/y 

There are several licenses for EO production by companies including Shell, Scientific 

Design and Japan Catalytic (Ullmann's Encyclopaedia, 2001). Scientific Design, Union 

Carbide, Japan Catalytic and Chemische Werke Hüls have developed air-based processes, 

while Shell and later Scientific Design developed oxygen-based processes (Zomerdijk & 

Hall, 1981).   

Shell offers two version of its process: the Shell MASTER process and the Shell OMEGA 

process (Shell, 2015). The former is based on a high-selectivity EO catalyst and thermal 

conversion of EO to ethylene glycols, while the latter also on a catalyst but an only-MEG 

producing technology. Although MASTER process is a traditional process, OMEGA process 

is more innovative. It is designed to use the CO2 produced during the EO reaction, so as 

to convert EO into ethylene carbonate ((CH2O)2CO), which is then treated with water to 

produce MEG, without the presence of higher glycols (Chemicals technology, 2015). EO is 

produced by the conventional Shell technology, using a proprietary silver-based catalyst. 

This process is expected to have selectivity 90 % with ethylene conversion 10-15 %, 

while the yield of MEG is as high as 99 % (IHS, 2009). Ethylene consumption is 

estimated to be 0.51 t/tMEG (Chemicals technology, 2015), compared to 0.63 t/tMEG of the 

conventional method (48). Capital investment is estimated to be 15 % less than for the 

conventional process for a 400 kt MEG plant (IHS, 2009) and in 2004 it was estimated to 

be at USD 120-160 million for a 600 kt/y MEG plant (Shell, 2015), corresponding to 

134.6 million EUR2013. The process consumes 20% less steam than the conventional 

thermal conversion (Chemical Processing, 2009), but 10 % more electricity compared to 

the standard process (Chemsystems, 2009a). This process is fully commercialised with a 

400 kt/y plant in Korea, a 600 kt/y plant in Saudi Arabia and a 750 kt/y plant in 

Singapore (Chemical Processing, 2009). 

Dow also owns a newly commercialised technology, the METEOR process, which includes 

a single EO reactor combined with Ag-based catalysts with high selectivity, high activity 

and long life, thus reducing capital investments compared to the multiple reactors 

configuration (Dow, 2015). Savings are estimated to be about 11 % for a 400 kt 

ethylene glycols plant (IHS, 2009). They claim higher production of oxide/glycol per 

                                           
(48) The calculation is based on the information of Table 71 and Table 72. 



117 

tonne of feedstock (Aker, 2008). EO selectivity is 89% with ethylene conversions of 8-

13%, while overall MEG yield in the ethylene glycols product is 90-93 % (IHS, 2009). 

Due to limited information concerning its energy or GHG savings, this process is not 

taken into consideration.  

5.10.4 Innovative technologies (ITs) 

There are a few innovative technologies concerning these two products. Alternative 

routes from ethylene to ethylene oxide can be found in the literature (Ullmann's 

Encyclopaedia, 2001), such as electrochemical oxidation (Stoukides and Vayenas, 1981; 

Cooker & Cochran, 1996), thallium(III) catalysed oxidation in solution (Diamond et al., 

1982) and enzymatic oxidation (van Ginkel et al., 1986). But these routes have not 

evolved closer to industrial application and the information concerning their performances 

is restricted. 

 

5.11 Ethylene dichloride and Vinyl chloride monomer 

Ethylene dichloride (EDC - C2H4Cl2) – 1,2–dichloroethane according to IUPAC – is an 

important ethylene derivative. It is a clear, colourless oily liquid with a sweet pleasant 

chloroform-like odour and a highly volatile, toxic and flammable chemical (Ullmann's 

Encyclopaedia, 2011c). EDC is mainly used in the production of vinyl chloride monomer 

(VCM), nearly all of which goes into polyvinyl chloride (PVC) (EC, 2003a; IHS, 2015g). 

Small quantities of EDC are also used in the production of solvents such as 

trichloroethylene, ethylene amines and thrichloroethane, or in the production of 

tetrachloroethylene (ICIS, 2007). In addition to these uses, it has also been used as a 

solvent in the textile, metal cleaning and adhesive industries (EPA, 2013).  

Global EDC capacity in 2009 was 42.6 Mt (Business Wire, 2010a). 40.8 % of global 

capacity was in North America, while Europe followed with a share of 24.8 % (Business 

Wire, 2010a). Asia, Middle East and the rest of America had 22.9 %, 7 % and 4.4 % 

respectively (Business Wire, 2010a)..Since 2010 the world EDC production has followed a 

rising trend, reaching in 2011 almost 46.2 Mt (Dow, 2013a). In 2013, North America 

accounted for almost 37.9 % of the overall production, followed by Europe with 28.7 % 

and Asia – Pacific with 20.3 % (Merchant Research, 2014). Belgium, Germany, France, 

China and USA are the five countries producing about 65.1 % of the world EDC 

production in 2013 (Merchant Research, 2014). 

Most EDC plants are integrated upstream to chlor-alkali units and downstream to VCM 

plants. About 95 % of EDC produced in the EU is used to manufacture VCM (Ecofys, 

2009). Vinyl chloride (C2H3Cl) – chloroethane according to IUPAC – is a colourless gas 

with characteristic mild, sweet odour. It is a toxic and hazardous material and is 

characterised as human carcinogen (Ullmann's Encyclopaedia, 2011c). As mentioned 

already, almost all of VCM is used in the production of PVC, but small quantities are also 

used in chlorinated solvents manufacture (EC, 2003a).  

Global VCM capacity in 2009 was 40.0 Mt (Business Wire, 2010b). ). 45.1 % of global 

capacity was in Asia-Pacific, while Europe followed with a share of 25.8 % (Business 

Wire, 2010b).  North America, Middle East and the rest of America had 20.0 %, 5.2 % 

and 3.9 % respectively (Business Wire, 2010b). In 2010 it increased to about 47 Mt 

(Dow, 2013b). VCM consumption is projected to grow at an average rate of 3.7 % till 

2020 (IHS, 2015h). 

In 2013, in EU-28 there were 47 production lines producing ethylene dichloride with total 

capacity 11.9 Mt and 23 plants producing vinyl chloride with total capacity 6 810 kt 

(Table 77) (ICIS, 2012, EC, 2014d). In the case of ethylene chloride production lines are 

reported because there are two processes and if both are applied in the same location, 

each one is counted separately. 
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Table 77. Ethylene dichloride and vinyl chloride plants in EU-28 in 2013  

 
Ethylene Dichloride Vinyl chloride 

Country Number of 

production lines 

Capacity 

(kt/y) 

Number of 

plants 

Capacity 

(kt/y) 

Belgium 5 1 980 2 1 050 

Czech Republic 2 300 1 150 

Germany 15 3 599 7 2 070 

Spain 3 680 2 470 

France 7 1 845 4 1 200 

Italy 1 180   

Hungary 3 640 1 400 

Netherlands 2 965 1 620 

Poland 2 520 1 300 

Slovakia 2 85 2 100 

Sweden 3 365 1 150 

United Kingdom 2 700 1 300 

Total 47 11 859 23 6 810 

 

5.11.1 Production processes 

Worldwide almost all ethylene dichloride (EDC) is produced from ethylene either by direct 

chlorination or by oxychlorination, or combination of the two processes (IPCC, 2006b).  

Direct chlorination is the classic method, where chlorine is added to the double bond of 

ethylene, according to the following reaction: 

CH2=CH2 + Cl2 → (CH2Cl)2  (reaction 49) 

The reaction can give several mixed derivatives, such as di-, tri or tetra-chloroethylene 

and chloromethanes. Usually, though, the final product consists of more than 99 % EDC 

and less than 1 % other chlorinated hydrocarbons (EC, 2003a).  

The reaction is catalysed by metal chlorides, usually ferric chloride, and it is exothermic 

(EC, 2003a). It takes place in temperatures 50-120oC and pressure 1-5 bar. Based on 

the EDC boiling point (~85oC) and the temperature the reaction is carried out, there are 

two variants: low temperature chlorination at temperatures below the boiling point and 

high temperature chlorination at temperatures over the boiling point. In the first case the 

EDC produced is in liquid phase and is washed to eliminate the catalyst, thus requiring in 

further steps drying and distillation. The advantage of this variant is that there are 

slightly less by-products and it has low requirements in materials, but is high in energy 

consumption. In the second case, the EDC produced is in the gas-phase and can be sent 

to thermal cracking directly. The vapour is hot and as a result energy can be recovered 

(EC, 2003a).   

Oxychlorination of ethylene involves hydrogen chloride and oxygen and EDC is produced 

according to the following reaction: 

2 CH2=CH2 + 4 HCl + O2 → (CH2Cl)2 + H2O   (reaction 50) 

Catalysts for this reaction are cupric chloride (CuCl2), potassium chloride (KCl) and 

alumina (Al2O3) or silica (SiO2). The range of temperature and pressure is 220-250 oC 
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and 2-6 bar, respectively (EC, 2003a). The reaction is highly exothermic and 

temperature control is required in order to avoid undesirable by-products.  

Oxygen can be provided either as pure oxygen or as ambient air, or as a mixture of both. 

Air systems require air and ethylene in slight excess of stoichiometric quantities to 

ensure high conversion of HCl, but this also increases the formation of by-products (EC, 

2003a). On the other hand, in oxygen systems ethylene needs to be in larger excess and 

the operation can be in lower temperatures. This leads to higher EDC yields and reduced 

by-products and vented gases volumes. However, pure oxygen needs energy to be 

produced from air.  

VCM is produced by thermal cracking of dry, pure EDC, according to the following 

reaction: 

(CH2Cl)2 → CH2CHCl + HCl  (reaction 51) 

EDC is heated to temperatures approximately 500 oC and then splits to VCM and HCl with 

conversion rates of 50-65 % (EC, 2003a). Unconverted EDC is recycling to the cracking 

furnace, as a result almost total conversion is assumed. It is essential if EDC is highly 

pure (more than 99.5 %wt), so as to reduce coke and fouling of the reactor, and dry, so 

as to avoid corrosive reactions with HCl. The pyrolysis gases require fast cooling, 

otherwise tars and heavy by-products may be produced (EC, 2003a).  

Combination of direct chlorination for EDC production with cracking to produce VCM 

produces a surplus of hydrogen chloride. Oxychlorination, on the other hand, provides a 

sink for HCl. It is therefore, common, in the industry to combine both direct chlorination 

and oxychlorination. This is called "balanced" process (IPCC, 2006b) and is applied in 

approximately 90 % of the plants worldwide (EC, 2014d).  

Since direct chlorination and oxychlorination are both highly exothermic, while EDC 

cracking is endothermic, process integration provides opportunities for energy recovery 

and re-use (EC, 2003a). Heat can be recovered from the furnace combustion gases, the 

gas leaving the cracking furnace and the gaseous vents of the oxidisers. In addition, 

steam can be generated at the oxychlorination reactor or in the case of high temperature 

chlorination; the low level heat of the reaction can be used in the vaporisation or 

distillation of EDC. 

5.11.2 Current consumption and emission levels 

As mentioned before, the most common configuration of EDC/VCM plants is the balanced 

process (EC, 2014d). In this case, the raw materials needed are ethylene, chlorine and 

oxygen (or air).  

Typical yields on ethylene for direct chlorination are 96-98%, for oxychlorination 93-

97 % (EC, 2003a), while in the balanced process selectivities are in the range of 93-

96 %. On chlorine the yields reported are 98% for direct chlorination and 96-99 % for 

oxychlorination (EC, 2003a). In order to calculate the raw materials needed according to 

stoichiometry, in the case of integrated plants we assume an average yield of 95 % on 

ethylene and 98% on chlorine. As a result and according to reactions 49 and 50, in the 

case of direct chlorination one tonne EDC requires 0.29 t ethylene and 0.73 t chlorine, 

while in the case of oxychlorination one tonne EDC requires 0.30 t ethylene, 0.73 t 

chlorine and 0.16 t oxygen. These consumptions can be transformed per tonne of VCM by 

taking into consideration the difference in molecular weights (49) if conversion is assumed 

to be 100 % and correspond to 0.46 t/tVCM for ethylene.  
  

                                           
(49) Molecular weights: EDC = 98.96 g/mol and VCM = 62.50 g/mol  
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Table 78. Typical raw materials and energy consumption in integrated vinyl chloride 

monomer production 

Raw material 
Value (t/tVCM) Source 

Ethylene  0.46 

(EC, 2014d; ThyssenKrupp, 2012) Chlorine 0.58 

Oxygen 0.13 

Energy Value  

Steam  
0.25 t/t (ThyssenKrupp, 2012) 

0.3-1.7 GJ/t (EC, 2014d) 

Fuel gas 
2.7 GJ/t (ThyssenKrupp, 2012) 

3.4-4.2 GJ/t (EC, 2014d) 

Electricity 0.11-0.21 MWh/t (EC, 2014d) 

These calculations are in accordance with the consumptions reported by the industry 

(Table 78). Chlorine and oxygen consumptions are lower in the case of the balanced 

process thanks to recirculation of HCl. The values used in this study for raw materials are 

summarised in Table 79. 

Table 79. Raw materials consumptions used in the present study for ethylene dichloride 

and vinyl chloride monomer production 

Feedstock Process Value 

Ethylene Direct chlorination  0.30 t/tEDC 

Oxychlorination 0.29 t/tEDC 

Chlorine Direct chlorination/ Oxychlorination 0.73 t/tEDC 

Oxygen Oxychlorination 0.16 t/tEDC 

EDC EDC cracking 1.6 t/tVCM 

EDC is rather an intermediate used to manufacture VCM and other products. Activity data 

for the production of EDC may not be complete, as it could be directly converted to VCM. 

It may be that the VCM production activity data is more complete (IPCC, 2006b). This is 

the case for energy consumptions; all references are reporting the values for the final 

product, which is VCM (ThyssenKrupp, 2012; EC, 2003a; EC, 2014d). According to (EC, 

2003a) typical values are 0.2 t/tVCM steam, 1 MWh/tVCM natural gas and 0.2 MWh/tVCM 

electricity, while according to (EC, 2014d) steam consumption ranges between 0.3 and 

1.7 GJ/tVCM, thermal energy 3.4-4.2 GJ/tVCM and electricity 0.11-0.21 MWh/tVCM.  

One way of handling this issue is to treat EDC/VCM as a single entity. But regarding VCM 

data as a surrogate for EDC data also has issues related to completeness, because not all 

of EDC is used to produce VCM (IPCC, 2006b). In such a case, adjustment is needed. 

EDC utilisation for products other than VCM amounts to about 5 % of total EDC 

production, according to data from North America and Europe (IPCC, 2006b; Ecofys, 

2009).  

Table 80 shows the values of energy consumptions for both EDC and VCM according to 

(IEA, 2009b). By comparing the values for VCM production in this table with the values 

according to (EC, 2014d), it can be seen that they are in accordance, but these values 

are rather at the lower edge of the ranges in (EC, 2014d). Since there is limited 

information for the non-integrated process, it is assumed that the values of Table 80 do 

not include EDC production and they will be used for this study.  
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Table 80. Energy consumptions for ethylene dichloride and vinyl chloride monomer 

production (IEA, 2009b) 

Product Electricity Thermal  Steam 

Ethylene dichloride 83.3 kWh/tEDC 5.3 GJ/tEDC  

Vinyl chloride monomer 194.4 kWh/tVCM 3.6 GJ/tVCM 0.5 GJ/tVCM 

Concerning emissions, most concern arises from VCM, which is a carcinogen. They may 

occur as fugitive emissions and losses (EC, 2003a). Most of emissions in air are volatile 

organic carbon compounds. As a result, the emission factors that are used in this study 

(Table 81) are based on the energy consumed for the processes. They are calculated by 

combining the information in Table 80 with the emission factors in Table 6.   

Table 81. Emission factors for ethylene dichloride and vinyl chloride production 

Emissions 
Process 

Ethylene dichloride Vinyl chloride monomer 

Steam  0.036 tCO2/t 

Electricity 0.04 tCO2/t 0.09 tCO2/t 

Thermal 0.3 tCO2/t 0.2 tCO2/t 

Total 0.34 tCO2/t 0.33 tCO2/t 

The specific emissions that are calculated according to the emission factors of Table 81 

are calibrated with benchmarking curve for VCM to reflect actual emissions from the 

industry. 

5.11.3 Best available techniques (BATs) 

This paragraph includes the techniques considered generally to have potential of 

improving the environmental performance or the energy efficiency of the industry. 

Table 82. Overview of the possible BATs and ITs in the ethylene dichloride/vinyl chloride 

monomer industry 

BAT/IT Description 
Investment cost 

(EUR) 

Energy savings 

(%) 

GHG Reduction 

(%) 

BAT Process optimisation Considered as standard technology 

BAT Heat transfer Considered as standard technology 

BAT Pigging system 101 568 19% electricity   

BAT Cogeneration General reference in 4.5.1 

IT Ethane-based VCM Not considered in the study 

IT  Avoid oxychlorination No information available 

Process optimisation concerning the chlorination process (direct and oxy-) can lead to 

lower emissions (EC, 2014d). Optimisation may include techniques such as by-products 

minimisation. In direct chlorination, a slight excess of chlorine or ethylene is ensuring 

complete ethylene conversion, and in the case of pyrolysis, by-products can be avoided 

by using additives, controlling the EDC feed purity or rapid cooling of the products. The 

use of catalysts in direct or oxychlorination also increases the selectivity (EC, 2003a). 

This technique is too general and depends on each plant. As a result the benefits of it are 

difficult to quantify and therefore it cannot be taken into consideration for the study. In 

any case it is rather improbable that the industry is not already applied most of these 

techniques, since average yields on ethylene are 98%.  

Both direct and oxy-chlorination are exothermic reactions. The removed heat of reaction 

can be used to produce low pressure steam for preheating purposes or other internal 

usage. On the other hand, heat recovered from the process gas leaving the cracking 

furnace can be used to vaporise the EDC feed to the furnace or to generate steam. As in 
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the previous case, this technology is considered to be applied to all plants and therefore 

it is not included in the study. 

Pigging technology is considered to be a cleaning technique. It involves pushing the 

contents of a pipe by a close fitting plug, named pig, almost completely out of the pipe 

(EC, 2007d). It leads to reduced loss of valuable product and lower load in rinsing 

waters. It has no cross media effects and it is generally applicable in long pipelines, 

multiproduct plants and batch operations (EC, 2007d). In the case of 100 m pipeline with 

diameter 3 in, the total investment costs of a pigging system was estimated to be about 

EUR 105 000 2003 for a 10 year service life (EC, 2007d). There is no information available 

about the savings in energy efficiency, especially in the case of EDC/VCM plants, but a 

19 % electric reduction is assumed, according to expert judgement (OPT Sensor, 2012).  

As is the case in most of the chemical industry, the use of cogeneration systems is 

considered as a best technique also in the case of EDC/VCM plants, especially with the 

potential of these plants. The applicability of CHP does not depend on the type of fuel 

used and the data concerning the presence of CHP in the European EDC/VCM industry 

are based on the databases available (ESAP, 2012). 

5.11.4 Innovative technologies (ITs) 

Two emerging technologies have been identified concerning the ECD/VCM industry: 

Ethane-based production processes  

There has been interest to directly convert ethane to vinyl chloride monomer.  The 

conversion can be performed by various routes (Ullmann's Encyclopaedia, 2006): 

C2H6 + 2 Cl2 → CH2CHCl + 3 HCl    (reaction 52) 

C2H6 + HCl + O2 → CH2CHCl + 2 H2O   (reaction 53) 

2 C2H6 + 1.5 O2 + Cl2 → 2 CH2CHCl + 3 H2O   (reaction 54) 

The driver of this innovative technology is economics, as it would eliminate ethylene 

crackers and EDC production from the PVC chain. Several attempts have failed during 

scale-up for various reasons, such as poor conversions, catalyst instability and corrosion 

caused by high reaction temperatures (Chemical Online, 1999).  

EVC International NV had patented a process and in a junction with Bechtel Group Inc. 

started in May 1998 a 1000 t/y pilot plant at Wilhelmshaven, Germany (Chemical Online, 

1999), while they were planning the first industrial plant for 2005 (EC, 2003a). This 

process operated at less than 500 oC, which is a relatively low temperature, meaning 

reduced corrosion and extended catalyst life. Conversions are reported to be 100 % on 

chlorine, 99 % on oxygen and more than 90 % on ethane (Chemical Online, 1999). It 

also reported 30 % reduction of energy consumption and recycling of the chlorinated by-

products (EC, 2003a).  

Nevertheless, there is no information for further information about the building of the 

industrial plant and it seems that this experimental technology has not been developed 

further. As a result there can be no assumption about its deployment and therefore it is 

not considered in the study. 

Alternatives to avoid oxychlorination 

The motive behind these alternatives is to avoid the oxychlorination step which generates 

most by-products, by converting HCl to Cl2 (EC, 2014d). This is done via the classical 

Deacon reaction: 
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2 HCl + 0.5 O2 → Cl2 + H2O   (reaction 55) 

This technique results in lower waste generation and lower emissions from incineration, 

but it is not considered to be safer than oxychlorination, as Cl2 has to be manipulated in 

high pressures (EC, 2014d). In addition, replacing oxychlorination with direct chlorination 

will decrease the energy that can be recovered, as the former is more exothermic than 

the latter. Investment costs are expected to be quite high, as very costly construction 

materials are needed because of the high risks of HCl (EC, 2014d). 

 

5.12 PVC 

Polyvinyl chloride (PVC) is a polymer prepared from vinyl chloride monomer (VCM). Its 

molecular formula is (CH2CHCl)n, where n=700-1 500 (Ullmann's Encyclopaedia, 2014). 

It is relative inexpensive and is the most versatile of all thermoplastics because it can be 

used in such a wide range of applications (Ullmann's Encyclopaedia, 2014; IHS, 2014i). It 

is the third highest volume polymer, slightly behind polyethylene and polypropylene (EC, 

2007d).  

PVC comes in two main sizes that depend on the production process used. If suspension 

and mass polymerisation is used particles of 100-180 μm in diameter are produced (S-

PVC), while by emulsion a latex (50) of particle size 0.1-3.0 μm is derived (E-PVC) 

(Ullmann's encyclopaedia, 2014).  It can be converted into either rigid products to give 

pipes, conduit, sheet and window profiles, or flexible formulations for flexible sheet, 

flooring, cable coverings, hoses etc. in 2013, rigid applications accounted for 63 % of 

total production (IHS, 2014i). It has been used as a replacement for materials such as 

wood and metals, an application that has been increasing in later years.  

In 2012, world installed capacity for PVC was 53.4 Mt and production 37.5 Mt (Ullmann's 

Encyclopaedia, 2014). Europe accounted for 15.4 % of the installed capacity, North 

America for 15.1% and China 43.9%. Europe produced 6.6 Mt PVC and consumed 6.2 

Mt, owing almost 18% of global exports, while China produced 13.1 Mt and consumed 

13.9 Mt, importing 16.6 % of global exports (Ullmann's Encyclopaedia, 2014). In 2012, 

the European Union had capacity, production and consumption 7.3 Mt, 5.8 Mt and 4.8 Mt 

respectively, while its operational rate was 80 % (Ullmann's Encyclopaedia, 2014).   

  

                                           
(50) PVC lattices are colloidal dispersions of spherical particles [Ullmann's Encyclopaedia, 2014] 
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Table 83. PVC plants in the EU-28 in 2013 

 
S-PVC E-PVC 

Country Number of plants Capacity 

(kt/y) 

Number of plants Capacity 

(kt/y) 

Belgium 2 445 1 30 

Czech Republic 1 135   

Germany 10 1 620 8 470 

Spain 3 490 1 42 

France 6 1 410 1 80 

Italy 1 180   

Hungary 1 400   

Netherlands 2 675   

Poland 2 340   

Portugal 2 200 1 15 

Romania 2 305   

Slovakia 1 40 1 50 

Sweden 1 150 1 82 

United Kingdom 3 340 1 45 

Total 37 6 550 15 814 

 

5.12.1 Production processes 

There are three different processes for manufacturing PVC: 

● Suspension polymerisation 

● Emulsion polymerisation 

● Bulk or mass polymerisation  

In the suspension polymerisation process liquid VCM is dispersed in water by vigorous 

stirring, resulting in droplets, inside which polymerisation takes place (Ullmann's 

Encyclopaedia, 2014; EC, 2007d). The reaction requires the presence of an initiator, such 

as per esters, per carbonates or peroxides, and a suspension agent, usually partially 

hydrolysed polyvinyl acetates. In order to achieve optimum morphology, also additives 

are also employed, such as oxygen, buffers, granulating agents and others. Besides 

these, the quality of S-PVC is determined from the level of agitation and homogenisation, 

the charging procedure and timing of each additive addition (Ullmann's Encyclopaedia, 

2014).  

In 2013, in EU-28 there were 52 facilities producing PVC with total capacity 7.4 Mt (Table 

83) (ICIS, 2012, EC, 2007d). As mentioned before there are two types of PVC based on 

the production process and the table distinguishes between the two cases. 

In emulsion processes, polymerisation of the monomer takes place in an aqueous 

medium that contains surfactant and an initiator. The product (E-PVC) is in the form of 

aqueous latex, which is then spray dried and milled to fine powder (agglomerates of the 

latex particles) (Ullmann's Encyclopaedia, 2014). There are three polymerisations 

processes that are used in order to produce different size distributions: batch emulsion, 

continuous emulsion and micro-suspension (EC, 2007d). The particles size will determine 

the rheology profiles of the final product. Balch emulsion produces narrow width 

unimodal latex of a small size, while by continuous emulsion lattices with a wide particle 

size distribution are produced. Wide particle size corresponds to low plastisol viscosities 

(EC, 2007d). Micro-suspension produces latex with a wide particle size distribution too, 
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but requires lower quantities of emulsifier, which makes the product more suitable for 

food applications (EC, 2007d).  

Mass or bulk polymerisation is practically identical to the suspension polymerisation, 

differing only in the mechanical operation of the process (Ullmann's Encyclopaedia, 

2014). For this reason, in this study, it is considered as one with suspension 

polymerisation. 

More information and detailed descriptions of the production processes can be found in 

the literature (Ullmann's Encyclopaedia, 2014; EC, 2007d). 

5.12.2 Current consumption and emission levels 

The main raw material for the production of PVC is vinyl chloride monomer (VCM), which 

is polymerised in an aqueous medium. Polymerisation is a strongly exothermic reaction (-

1 540 KJ/kg) and removal of heat is needed in order to control it (Ullmann's 

Encyclopaedia, 2014; EC, 2007d). Conversions achieved are at the range of 85-95% (EC, 

2007d). As conversion increases beyond 85%, the reaction rate is decreased due to 

monomer starvation (Ullmann's Encyclopaedia, 2014).  

Besides VCM, also water and additives are also needed for the reaction to take place. In 

a basic recipe for suspension polymerisation, the ratio between VCM and water is usually 

1 to 0.9-1.3 (Ullmann's Encyclopaedia, 2014). In the case of emulsion, this ratio is 

slightly higher (1 to 1.1-1.4) (Ullmann's Encyclopaedia, 2014). For stabilisation of the 

dispersion surfactants, emulsifiers and colloids are used, typically in quantities of 1 kg/t 

in suspension and 10 kg/t in emulsion (EC, 2007d). All the chemicals needed for the 

reaction of polymerisation are summarised in Table 84. 

 

Table 84. Raw materials, chemicals and energy consumed in PVC production (Ullmann's 

Encyclopaedia, 2014; EC, 2007d) 

Feedstock Suspension Emulsion 

VCM 1.1 t/tPVC 

Water 0.9-1.3 t/tVCM 1.1-1.4 t/tVCM 

Surfactants, emulsifiers etc. 1 kg/tVCM 10 kg/tVCM 

Initiator > 1 kg/tVCM 

Chemicals to stop the reaction > 1 kg/tVCM 

Energy   

Thermal energy 2-3 GJ/tPVC 6-9 GJ/tPVC 

Electricity 194-305 kWh/tPVC 389-611 kWh/tPVC 

Production of PVC requires energy in the form of steam for heating or stripping and 

electricity for refrigeration units, pumps and compressors. Typical energy consumptions 

are included in Table 84.  

Pollution from PVC production includes VCM emissions, PVC dust, VCM in water and 

hazardous waste (EC, 2007d). The European PVC industry (EU-28. Norway and 

Switzerland) has made important efforts towards sustainability. In 1995 the European 

Council of Vinyl Manufacturers (ECVM) issued an industry charter, according to which the 

signatories were obliged to reduce their environmental impact (PVCplus, 2012). In 2001 

the four major European associations concerning PVC (manufacturers of PVC, PVC 

plasticisers and PVC stabilisers and plastics converters) signed a sustainable development 

commitment entitled "Vinyl 2010". According to the final report in 2010, between 2000 

and 2010 there had been impressive progress in waste management, recycling 

technologies, stakeholder engagement and handling of additives (PVCplus, 2012).  

Since 2011, a new initiative has been launched, named "VinylPlus". The main goals are to 

recycle 800 kt/y of PVC by 2020, to develop innovative recycling technologies, especially 

addressing concerns about organochlorine emissions, to use sustainably additives, to 
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increase energy efficiency and to promote sustainability through the entire PVC value 

chain (PVCplus, 2012; Vinylplus, 2016).  

The boundaries of this study include only GHG emissions. As a result, the only emissions 

considered are those one due to electricity and thermal energy generation. As thermal 

energy is mainly in the form of steam, the emissions are calculated by using the steam 

emission factor and not by assuming natural gas. The values used are shown in Table 85. 

Table 85. Emission factors for PVC production 

Polymerisation Electricity Thermal  Steam Total 

Suspension 0.12 tCO2/tPVC  0.18 tCO2/tPVC 0.30 tCO2/tPVC 

Emulsion 0.23 tCO2/tPVC  0.54 tCO2/tPVC 0.77 tCO2/tPVC 

Both PVC products are benchmarked products, with values 0.085 allowances/t for PVC-S 

and 0.238 allowances/t for PVC-E. The system boundaries of the benchmarking include 

all steps of the process, but exclude emissions related to the production of the consumed 

electricity.  

5.12.3 Best available techniques (BATs) 

This paragraph includes the techniques considered generally to have the potential of 

improving the environmental performance or the energy efficiency of the PVC industry 

(Table 86). 

 

Table 86. Overview of the possible BATs and ITs in the PVC industry 

BAT/IT Description 
Investment cost 

(EUR) 

Energy savings 

(%) 

GHG Reduction 

(%) 

BAT Heat recovery Not enough information available 

BAT Pigging system 101 568 19 % electricity   

BAT Cogeneration General reference in 4.5.1. 

BAT Emissions prevention 

measures 
Outside the scope of this study 

IT Recycling 

technologies 
Recycling is considered separately 

As mentioned before, polymerisation is a strongly exothermic reaction. Heat needs to be 

removed to control the reaction and it can be used to generate low pressure steam for 

preheating purposes or other internal use. This practise results in reductions of energy 

consumptions. It is mainly applied in integrated sites where the produced steam can be 

sold to available customers (EC, 2007d). The technique requires the use of heat 

exchangers. There are several correlations for estimating investment costs of heat 

exchangers in the literature (Slavkovic et al., 2014), but usually they are a function of 

the heat transfer surface. As there is no information about the savings achieved 

concerning the PVC industry in particular and there are no generic data about the heat 

exchangers needed, neither investment costs, nor environmental benefits can be 

calculated.  

Pigging technology is considered to be a cleaning technique. It has already been 

explained in 5.11.3 and it involves pushing the contents of a pipe by a close fitting plug, 

named pig, almost completely out of the pipe (EC, 2007d). The same values are used 

also in this industry. 

Of course, cogeneration is considered also for this industry, but as it is the case for the 

whole study, it is treated generally for the whole of the chemical industry.  

There are a number of available techniques to reduce emissions and pollution from this 

industry. These include environmental management tools, monitoring and maintenance 
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of equipment, minimisation of plant stops and start-ups, emission prevention and others 

(EC, 2007d). But as the emissions are not of greenhouse gases, these techniques are 

outside the scope of this study.  

Last but not least, recycling can be considered as a technique to save both energy and 

emissions. PVC recycling will be described in the following section and the savings will be 

calculated. 

5.12.4 Innovative technologies (ITs) 

As mentioned already, the European PVC industry has focused on encouraging innovative 

technologies concerning end of life recycling (PVCplus. 2012). Recycling is handled in the 

following paragraph, separately from PVC newly produced. 

 

5.13 PVC recycling 

PVC compounds are suitable for end-of-life recycling and it offers the possibility to 

change formulation parameters, a characteristic that enables the reuse of PVC in new 

products. The PVC industry around the world has been active in recycling for decades 

(Vinylplus, 2016; Vinylinfo, 2016; Vinyl Council Australia, 2016).  

As mentioned already the European PVC industry has adopted initiatives that include 

end-of-life treatments (PVCplus, 2012). "VinylPlus", the latest initiative since 2011, 

includes the following targets (Recovinyl, 2016): 

● recycle 800 kt/y by 2020; and  

● develop and exploit innovative technologies to recycle 100 kt/y of difficult to 

recycle PVC material. 

Generally in Europe, recycling and energy recovery from post-consumer plastics have 

increased since 2006, the former by 40 % and the latter by 27 % (Plastics Europe, 

2015). In 2006 only 4.7 Mt of plastics was recycled, while in 2012 the volume has 

increased to 6.6 Mt 

In 2013, 444.5 kt of PVC were recycled in Europe within the VInylPlus framework 

(VinylPlus, 2014) and in 2014 that amount increased to 481.0 kt (VinylPlus, 2015). 

Figure 23 shows the type of PVC recycled in Europe, as well as the evolution during the 

last decade (VinylPlus, 2015).  

In order to analyse the recycled PVC industry, the recycled quantities are needed. These 

depend on the total annual quantity of PVC in wastes and the recycled fraction of it 

(Prognos, 2000). A big part of PVC applications are long-lived products, a fact that can 

explain the big bust in recycling observed in later years (Figure 23).  
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Figure 23. PVC recycled within the Vinyl 2010 and VinylPlus frameworks (VinylPlus, 

2015) 

 

The recycling potential of PVC is determined to a large extent by contamination and the 

technical characteristics that the final product should have, as well as by legal and 

economic factors (Prognos, 2000).  

Two major groups of waste can be distinguished, based on type: pre-consumer and post-

consumer waste (Prognos, 2000). Pre-consumer waste is either production waste, which 

is generated during the production of PVC final and intermediate products, or installation 

waste, from handling or installing PVC products. Post-consumer waste is usually end-of-

life products (pipes, windows, packaging) and therefore, mixed waste fractions or part of 

composite materials. Pre-consumer waste may have defined composition, while this is 

rather impossible for post-consumer waste, and as a result, pre-consumer waste has 

higher potentials for recycling (Prognos, 2000).  

For this study, the focus is on high-quality PVC recyclates, or recyclates that can serve as 

substitutes of virgin PVC. As a result, low-quality or mixed plastic products are outside 

the boundaries. As pre-consumer waste yields high-quality products, while post-

consumer waste results in products of rather low level purity (Prognos, 2000). It is 

assumed that the annual amount of products that can be considered as substitutes for 

virgin PVC consists of 90 % pre-consumer waste and 10 % post-consumer waste. 

Unfortunately pre-consumer waste is usually dealt inside the industry and not through 

the usual waste management systems, so national authorities do not have information 

about it (DG Env, 2011).  

The European plastics recycling industry is rather new and consists of rather small- and 

medium-sized companies (Plastics Recyclers Europe, 2012). There are more than 1 000 

companies in Europe. Since there is no official data on plants performing PVC recycling, 

for the present study, we have decided to allocate a fictitious plant per country, whose 

production capacity is equal to the recycling potential of this country. Although the year 

of analysis for all products has been 2013, in this particular study, the analysis is done 

for 2012, as it is the last year for which there is available information. The methodology 

followed is explained in this section.  
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Table 87. Estimation of PVC waste streams (kt/y) in EU-28 by country for 2012 

Country 

Total 

plastics 

waste1  

Estimated 

PVC 

waste2  

Post-consumer 

waste3  

Pre-consumer 

waste3  

Total Recyclable Total Recyclable 

Belgium 611.0 65.4 57.5 23.0 7.8 6.7 

Bulgaria 99.9 10.7 9.4 2.7 1.3 1.1 

Czech Republic 325.6 34.8 30.7 14.7 4.2 3.6 

Denmark 107.2 11.5 10.1 2.9 1.4 1.2 

Germany 2 530.5 270.8 238.3 100.1 32.5 27.6 

Estonia 22.7 2.4 2.1 0.9 0.3 0.2 

Ireland 126.2 13.5 11.9 4.3 1.6 1.4 

Greece 133.2 14.3 12.5 3.0 1.7 1.5 

Spain 1 142.9 122.3 107.6 37.7 14.7 12.5 

France 1 646.8 176.2 155.1 37.2 21.1 18.0 

Croatia 39.2 4.2 3.7 1.1 0.5 0.4 

Italy 2 733.1 292.4 257.3 95.2 35.1 29.8 

Cyprus 74.3 7.9 7.0 1.6 1.0 0.8 

Latvia 21.6 2.3 2.0 0.7 0.3 0.2 

Lithuania 50.6 5.4 4.8 1.8 0.7 0.6 

Luxembourg 26.3 2.8 2.5 0.5 0.3 0.3 

Hungary 185.8 19.9 17.5 5.1 2.4 2.0 

Malta 4.4 0.5 0.4 0.1 0.1 0.0 

Netherlands 609.6 65.2 57.4 29.3 7.8 6.7 

Austria 357.6 38.3 33.7 9.8 4.6 3.9 

Poland 969.7 103.8 91.3 36.1 12.5 10.6 

Portugal 213.7 22.9 20.1 6.2 2.7 2.3 

Romania 649.3 69.5 61.1 24.2 8.3 7.1 

Slovenia 47.8 5.1 4.5 1.9 0.6 0.5 

Slovakia 108.1 11.6 10.2 4.5 1.4 1.2 

Finland 91.3 9.8 8.6 2.0 1.2 1.0 

Sweden 175.8 18.8 16.6 7.2 2.3 1.9 

United Kingdom 3 986.2 426.5 375.3 110.7 2.3 43.5 

EU 28 17 090.6 1 828.7 1 609.3 564.4 219.4 186.5 
1 Source (Eurostat, 2016b) 

    

2 It is assumed that PVC share = 10.7% 
    

3 It is assumed that 88% of PVC waste is post-consumer and 12% pre-consumer
 

Eurostat reports plastic waste generation per country, which in 2012 amounted to 17 Mt 

(Eurostat, 2016b).  Since there is no further information concerning the composition of 

this waste, it was assumed that the PVC share in it is the same as its share in plastics 

demand. According to (Plastics Europe, 2015), in 2013 PVC covered 10.7 % of the total 

EU-27, Norway and Switzerland plastics demand. Based on this information and this 

assumption, the total production of PVC waste per country was estimated (Table 87). 

Based on the forecasts provided by (Prognos, 2000), over the period 2000-2020 the 

post-consumer PVC waste was expected to cover 88 % of the total PVC waste production 

in the EU, while the remaining 12 % would be pre-consumer PVC. Taking this forecast 
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into consideration, the estimated PVC waste can be distinguished as pre- and post-

consumer (Table 87).  

Table 88. Estimated volumes of high-quality PVC waste (kt/y) in EU-28 for 2012 

Country 
Pre-consumer waste 

(kt/y) 

Post-consumer waste 

(kt/y) 

Total 

(kt/y) 

Belgium 6.0 2.3 8.3 

Bulgaria 1.0 0.3 1.3 

Czech Republic 3.2 1.5 4.7 

Denmark 1.1 0.3 1.3 

Germany 24.9 10.0 34.9 

Estonia 0.2 0.1 0.3 

Ireland 1.2 0.4 1.7 

Greece 1.3 0.3 1.6 

Spain 11.2 3.8 15.0 

France 16.2 3.7 19.9 

Croatia 0.4 0.1 0.5 

Italy 26.8 9.5 36.4 

Cyprus 0.7 0.2 0.9 

Latvia 0.2 0.1 0.3 

Lithuania 0.5 0.2 0.7 

Luxembourg 0.3 0.1 0.3 

Hungary 1.8 0.5 2.3 

Malta 0.0 0.0 0.1 

Netherlands 6.0 2.9 8.9 

Austria 3.5 1.0 4.5 

Poland 9.5 3.6 13.1 

Portugal 2.1 0.6 2.7 

Romania 6.4 2.4 8.8 

Slovenia 0.5 0.2 0.7 

Slovakia 1.1 0.4 1.5 

Finland 0.9 0.2 1.1 

Sweden 1.7 0.7 2.4 

United Kingdom 39.2 11.1 50.2 

EU 28 167.9 56.4 223.8 

Recycling rates are calculated according to the following equation: 

Recyclable PVC wastei = PVC wastei * Recycling ratei 

where ‘i’ can be either pre- or post-consumer waste. Since pre-consumer waste is 

comparatively easy to recycle and is collected separately in defined qualities (Prognos, 

2000), an average recycling rate of 85 % is assumed. For post-consumer waste for each 

country the rate is assumed to be equal to the rate of plastic packaging recycling, 

reported by (Plastics Europe, 2015).  This way the recyclable post- and pre-consumer 

waste is calculated (Table 87). 

As explained before, the boundaries of this study are covering only recycled PVC with 

potential to replace virgin PVC. The final assumption is that after sorting and separation, 

90% of the total amount of pre-consumer waste and 10 % of post-consumer waste is of 
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a quality sufficient for ‘high-quality waste’. The estimated volumes of high-quality PVC 

waste for 2012 is shown in Table 88. 

5.13.1 Production processes 

There are two main options for recycling PVC: mechanical and chemical (TNO, 1999; 

Prognos, 2000). Besides these there are some competing technologies, such as municipal 

solid waste incineration and cement kilns, but these are not considered to be recycling 

technologies and as such are out of the scope of this paragraph.  

Mechanical recycling includes operations where plastics waste is treated with mechanical 

processes, such as grinding, sieving and screening (Prognos, 2000). Recyclates are 

produced, which can be converted into new plastic products and substitute virgin plastics. 

Only thermoplastic materials (51) are of interest for this type of recycling and 

homogeneous, single polymer stream is needed, as generally different plastics are not 

compatible with each other (Plastics Recyclers Europe, 2012). The purer the collected 

PVC material, the higher the quality of the recyclates produced. Important factors are 

both the degree PVC is in mixture with other materials when collected, and the 

differences in composition of the collected PVC itself. Usually rigid PVC (S-PVC) contains 

lower additives than soft PVC applications (Prognos, 2000). 

Figure 24. Flow diagram for recycling PVC pipes (Prognos, 2000) 

 

The first step of recycling is collection and, if PVC wastes are collected in mixed fractions, 

also sorting. In general mechanical treatment consists first of shredding units that reduce 

the size and separation units that extract specific sizes or materials Polymeric materials 

are then re-melted and reprocessed into products by mills and extruders. A typical flow 

diagram for recycling PVC pipes can be seen in Figure 24.  

Chemical recycling, also known as feedstock recycling, includes technologies that are less 

sensitive to unsorted or contaminated waste products and aim to chemically degrade the 

                                           
(51) A thermoplastic material becomes soft when heated and hard when cooled.  
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material into their monomers or other basic chemicals. Examples of such technologies 

are hydrogenation, pyrolysis or gasification (PVC, 2016). The output may be reused for 

polymerisation into new plastics, for the production of other chemicals or as an 

alternative fuel.  

Several initiatives exist in the market concerning chemical recycling. There are processes 

for mixed plastic waste (52) and others for PVC-rich waste. Detailed descriptions of these 

processes can be found in (TNO, 1999).  

Most of the chemical recycling processes operating currently are for mixed plastic waste 

from packaging with PVC content less than 10% (PVC, 2016). Some of these processes 

are (TNO, 1999): 

● Texaco gasification process: The plastic waste is first mildly thermally cracked into 

synthetic heavy oil and some gas fractions in a liquefaction step. Non-condensable 

gases are used as fuels, while the heavy oil is filtered to remove inorganic 

particles and is then injected in an entrained bed gasifier together with the 

condensable gases. The final product after cleaning is synthesis gas with small 

amounts of CH4, CO2, H2O and some inert gases. 

● Polymer cracking process: The plastic waste is pre-treated to reduce size and 

remove non-plastics and is then fed directly into a heated fluidised bed reactor. 

There it is thermally cracked to hydrocarbons that vaporise and leaves the reactor 

as gas. The gas is purified and then condensed, resulting in valuable distillate 

feedstock. 

● BASF conversion process: The plastic waste is first grounded, separated from 

materials such as metals and agglomerated. A multi-stage melting and reduction 

process follows. The liquefied plastic is then cracked into components of different 

chain lengths, which are separated by distillation. The products include naphtha, 

monomers such as ethylene and propylene, high boiling oils that can be processed 

to syngas and residues. 

● Use of mixed plastic waste in blast furnace: Plastic waste can replace the 

conventional reducing agents of iron ore to iron, so as to be used for steel. The 

plastic waste is injected in the blast furnace in a similar way as coal. 

● Veba combi cracking process: Mixed plastic waste from packaging is firstly kept at 

temperatures 350-400 oC to effect depolymerisation and dechlorination. It is then 

hydrogenated in the Veba Combi Cracker section at 400-450 oC and the product is 

led to separation. The process yields a synthetic crude oil that can be processed in 

any refinery and a residue with heavy hydrocarbons contaminated with ashes 

metals and inert salts. The latter can be blended with coal for coke production. 

● Pressurised fixed bed gasification of SVZ: Plastic waste is fed in a solid bed 

gasification kiln together with lignite and waste oil and synthesis gas, liquid 

hydrocarbons and effluent are produced. The liquid hydrocarbons are further 

processed by oil pressure gasification. 

Mechanical and chemical recycling should not be considered as competing with each 

other, but rather as complementary. Mechanical recycling is appropriate for as pure PVC 

waste as possible, while chemical recycling can process contaminated products with less 

restrictions than mechanical recycling.  

5.13.2 Current consumption and emission levels 

Since we focus on high-quality recyclables, mechanical recycling is the most possible 

recycling process to be followed. As a result, the analysis will be based on these 

processes and not on chemical recycling.  

                                           
(52) These processes accept plastic waste with PVC contain from >2% up to >10%, depending on the process 

[TNO, 1999]. 
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For PVC that is entering recycling processes recovery rates are generally high, usually 

about 95% (Brown et al., 2000). Based on this rate, the specific feedstock consumption 

due to mechanical recycling is 1.05 tonne high quality PVC waste per tonne of high 

quality PVC recyclate. 

Energy requirements for processing polymers with mechanical means typically range 

between 10 and 15 MJ/kg (Brown et al., 2000). The exact energy consumed depends on 

the steps followed. It is assumed that high quality recycling is closer to the upper limit 

and that all of the energy is consumed as electricity (Brown et al., 2000). As a result, the 

energy requirements of PVC recycling for this study are 4.17 MWh/tPVC.recycled.  

Concerning emissions, volatile material may be produced during heating, melting and 

blending, but total emissions from these stages are considered to be relatively 

insignificant (Brown et al., 2000). Emissions from PVC recycling are estimated to be in 

total about 17.65 kgCO2/tPVC.recycled, but they occur during transportation (Brown et al., 

2000). Transportation is outside the boundaries of this study and as a result process 

emissions are considered to be zero. The only emissions taken into consideration are 

indirect ones, due to electricity consumption and they amount to 1.9 tCO2/tPVC.recycled. 

Recycled PVC could replace virgin PVC and therefore the two processes should be 

considered between them, so as to decide the savings. The energy consumption and 

emissions of PVC recycling should be compared with the ones of PVC produced new. But 

the latter should include the whole production pathway from ethylene to PVC. This 

pathway can have several configurations. Table 89 shows the different configurations of 

the pathway and the way the total energy consumptions are calculated. The average 

energy consumption is 22.2 GJ/tPVC, while the average emission factor is calculated 

accordingly and amounts to 2.8 tCO2/tPVC. As a result, the savings achieved from recycled 

PVC are 32.5% for energy and 32.1 % for emissions.   

Since recycled PVC is considered as replacement of virgin PVC, its price is also important. 

According to (Plastics News, 2016), the price of recycled PVC (resin grade: clear 

industrial flake) in 2012 ranged between 0.41 and USD 0.55 2012/lb. In general the price 

of recyclate is set by the price of virgin compound (Brown et al., 2000). Therefore, it is 

assumed that the annual growth rate for price of high quality PVC recyclates varies 

according to the price of virgin PVC. 

5.13.3 Best available techniques (BATs) 

Since the industry is rather new (Plastics Recyclers Europe, 2012), there are not so many 

best available techniques or innovative technologies that will not be analysed. The only 

technology that can be considered as best available, different from that which is currently 

used, is the VinyLoop process.  

VinyLoop is developed by the Solvay group in order to recycle difficult-to-treat composite 

PVC waste and is based on physical principles (TNO, 1999; VinyLoop, 2013). It is suitable 

for composites with at least 70% PVC.  
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Table 89. Schematic representation of the different configurations for virgin PVC production and energy consumptions 

 

Ethylene → EDC → VCM → PVC  

Ethylene EDC VCM PVC  

Energy consumption 

Steam cracking (GJ/tethylene) Chlorination 

EDC cracking 

Polymerisation 

(GJ/tPVC) 

Total energy consumption 

(GJ/tPVC) 
Naphtha-based Ethane-based Gasoil-based Direct Oxy Suspension Emulsion 

12 20.5 25 
Balanced process 

5.4 GJ/tVCM 
3.4  9.3  

+   + +  15.4 

+   +  + 21.3 

 +  + +  19.7 

 +  +  + 25.6 

  + + +  22.0 

  + +  + 27.9 
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PVC and its additives are selectively dissolved in a solvent that allows them to separate 

from other elements. PVC is recovered by precipitation and then dried (TNO, 1999; 

VinyLoop, 2013). Figure 25 shows the process flow diagram (VinyLoop, 2013). 

Figure 25. The VinyLoop process (VinyLoop, 2013) 

 

A first plant based on this technology was inaugurated in 2002 in Italy with a capacity of 

10 kt/y of PVC scraps and nominal production of 27 tPVC/d (VinyLoop, 2002). It is 

designed to process electric cable waste and tarpaulin (53). In 2014 the plant produced in 

total 5.2 kt of recycled PVC and in 2013, 4.9 kt (Vinylplus, 2016). The final investment 

for this plant amounted to EUR 10.6 million 2001 (VinylLoop, 2002), which corresponds to 

EUR 7.95 million 2013. According to a study comparing VinyLoop with the conventional 

PVC producing route (virgin PVC and incineration), savings can reach 47 % for energy 

and 40 % for GHG emissions (Solvay, 2013). Since the system boundaries are wider than 

the PVC production process alone and there is no way to assess the actual savings of the 

process for stricter boundaries, the process is not taken into consideration in our 

analysis.  

5.13.4 Innovative technologies (ITs) 

Concerning PVC recycling, research efforts from the industry focus mainly on novel waste 

separation techniques. The aim is to bring mixed or difficult waste streams to the point of 

being handled by conventional mechanical recycling. Examples of such technologies 

include Neidhardt Recycling GmbH (for PVC-aluminium composite materials), R-

Inversatech (for PVC in waste such as tarpaulins), the technique from Hemawe/Caretta 

(separating fabric and tissue from soft PVC foils) and others (Vinylplus, 2013) The whole 

sector is rather new and these technologies are only preparing the PVC waste for 

recycling, so they will not be considered in this study. 

 

                                           
(53) Tarpaulin is a composite PET textile (woven fibres) coated with PVC compound. 
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5.14 Ethylbenzene and Styrene 

Ethylbenzene (C8H10 – C6H5CH2CH3) is a single-ring alkyl aromatic compound that is 

almost exclusively used for the production of styrene (C8H8 – C6H5CH=CH2). As a result, 

these two chemical substances will be treated together.  

Commercially, ethyl benzene is produced by alkylation of benzene with ethylene 

(Ullmann's Encyclopaedia, 2005). It is a colourless liquid with an odour similar to 

gasoline. As already mentioned, it is mainly used for the production of styrene. Other 

uses include paint solvent and reactant for the production of other chemicals (diethyl 

benzene and acetophenone), but these uses amount to less than 1 % (IHS, 2015i, 

Ullmann's Encyclopaedia, 2005). In 1999, the global installed capacity of ethyl benzene 

was around 25 Mt (Ullmann's Encyclopaedia, 2005), while in 2002 it had already reached 

28 Mt (Cefic, 2012), while global ethylene demand was expected to increase at an 

average rate of 2.1 % in the period 2014-2019 (IHS, 2015i) 

Styrene – phenylethene according to IUPAC – is a colourless liquid with a distinctive, 

sweetish odour. It is used as feedstock for several polymer products. About 60 % of 

styrene produced is used to derive polystyrene (54), 18 % for styrene-acrylonitrile 

copolymer (SAN) (55) and acrylonitrile-butadiene-styrene copolymer (ABS) (56), 5 % for 

styrene-butadiene rubber elastomers (57) (Ullmann's encyclopaedia, 2011d). The 

remaining is used in miscellaneous uses. In 2012, global styrene capacity was estimated 

to be more than 32.7 Mt. while production exceeded 26.4 Mt (Merchant Research, 2013). 

Asia accounted for about half of the world styrene capacity, and Europe for about 18 % 

(Merchant Research, 2013).  

Concerning future growth, polystyrene, which drives styrene consumption, receives high 

competition from polypropylene, PET and other substitutes. As a result polystyrene 

growth rates to 2019 are low (around 1.6% per year) (IHS, 2015j). On the other hand, 

expandable polystyrene, another application, was expected to grow faster, with rates 

around 2.3% and ABS resins even faster with rates of 3.6 % (IHS, 2015j). 

Table 90. Ethylbenzene and styrene plants in the EU-28 in 2013 

 
Ethylbenzene Styrene 

Country Number of plants Capacity 

(kt/y) 

Number of plants Capacity 

(kt/y) 

Belgium 2 890 2 500 

Czech Republic 1 300 1 170 

Germany 2 930 2 850 

Spain 1 505 1 450 

France 1 720 1 600 

Italy 2 720 2 595 

Netherlands 3 2 005 4 2 170 

Poland   1 120 

Slovakia 1 15   

United Kingdom 1 160   

Total 14 6 245 14 5 455 

Information concerning Europe is available by Petrochemicals Europe, but it covers only 

Western Europe (Petrochemicals, 2016) In 2013, ethyl benzene capacity was 5.9 Mt, 

which decreased by 10 % compared to 2012, while production is not reported 

(Petrochemicals, 2016). Concerning styrene installed capacity was 5.2 Mt in 2013, 9 % 

                                           
(54) Polystyrene is used to make from toys, housing for air conditiners and television cabinets to furniture parts, 

insulation boards and disposable food containers. 
(55) SAN is used for drinking tublers and battery cases. 
(56) ABS is used for piping, automotive components, shower stalls etc. 
(57) These rubber elastomers are used as passengers car tires, industrial hoses and footwear. 
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less than 2012. Styrene production reached 4.5 Mt, decreased only by 3.6 % compared 

to the previous year (Petrochemicals Europe, 2016). In the EU-28, there were 14 plants 

for each product, with a total capacity 6.2 Mt/y for ethyl benzene and 5.5 Mt/y for 

styrene as shown in Table 90 (ICIS, 2012). 

5.14.1 Production processes 

Alkylation of benzene with ethylene is the process used globally for the production of 

ethyl benzene. The traditional catalyst is aluminium chloride (AlCl3), but new 

technologies are based on heterogeneous zeolites (Ullmann's Encyclopaedia, 2005; EC, 

2014d). Although the AlCl3 route has several drawbacks (costly disposal of waste streams 

and corrosion of equipment), a considerable part of worldwide ethyl benzene production 

still utilises variations of it. Nevertheless, there is a general trend in the industry to 

change to zeolite technology.  

Alkylation can be either in the liquid- or in the vapour-phase. Vapour phase zeolites have 

the advantages of better selectivities and simpler catalyst management, while aqueous 

waste streams can be avoided (Ullmann's Encyclopaedia, 2005; EC, 2014d). it is 

particularly suited for dilute ethylene streams, such as refinery off-gas from fluid catalytic 

cracking units. Liquid-phase alkylation on zeolite catalyst was commercialised in 1990 

and operates below critical benzene temperature (around 290oC).  

The principles of all alkylation processes, regardless of the catalyst or the phase, are the 

same and the process steps are similar. The reaction occurs by mixing an excess of 

benzene with ethylene in the presence of catalyst and it is exothermal. Benzene excess 

does not totally prevent side-reactions of ethylene, which can further react with the ethyl 

benzene produced to form mostly isomers of di- and thri-ethyl benzene (EC, 2014d). 

These by-products can be separated and recycled in a trans alkylation section. 

In the case of styrene, the feedstock for all commercial processes has been ethyl 

benzene (Ullmann's Encyclopaedia, 2011d; EC, 2014d). 85% of styrene production is 

done by catalytic dehydrogenation. The main reaction is the following: 

C6H5CH2CH3 ↔ C6H5CH=CH2 + H2   (reaction 56) 

This reaction is endothermic and reversible and occurs in the vapour phase with steam 

and over a catalyst consisting primarily of iron oxide. Due to the stoichiometry reaction 

and the fact that it takes place in the gas phase, lower pressures and higher 

temperatures favour the conversion to styrene. It can be carried out either adiabatically 

or isothermally. The main difference is the way the endothermic reaction heat is supplied.  

Adiabatic operation is applied in over 75% of all operating styrene plants (Ullmann's 

Encyclopaedia, 2011d; EC, 2014d). The necessary heat is introduced at the inlet either 

by injection of superheated steam or by indirect heat transfer. Ethylbenzene conversion 

can vary with the system but it is usually 65% overall (Ullmann's Encyclopaedia, 2011d).  

In isothermal dehydrogenation, the reactor is built like a shell and tube heat exchanger. 

The tubes are packed with a catalyst and steam and ethyl benzene flow through them. 

The necessary heat is supplied by hot flue-gas on the shell side of the reactor. Steam 

temperatures are lower than in the case of adiabatic dehydrogenation, but there are 

practical limitations of size for the reactor.  

The product from the reaction is crude styrene that can include - besides styrene - 

(typically 64 %), also benzene, toluene, ethyl benzene (typically 32 %) and others 

(Ullmann's encyclopaedia, 2011d). The pure product needs to be separated by 

distillation. Styrene and ethyl benzene have similar boiling points (145  oC and 136 oC 

respectively), so 70-100 trays are required for separating them. Residence time is of 

importance, as styrene may start polymerising.  
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Most commercial styrene plants are based on either the Lummus/UOP (UOP, 2004) or the 

Fina/Badger technologies (Badger, 2012), although there are some more commercial 

technologies available (Woodle, 2006).  

The rest of styrene is produced commercially via the styrene-propylene oxide process. It 

involves co-production of propylene oxide, but it involves large capital investment and 

has higher costs of production, but credits from selling the co-produced propylene oxide 

can make the process profitable (EC, 2014d). Due to its low percentage of application in 

the industry, it will be assumed that all EU plants are produced via ethylene 

dehydrogenation. 

5.14.2 Current consumption and emission levels 

As described before, ethyl benzene is produced by alkylation of benzene with ethylene. 

Typical consumptions for feedstock and energy consumptions are shown in Table 91 (EC, 

2014d; MacFarlane, 1977). If the catalyst is zeolite, deactivation is slow and is due to 

coke formation, while if the catalyst is AlCl3 continuous replacement of the losses is 

required. Alkylation is exothermic and heat can be recovered. It can be used to preheat 

the reactors for alkylation and trans alkylation or as steam in the styrene production.  

Table 91. Typical feedstock and energy consumptions in the case of ethyl benzene 

production 

Raw material Value (t/tethylbenzene) Source 

Ethylene  
0.26-0.28 

(EC, 2014d; MacFarlane, 1977) 

Benzene 
0.74-0.78 

Energy 
Value  

Steam 
0.34-1.72 GJ/t (EC, 2014d) 

Electricity 
25-32 kWh/t (EC, 2014d) 

Fuel 
1.95 GJ/t (MacFarlane, 1977) 

Heat recovery 
2.45-2.63 GJ/t (EC, 2014d) 

In the case of styrene, feedstock and energy consumptions are summarised in Table 92. 

The only feedstock is ethyl benzene. The catalyst used in the reaction deteriorates over 

time, thus affecting energy efficiency and needs to be replaced (EC, 2014d).  

Table 92. Typical feedstock and energy consumptions in the case of styrene production 

Raw material Value (t/tstyrene) Source 

Ethylbenzene  
1.04-1.17 (EC, 2014d) 

Energy 
Value  

Steam 
4.86-8.28 GJ/t (EC, 2014d) 

Electricity 
70-170 kWh/t (EC, 2014d) 

Heat recovery 
0-2.88 GJ/t (EC, 2014d) 

Concerning emissions during ethyl benzene production, they are usually VOCs such as 

ethylene, ethyl benzene and others. They are estimated to be about 1.3 kgVOC/tethylbenzene, 

but they are not released in the atmosphere, as they have sufficient calorific value to be 

used as fuel (EC, 2014b). As a result, the emissions considered in this study are because 

of the utilities used. They are calculated according to the average value of consumption 

for each utility and using the appropriate emission factors (Table 6). Emissions in the 

case of styrene are also calculated accordingly (Table 93). These values are considered to 

be in accordance with the values reported by (Ecofys, 2009), where the total EU average 
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emissions for ethyl benzene/styrene production is estimated to be 0.887 tCO2/t of both 

ethyl benzene and styrene (58).  

Table 93. Emission factors in the cases of ethyl benzene and styrene production 

Emissions 

Process 

Ethylbenzene Styrene 

Steam 
74.2 kgCO2/t 460.0 kgCO2/t 

Electricity 
13.2 kgCO2/t 55.8 kgCO2/t 

Thermal 
109 4 kgCO2/t  

Total 
196 8 kgCO2/t 515.8 kgCO2/t 

In the case of integrated plants, consumptions and emissions are assumed to be equal to 

the sum of the individual plants once the heat recovery from the ethyl benzene process is 

deducted.  

Styrene is a benchmarked product, with value of 0.527 allowance/t (EC, 2011b). The 

system boundaries of benchmarking include all steps of the process, as well as the 

emissions related to the production of the electricity consumed. The specific emissions 

per plant that were calculated according to the literature vales explained in this 

paragraph were calibrated according to the benchmarking curve. 

5.14.3 Best available techniques (BATs) 

This paragraph consists of a short description of the techniques that have been identified 

as having potential to improve energy efficiency and reduce GHG emissions, without 

implying that the list summarised in Table 94 is exhaustive.  

Table 94. Overview of the possible BATs and ITs in the ethyl benzene/styrene industry 

BAT/IT Description 
Investment cost 

(EUR) 

Energy savings 

(%) 

GHG Reduction 

(%) 

BAT 
Advanced control and 

optimisation 
2 328 300 5 % for all   

BAT 
Styrene Advanced reheat 

technology 
Not enough information available 

BAT 
Radial flow reactor system Considered as standard technology 

BAT 
Styrene recovery from pygas No information available 

IT 
Simultaneous dehydrogenation 

of ethyl benzene and ethane 
No information available 

IT 
Exelus styrene process 46 032 400 40 % for all  

As in all processes, a series of process design decisions lead to either lower emissions or 

energy savings or both. There are in the market solutions for advanced control and 

optimisation. The one proposed by Honeywell covers both the ethyl benzene and the 

styrene production units (Honeywell, 2007). It introduces controllers in the different 

sections of the integrated process, so as in the first part to maximise the ethylene feed 

and the ethyl benzene yield and in the second part to maximise the feed to the 

dehydrogenation reactor while minimising energy consumption in the steam superheater. 

Another controller aims at maximising the styrene recovery. The benefits achieved are 

improved product quality control and increase in styrene yield by 0.2 % and in 

                                           
(58) The total specific CO2 emissions from ethyl benzene and styrene production reported in [Ecofys, 2009] is 

0.854 tCO2/tproducts, but they have used different emission factors for electricity, fuel and steam than in the 
current study. By using the values of Table 6, total emissions are 0.887 tCO2/tproducts. The molecular weight 
of the two substances is 106.17 g/mol for ethyl benzene and 104.15 g/mol for styrene. .  



140 

 

operational efficiency (Honeywell, 2007). It has been applied already at a plant in China 

of SECCO Petrochemical Company Limited. There is no official documentation of the costs 

of this technology, but an estimation is about EUR 2 to 3 million 2012, referring to a 

medium styrene plant of about 380 kt/y (OPT Sensor Srl, 2012). The savings achieved 

are assumed to reach 5 % for electricity, steam and feedstock.  

In modern styrene production plants, managing the operating conditions of the ethyl 

benzene dehydrogenation reactor so as to minimise thermal reactions is considered 

important. Thermal reactions can become a significant problem if temperatures are over 

655 oC (Woodle, 2006). Thermal reactions can be hindered if ethyl benzene is not heated 

directly to the reaction inlet temperature until coming into contact with the catalyst. This 

is achieved if ethyl benzene comes into contact with the main stream of steam that is 

preheated to the appropriate temperature just before the catalyst (Woodle, 2006). 

Reactor design and catalyst configuration are factors that control thermal reactions too 

(EC, 2014d).  

As has been explained already, due ethyl benzene dehydrogenation is favoured by lower 

pressure and higher temperature. The use of minimum pressure drop radial bed reactors 

leads to lower operating pressure and therefore lower ethyl benzene feed consumption 

and reducing by-product formation. It has been the main type of reactor used in the 

Lummus/UOP technologies (UOP, 2004; Woodle, 2006). The system contains two 

reactors in the series. The main stream of steam is superheated and is mixed with ethyl 

benzene (which is already diluted with steam) immediately before entering the first stage 

reactor. It is also used to reheat the reaction mixture for the second reactor. The cooled 

steam is then superheated again. The reactor effluent is cooled in a series of three waste 

heat exchangers. The first stage of waste heat recovery is used in superheating the 

feedstocks and subsequent stages to produce steam in different pressures. This patented 

way of heat recovery that does not require compression equipment leads to energy 

savings. The Fina/Badger styrene process has similar characteristics (Woodle, 2006). 

This technology has been introduced in the market for several decades and is already 

applied in more than 50 plants worldwide (Woodle, 2006); as a result, it is considered as 

standard technology.  

Lummus/UOP has developed the Styrene Monomer Advanced Reheat technology 

(SMART) process based on an oxidative reheat technology and combining it with 

adiabatic dehydrogenation (UOP, 2004). It is most usually applied as a revamp to 

existing plants, in order to achieve up to 60 % increased styrene production with minimal 

capital investment costs (Woodle, 2006). The main characteristic of this technology is 

that hydrogen is oxidised in the oxidative reheat section to supply the heat needed in the 

dehydrogenation reaction. This results in elimination of the costly interstage reheater and 

reduction of the superheated steam requirements (UOP, 2004). Ethylbenzene 

conversions achieved can be more than 80 %, as consumption of hydrogen shifts the 

reaction equilibrium toward styrene production (Woodle, 2006). The application of this 

technology is less appealing, because of its safety risks due to high the temperature 

mixture of oxygen and hydrogen. Due to its limitations in application and the fact that 

there is not enough information available concerning its performances and economics, 

this technology cannot be considered in this study.  

As has already been mentioned in the aromatics section (5.7.3), styrene is also present 

in the pyrolysis gasoline. It is usually not recovered, but new technologies exist and they 

are based on extractive distillation for recovering it (Gentry and Zeng, 2009). This 

available technology has been described already in paragraph 5.7.3, so it will not be 

repeated here. Although there is enough information for its economics, data concerning 

savings are limited and it is not included in the analysis. 

5.14.4 Innovative technologies (ITs) 

Two technologies have been identified as emerging for this industry (Table 94).  
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The first one involves simultaneous dehydrogenation of ethyl benzene and ethane, 

Ethane is fed to the dehydrogenation reactor along with ethyl benzene and a catalyst 

capable of producing both styrene and ethylene is used (ChemSystems, 2009b). Ethylene 

is recovered and used as feed to the alkylation. Ethane is cheaper than ethylene, but 

according to a study by SRI Consulting, operating and capital cost charges related to the 

separation and recycling of ethane/ethylene offset any price advantage (Baker et al., 

2005). It would make sense only in areas of the world where ethane and ethylene 

differences of about 90% in pricing. More recently, though, there has been a new styrene 

production process, starting from a gas mixture of ethane and ethylene (Saipem SpA, 

2010). The process is described in detail in the patent submitted (Saipem SpA, 2010) 

and the stream at the end of the dehydrogenation reactor consists of styrene (2-

35 %w/w), ethylene (1-20 %w/w), ethane (25-75 %w/w) and ethyl benzene (2-

40 %w/w). The advantage of this technology is that the ethane and ethylene do not need 

to be separated after steam cracking and as a result, energy is saved because of the 

distillation that is avoided. The technology has only been tested in pilot plant level, as a 

result there is no available information concerning performances.  

The second one is a novel catalytic technology to produce styrene from toluene and 

methanol, called the Exelus styrene monomer process (ExSyM) (US Department of 

Energy, 2012). It aims to produce styrene from lower cost raw materials than ethylene 

with a use of a novel catalyst in a single-step process. It is based on the alkylation 

reaction of toluene with methanol to produce styrene, hydrogen and water (Exelus, 

2013). The reaction has been known for years, but yields have been low. Exelus, with the 

support of the US Department of Energy, developed a proprietary solid catalyst and 

reactor design improvements that enable styrene production in mild conditions (1 atm 

and 425 oC) that achieve styrene selectivity 80 % (Exelus, 2013). Feedstock 

consumptions are 1.38 ttoluene/tstyrene and 0.92 tmethanol/tstyrene.  

The benefits from ExSyM process are lower cost feedstocks and energy savings due to 

elimination of dehydrogenation of ethyl benzene that is energy demanding (Exelus, 

2013). The endothermic alkylation reaction of toluene is about 50 % less endothermic 

than the equivalent of ethylene and energy savings are estimated to be about 40 % (US 

Department of Energy, 2012). Environmentally, the process has 40 % lower GHG 

emissions and the hydrogen produced may be recovered and reused (US Department of 

Energy, 2012). As it is not clear from which part of the process the GHG emissions are 

saved and in order to avoid double counting of the benefits of the innovative technology, 

in the present study we have chosen to follow the conservative choice of taking into 

consideration only the energy savings. Investment costs to build a new plant based on 

ExSyM process with capacity 250 kt/y was about USD 63 million 2012, while retrofitting 

would cost USD 10-15 million 2012, while the cost of a conventional plant was USD 125 

million (US Department of Energy, 2012). The technology is currently in long term 

testing of the catalyst (Exelus, 2013). 
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6 Model 

This chapter describes the model developed to analyse prospective scenarios of the 

industry up to 2050. The goal of the model is to illustrate the potential trend of energy 

consumption and GHG emissions for the European chemical industry. As the first part of 

the study, the model follows a bottom-up approach, basing the prospective trend of the 

industry as a whole on an analysis at plant level of the cost-effectiveness of potential 

retrofits. Therefore, the model individually analyses the cost-effectiveness of new 

investments in the best available techniques and innovative technologies for each 

European chemical plant. The potential retrofits are the ones described for each product 

in chapter 5. The model has been implemented in MatLab (matrix laboratory) and was 

developed in its primary form by ALTRAN under the auspices of contract no. 108530 to 

the European Commission, JRC-IET Petten. 

The basic assumptions in the model are: 

● it does not deal with international trade in the chemical sector; 

● all investment costs are expressed in EUR2013. 

The starting year of the simulation is 2013, as it corresponds to the latest information 

collected for the current status of the industry, and it works in an iterative way up to 

2050, which means that the cost effectiveness-analysis is carried out year by year. The 

core of the model is the decision-making criterion of investments in new BATs and ITs.  

Figure 26 illustrates the logical path followed by the model for the determination of the 

annual technological configuration of the industry. This logical path can be divided in the 

following steps: 

1. Calculation of operating costs,   

2. Comparison of production and expected demand and 

3. Cost-effectiveness analysis 

These steps are detailed in sections 6.2, 6.3 and 6.4. Once all steps are completed, the 

loop restarts for the next year. 
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Figure 26. Flow chart of the logical path of the model 

 

 



144 

 

 

If a plant already applies a 
BAT/IT, the model excludes it 

from the list of applicable 
BATs/ITs.

 Select all the possible BAT/IT applicable to the production process

 Adjust the BAT-IT investment costs to the installed capacity of each 

specific plant

 Determine the “operating costs (t+1)”

 Determine the “operating costs after retrofit (t+1)” after BAT/ IT integration (where 

existing)

 Determine the PBPs related to each “Plant-BAT” and “Plant-IT” association

PBP > 2?

Rank the associations Plant-BAT and Plant-IT in ascending order 
based on their PBP

Remove the Plant-BAT/Plant-IT 
association

YES

NO

For each plant:

 Select only the association Plant-BAT or Plant-IT with the lowest PBP;

 Update the “Date of last upgrade”.

Determine the operating costs (year t+1) based on:

 The new technological configuration;

 The annual prices growth rates.

 

6.1 Basic input in the model 

For each year, the model operates at plant level considering a series of input data from 

the database compiled during the first part of the study. The values for these input data 

are based on literature and commercially available. 

The data that are related to the plant are: 

● Plant name and location 

● Installed capacity 

● Type of product produced 

● Type of process in use 
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● Year the plant started operation and year of last update 

● Load factor 

● Fuels in use 

● Plant performances in terms of energy consumptions, GHG emissions and 

feedstock use 

● List of BAT measures already installed in this plant 

● BATs/ITs applicable to each process 

Regarding the BAT/ITs, the information included is: 

● The process to which it can be applied 

● Investment costs 

● Operation costs 

● Savings in terms of energy and feedstock consumption 

● Savings in terms of emissions 

● Year of availability (only in the case of ITs) 

Future trends taken into consideration are: 

● Trends in demand of the products  

● Trends in the prices of fuels and products 

● Trends in the price of CO2 emissions 

For the future projections used in the modelling, the general assumptions followed are 

based on the Reference Scenario of the European Commission at the time of writing (EC, 

2013).  

Concerning the products, studies projecting trends to 2050 forecast that global chemical 

sales will grow by about 3% per year (UNEP, 2012). For the individual products, future 

projections available in the literature extend usually only up to five years ahead. 

Notwithstanding the short-term projections for the evolution of the global demand 

described in chapter 5, it is assumed that during the simulation period 2013-2050 the 

demand follows the GDP growth rates according to the Reference Scenario (EC, 2013). 

 

6.2 Step 1: Calculation of operating costs 

When starting the simulation, the model selects all the plants that produce a specific 

product. A first estimation of operating costs is performed and the plants are ranked 

based on their specific costs. The production is first allocated to plants with the lowest 

operating costs and then gradually assigned according to increasing operating costs. 

The calculation of operating costs is based on the following equation: 

Annual operating costs = Annual variable costs + Annual fixed costs 

Variable costs are associated with the manufacturing of the products; therefore they 

depend on the annual production and on the facility technological configuration. They are 

composed of the costs for: 

Raw materials 

They are evaluated for each plant, based on the feedstock consumption associated to the 

process used in that facility. The estimation incorporates the effect of BATs already 

present, and it is done according to: 
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Annual raw material costs = Σ(Process Feedstock consumption * Feedstock price )*(1-

BAT feedstock reduction)*Production 

Electricity bought from the grid 

The cost for electricity is based on the specific electricity consumption of each process, 

the production and the price of electricity. The estimation of the amount of electricity 

bought from the grid takes into account the self-production, calculated as explained in 

Chapter 4. The value for the price is based on Eurostat (Eurostat, 2016c) and it 

corresponds to the average of the price for industrial users weighted according to the 

facilities producing ammonia, steam cracking and methanol, as indicative of the chemical 

industry. 

Fuels consumed in the process 

As in the case of electricity, energy costs due to fuel consumption are determined by the 

process thermal requirements, the production and the price of fuels. The presence of CHP 

affects the thermal requirements and its effect is incorporated into the model following 

the methodology explained in Chapter 4. 

CO2 emissions allowances 

If the CO2 emissions of any plant exceed its free allowances defined by (EC, 2011b; EC, 

2012d) and provided in Table 7, the extra emissions generate costs. These costs are 

calculated according to the formula: 

Annual CO2.eq emissions allowances costs = (Specific CO2.eq emissions –  

Benchmark emission value) * Production 

On the other hand, fixed costs are connected to (Sinnott, 2005): 

● Operating labour: Costs of operating labour would not normally exceed 15% of 

the total operating costs; 

● General overhead: 50-100% of operating labour costs; 

● Supervision: 20% of operating labour costs; 

● Local rates: It covers local taxes and is typically 1-2% of capital costs; 

● Insurance costs: Typically 1-2% of capital costs; 

● Maintenance: 5-10% of capital costs; 

● Royalties: 1% of capital costs. 

Investment data for each type of facility included in this study are collected from the 

literature and are summarised in Table 95. These investment costs are adjusted to 

different capacities according to the following formula (Perry's Handbook, 2008): 

Investment cost = Investment costRef * (Capacity / CapacityRef)
n 

The exponent n may vary from 0.4 to 0.9, but the average value for chemical equipment 

is 0.6 (Perry's Handbook, 2008). 

Capital costs are then determined considering the depreciation of the initial investment. 

An operating lifetime of 10 years is assumed, corresponding to a depreciation rate of 

10% (Sinnott, 2005). The equation applied is: 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 ∗ 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ∗  
(1 + 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒

(1 + 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)(𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒−1)
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Table 95. Investment costs and reference capacity of new plants for each product 

Product Reference 

capacity (kt/y) 

Investment cost 

(million EUR2013) 

Data Origin 

Nitric acid 324 39.8 

(Hydrocarbon Processing, 

2001) 

Steam cracking 1 300 297.6 

Acrylonitrile 80 94.7 

Ammonia 400 158.2 

Urea 1 120 223.9 

Adipic acid 2 160 182.8 (Chemicals Technology, 

2012f)  

Hydrogen 20 27.3 
(Hydrocarbon Processing, 

2001) Methanol 500 153.8 

Soda ash 3 800 211.0 (Process Worldwide, 2012) 

Aromatics 4 1 070 543.8 (Chemicals Technology, 

2012e) 

Carbon black 130 100.7 (Chemicals Technology, 

2012) 

EO 20 14.8 (Hydrocarbon Processing, 

2001) 

MEG 300 178.7 (Oil & Gas Journal, 2001) 

EDC 5 550 550.9 (Chemicals Technology, 

2012b) 

VCM 180 119.6 (Hydrocarbon Processing, 

2001) 

PVC 6 300 170.0 (Chemicals Technology, 

2012d) 

Ethyl benzene 450 47.2 
(Hydrocarbon Processing, 

2001) Styrene 180 66.1 

Chlorine 800 105.8 (Chemicals Technology, 

2012b) 
1 

Ethylene production  
2 Complex that manufactures both adipic and nitric acid, with a total production capacity equal to 160 kt/y 
3 

Plant manufacturing both soda ash and calcium chloride, with a total installed capacity equal to 800 kt/y 
4 

Aromatics complex; production capacity of 655 kt/y of paraxylene (PX), 355 kt/y of benzene and 60 kt/y of 

toluene; 
5 

Ethylene dichloride (EDC) and caustic soda complex, with a production capacity of 300 kt/y of EDC and 250 

kt/y of concentrated caustic soda; 
6 PVC included the production of PVC-S, PVC-E and PVC Recycled. 

 

6.3 Step 2: Production vs expected demand 

Once the facilities are ranked based on their specific operating costs, the overall 

production capacity is verified and compared to the product demand. In case of a 

mismatch, the code modifies the load factors, accordingly. In this phase, some plants 

may be mothballed or new ones can be included, depending on the value assumed for 

the load factor. In case of decreased demand, the model idles the facilities with the 

highest operating costs. If a facility idles for more than 3 years, the facility is phased out.  
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If the demand of a product increases from year ‘t’ to the following year ‘t+1’, the model 

increases the load factor, exploiting the potential production of the sector. The upper 

limit for the load factor has been defined based on the highest value of load factor in 

2013 for the processes considered in the study (equal to 0,89), that, for a major 

flexibility, was further increased, taking as ‘maximum load factor value’ a load factor 

equal to 0,95. 

If the demand for a product decreases from year ‘t’ to following year ‘t+1’, the model 

reduces the value of the load factor until an estimated fixed minimum value. This 

‘minimum load factor’ is estimated based on the lowest value of load factors in 2013 

(equal to 0.63 for xylenes). As in the upper case, we allow a further decrease adopting 

0.55 as the ‘minimum load factor value’ feasible.  

Modeling of the future technological asset of the chemical and petrochemical facilities in 

the EU-28 during the observation period (2013-2050) required the introduction of new 

plants. Those plants have been allocated in the European domain in order to satisfy the 

future foreseen demand for each specific product, whenever the process load factor 

reached the defined upper limit. 

The technological features associated to the new reference plants (NRP) have been based 

on the specific operating costs of current plants and the prevailing production process for 

each chemical product. These two conditions assure that all of the NRPs related to the 

manufacturing of the same product have the same technological asset: type of process, 

use of BATs (including CHP), use of ITs, type of fuel, capacity. This way, the model 

selects annually as NRPs exclusively plants that have the most economic operational 

costs for each product.  

Nevertheless, the technologic configurations of NRPs change over-time, based on the 

effects of retrofits on the specific operating costs in the previous year. Eventually, the 

load factor of the process in use in the NRPs will be the one resulting from the balancing 

of production and demand for a product in a determined year. 

 

6.4 Step 3: Cost-effectiveness analysis for integrating BATs and 

ITs 

Once the demand is satisfied, a cost-effectiveness analysis is performed at plant level to 

assess the new BATs/ITs integration.  

In order for a facility to be considered able to revamp, its technological configuration 

through the integration of a BAT or an IT, it should satisfy both the following 

requirements: 

● A facility has started operation more than 10 years ago and 

● The last upgrade in it was more than 2 years ago. 

These conditions are based on the assumptions that new plants have already the best 

available efficiency and that the initial investment for them has not been totally 

depreciated yet.   

For each eligible facility, the software selects the corresponding BAT/IT applicable to the 

production process in use, excluding those already applied and checking the compatibility 

with the other processes in use within the plant. By definition a BAT is available from the 

first year of the simulation, while ITs can be incorporated only after their assumed year 

of availability.   

The decision-making criterion selected to establish the profitability of an investment in 

BAT-IT is the payback period (PBP). The payback period is defined as the period of time 

during which the initial capital expenditure of an investment is recouped (Perry's 

Handbook, 2008). It is calculated according to the following formula, based on the 
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investment costs for the retrofitting and the difference of the annual operational costs 

before and after retrofit: 

Payback Period = Investment costRetrofit / (Operational costsOld – Operational costsNew) 

The investment costs for retrofit are determined in a similar way as the investment costs 

of new plants, explained before. The information for the reference case derives from the 

literature and these values are scaled for the capacity of each facility in the database.  

The model restricts retrofitting to only one per year for each facility. For this reason, in 

the case that several retrofits for the same plant comply with the illustrated criterion, the 

model selects the technology with the lowest PBP and verifying if this value is lower than 

2 years: 

● If YES, the software integrates in the plant the selected BAT/IT, updating in the 

database the date of last upgrade; 

● If NOT, the integration of the BAT/IT is not accepted and the final OUTPUTS can 

be issued. 

As application of BATs/ITs may lead to reductions on consumptions or GHG emissions, 

thus resulting in a decrease in operating costs, the OPEX is re-calculated. Once the cost-

effectiveness of all potential retrofits in each plant is analysed for each year, the year 

number is increased by one and the cycle starts again. 
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7 Input scenarios 

This chapter includes the description of the scenarios developed to model the energy 

consumption and GHG emissions trends in the industry up to 2050.  

The following chapter analyses the results of following scenarios: 

1. Baseline scenario 

It is based on the information presented so far. The state of the industry in 2013 

is taken into consideration and the trends are based on the 2013 EU Energy and 

GHG emissions reference scenario (EC, 2013).   

2. Fuel price variations (AS1) 

Since fuels costs represent one of the largest expenses for the chemical industry, 

variations in their prices are expected to affect the facilities in an important way. 

The three variations in this case are: 

● Low fuels prices, corresponding to the prices of the baseline scenario; 

● Medium fuels prices, where the final prices of the fuels in 2050 is twice the 

baseline prices (AS1a); 

● High fuels prices, where the final prices of the fuels in 2050 are five times the 

corresponding prices of the baseline scenario (AS1b); 

● Very high fuel prices, where the final prices of the fuels in 2050 are ten times the 

corresponding prices of the baseline scenario (AS1c). 

 

3. CO2 price variations (AS2) 

The ETS is expected to play an important role in the EU and affect the industries 

that fall under its scope. Therefore, the price of CO2 is an important input for the 

model and the respective scenarios. Despite the fluctuation in the price of CO2 in 

Europe in the recent years (Figure 4), the EU reference scenario foresees an 

increase in these prices at a level as high as EUR 100/tCO2 in 2050 (EC, 2013). 

Other sources provide more conservative projections and even a total collapse of 

the CO2 price (IHS CERA, 2012).  As a result, we analyse three cases with respect 

the price of CO2: 

● Low CO2 price, corresponding to the prices of the baseline scenario; 

● Medium CO2 price, in which the final CO2 price in 2050 is twice the baseline price 

(AS2a); 

● High CO2 price, in which in 2050 the final CO2 price is 5 times the baseline price. 

(AS2b); 

● Very high CO2 price, in which the final CO2 price in 2050 is ten times the baseline 

price (AS2c). 

As explained in Chapter 6.4, the driver selected to establish the profitability of an 

investment in BAT-IT is the payback period (PBP). In all of the above mentioned 

scenarios, the Payback time is set to be up to 2 years. 
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8 Results 

This chapter includes the simulation results and the analysis of the energy consumption 

and GHG emissions trends of the chemical industry in the EU up to 2050, under all the 

assumptions and scenarios explained in the previous chapters of this study. The first 

section includes the overall energy consumption and GHG emissions in the baseline 

scenario for the whole sector. 

 

8.1 Total energy consumption and GHG emissions trends  

The baseline scenario takes as reference the evolution of the chemical and petrochemical 

industry, assuming that the future demand for the products and the prices for CO2.eq 

allowances, fuels and feedstocks follow the assumptions of the 2013 EU Energy and GHG 

emissions reference scenario (EC, 2013).  

Figure 27 provides an overview of the trends of the total energy consumptions resulting 

from the simulation for the baseline scenario. Total energy includes all electricity and 

thermal energy, as well as energy incorporated as feedstock. It includes two cases, in the 

first one (red line) no retrofits are allowed in the sector, while in the second case (blue 

line) retrofits are happening, and as a result BATs or ITs are integrated in the facilities. 

In 2050 the chemical and petrochemical sector is expected to use in total 5 740 PJ if 

retrofits do not take place and 5 515 PJ if BATs/ITs are installed, resulting in 225 PJ or 

4 % savings. Compared to 2013, the total energy consumption will increase 39.2 % if 

retrofits are installed, whereas the production will increase 45.6 %. 

Figure 27. Trends of the total energy consumption (electricity, thermal and feedstock) in 

the EU chemical and petrochemical industry, according to the baseline scenario 

 

 

Figure 28 shows the trends of the energy incorporated in the products as feedstock, 

thermal energy and electricity directly accounted in this study. From 2013 to 2050, 

electricity and thermal energy consumption grow 14.5 % and 17.2 %, respectively; 

whereas the energy incorporated as feedstock grows 47.2 %.   
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Figure 28. Trends of production, electricity, thermal energy consumption and energy 

incorporated as feedstock in the EU chemical and petrochemical industry if retrofits are 

allowed, according to the baseline scenario 

 

Figure 29 depicts the trends of GHG emissions with or without retrofits. The savings 

between the two cases are more remarkable than in total energy consumption. If the 

industry did not incorporate any retrofits in the period 2013-2050, by 2050 the GHG 

emissions would amount to 201.5 Mt CO2.eq. The installation of BATs/ITs will reduce this 

amount to 129 Mt CO2.eq, that is, delivering 75.5 Mt CO2.eq or 36 % savings.  

Figure 29. Trends of total GHG emissions (MtCO2.eq) in the EU chemical and 

petrochemical industry, according to the baseline scenario 

 

 

The first set of alternative scenarios (AS1) analyses the impact of the prices of energy 

and feedstock in the sector. Two cases are considered. In both of them the price of any 

type of energy (fuels or electricity) in 2050 is increased. In AS1a the increase is twofold, 

in AS1b fivefold and in AS1c tenfold compared to the baseline scenario. In both cases the 

initial values in 2013 are the same, but the annual growth rates have been increased by 

a constant increment per type of energy, so that the appropriate price in 2050 is 

reached. However, none of the alternative scenarios varying the energy price offers any 
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remarkable difference compared with the baseline scenario. The reason behind this 

apparently strange behaviour is that: with the values considered in the baseline scenario 

the industry already incorporates practically all BATs at hand; as well as all potential ITs 

as soon as they become available. This makes that the more favourable conditions to 

energy-efficiency investments of the alternative scenarios are not able to foster 

additional savings to the already achieved in the baseline scenario  

The second set of alternative scenarios (AS2) analyses the impact of the prices of CO2 

allowances in the sector. Again several cases were considered, with increasing values for 

the allowances, twice, five and ten times the final value of the CO2 allowances in the 

baseline scenario. And again, the results are quite similar to the baseline scenario; the 

maximum saving provided by the most favourable scenario delivers 0.8% of additional 

CO2 to the baseline 36.8 % instead of 36 %. 

The behaviour of the individual chemical products in the different scenarios will be 

presented in detail in the following section. Although there is a variety of technologies 

that can serve as BATs or ITs, the ones that have been identified to be influenced by 

both the increase in fuel and CO2 allowances prices concern ammonia and hydrogen. 

8.2 Results per product 

The following paragraphs demonstrate in detail the results disaggregated per product. As 

a starting point, the trend in total energy consumption and total GHG emissions in the 

baseline scenario are discussed and the analysis of the influence of the alternative 

scenarios in the specific energy consumption and GHG emissions follows. Due to the 

large amount of graphs and results that are produced, only the cases which show some 

interest are presented. The application of the available best or innovative techniques is 

also argued.  

Concerning the two cross-cutting technologies (Chapter 4.5), CHP is already installed to a 

large extent in the chemical industry. The results show new CHP is foreseen installed in 

facilities producing: adipic acid, benzene, ethylbenzene, ethylene dichloride, vinyl 

chloride monomer, PVC-S and PVC-E. In total, there will be 2750 MW new electrical 

capacity, producing 9.4 TWh/y electricity. The new the CHP units are dimensioned 

according to the thermal needs of the processes. Only 12% of the electricity produced via 

CHP is consumed inside the processes. The excess (88 %) is assumed to be sold, so as to 

return financial benefit to the facilities. Most of the new capacity is installed in the first 

years of the simulation. 

On the other hand, CCS is installed in all three subsectors that are sources of high purity 

CO2. In the case of ammonia the technology becomes popular only in the part of the 

industry that is not integrated with urea production, but it is only expected, as CO2 is 

usually consumed in producing urea. In the hydrogen industry, about half of the facilities 

install CCS, while in the ethylene oxide subsector 70 %. 

8.2.1 Nitric acid 

The production of nitric acid is based on a strongly exothermic reaction, and therefore 

the amount of energy consumed for heating is low, but the process results in production 

of N2O emissions. As described in Chapter 5.1.3, the BATs applicable in this industry 

have an effect exclusively on CO2.eq emissions.  
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Figure 30. Trends of total energy consumption in the nitric acid industry, according to 

the baseline scenario  

 

Due to these characteristics the energy consumption curves with or without retrofits 

(Figure 30) overlapp each other under all different scenarios of this study. The results are 

similar for all different alternative scenarios, so only the trends according to the baseline 

scenario are presented. 

On the other hand, the application of BATs leads to substantial decrease in the GHG 

emissions from the early years of the simulation (Figure 31). The savings reach up to 

75%. The reason for this change is the great interest in the chemical industry to 

decrease N2O emissions. The specific emissions have the same behaviour as the total 

emissions and they are not depicted in a figure. By considering the production in 2050 

and the specific emission factors in 2013 and 2050 if retrofits are allowed, the savings in 

emissions will be 75 % or in absolute terms 17.5 MtCO2.eq. 
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Figure 31. Trends of total GHG emissions (MtCO2.eq) in the nitric acid industry, according 

to the baseline scenario  

 

As a conclusion, all the changes are decided in the first years of the simulation. Before 

2020 more than 80 % of the nitric acid plants will have adopted at least one of the three 

available BATs, favouring primary and secondary abatement measures, mostly due to the 

higher cost of tertiary measures. 

8.2.2 Ammonia and Urea 

For the production of ammonia there are seven BATs available, while for urea none other 

than CHP, as described in Chapter 5.2.3. According to the baseline scenario, in 2050 the 

ammonia industry can save 26 % in total energy and 48 % of GHG emissions if BATs are 

adopted compared to the case without BATs. The trends in total energy is depicted in 

Figure 32 while the ones in total GHG emissions in Figure 33. the case of urea, since 

there are no specific BATs available and the industry has already installed to a large 

extent CHP, the results do not show any difference between allowing or not BATs or 

alternative scenarios.  

0

5

10

15

20

E
m

is
s
io

n
s
 (

M
t 

C
O

2
.e

q
) 

Emissions with retrofits

Emissions without retrofits



156 

 

Figure 32. Trends of total energy consumption in the ammonia industry, according to 

the baseline scenario

 

Figure 33. Trends of total GHG emissions (MtCO2.eq) in the ammonia industry, according 

to the baseline scenario 

 

 

Concerning the type of BATs adopted, by 2020 about 85% of the facilities will have been 

revamped so as to improve their efficiency and 90% will have adopted improvements in 

the reforming section. On the other hand, BATs such as heat exchange auto thermal 

reforming becomes cost effective after 2025; pre-reforming, and the process with 

reduced primary reforming and increased process air, after 2030. Based on the 

assumptions done in this study, production of ammonia using hydrogen from water 

electrolysis is not adopted before 2050 because of its high investment costs.  

Besides CCS, there are three ITs available in the ammonia industry. 90 % of the facilities 

are foreseen to adopt the new reforming concept from 2040 onwards, while at the same 

period CCS becomes interesting for the plants that are not integrated with urea 

production. In the case of 2 facilities hydrogen from natural gas catalytic partial oxidation 

becomes cost-effective, while ammonia synthesis from electricity does not get adopted 

before 2050, as seen for the water electrolysis BAT.  
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Ammonia is one of the few chemical products considered in this study that is affected by 

higher fuel and CO2 allowances prices. If fuel prices increase adoption of pre-reforming is 

slightly delayed until 2035 and CCS is applied in 27 % less facilities until 2040 and 18 % 

onwards. It should be noted that the ammonia industry consisted of 39 facilities in 2013 

and it is foreseen to remain rather constant until 2050, so in absolute values CCS does 

not become cost effective for one fifth of the industry. The behaviour in the case of CCS 

is opposite if CO2 allowances prices increase, but the re-reforming concept is less 

adopted. 

The specific energy consumption decreases as the production increases and BATs are 

adopted (Figure 34), but the rate of decrease is hardly influenced by the price of fuels or 

CO2 allowances. The difference among the scenarios in the period 2038-2042 can be 

attributed in the delays in adopting the technologies, as discussed in the previous 

paragraph. The savings if we compare the specific emissions in 2013 and 2050 multiplied 

with the production in 2050 reach 54 % and in absolute terms 24.8 MtCO2.eq. 

Figure 34. Evolution of the specific energy consumption (TJ/ktNH3) in 2013-2050, 

according to the baseline scenario and the fuel prices alternative scenarios 

 

 

The fact that increasing the fuel prices results in slower adoption of the BATs affects the 

specific emissions of the industry (Figure 35). In 2050, the final value in the baseline and 

AS1a scenarios is 0.9 ktCO2.eq/ktNH3; in the AS1b and AS1c scenarios is 0.94 ktCO2.eq/ktNH3 . 

The initial value in 2013 is 1.98 ktCO2.eq/ktNH3  
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Figure 35. Evolution of the specific emissions (ktCO2.eq/ktNH3) in 2013-2050, according to 

the baseline scenario and the fuel prices alternative scenarios

 

For the alternatives scenarios where the price of CO2 allowances is increased, the specific 

emissions decrease faster and reach a lower minimum than in the case of the baseline 

scenario (Figure 36), clearly due to CCS. In 2050 the specific emissions in all scenarios is 

around 0.93 ktCO2.eq/ktNH3..  

Figure 36. Evolution of the specific emissions (ktCO2.eq/ktNH3) in 2013-2050, according to 

the baseline scenario and the allowances prices alternative scenarios  
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production, CCS is only marginally adopted and after 2035. This result is rather 

expected, as CO2 is used in the production of urea. Comparing the specific emissions in 

2013 and 2050 and based on the production of 2050, the savings are only 3.7% or in 

absolute terms 18 ktCO2.eq.  

8.2.3 Steam cracking 

As has been explained already, steam cracking is one of the basic processes in the 

chemical industry and it has been the major source of light olefins for more than half a 

century. As a result this sector has already gone through several optimisation cycles. 

Figure 37. Trends of total energy consumption in ethylene production, according to the 

baseline scenario 

 

Ethylene is the main product of steam cracking. According to the baseline scenario, if the 

ethylene producing industry adopts BATs the savings in energy will be from 1 % to 3 % 

until 2020, will reach 7 % by around 2030 and 6.2% by 2050 (Figure 37). When 

comparing this figure with (Figure 27) we can check the relevant role if this subsector in 

the whole industry. On the other hand, in total GHG emissions the savings build up to 

20 % until 2025 and 18 % by 2050 (Figure 38).  

Figure 38. Trends of total GHG emissions (MtCO2.eq) in ethylene production, according to 

the baseline scenario 
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The second product of steam cracking considered in this study is propylene, which can be 

produced also via fluid catalytic cracking, as explained in Chapter 5.3.1. There are no 

savings in the trends of total energy consumption for this product if BATs are installed or 

not, while the savings in total GHG emissions reach maximum 16 % in 2025 and are 

expected to be 13.5 % in 2050 in the baseline scenario                                                                                                                                                                                                                                                                                           

(Figure 39).  

Figure 39. Trends of total GHG emissions (MtCO2.eq) in propylene production, according 

to the baseline scenario

 

Concerning the type of BATs available, there are two technologies involving 

improvements in steam cracking, the first one in the furnace design and the second one 

in the compression and separation section (Chapter 5.3.3). Until 2020 both of them are 

adopted by at least half of the industry that includes both steam crackers and FCC. 

Besides BATs, there are also two innovative technologies for steam cracking, explained in 

detail in chapter 5.3.4. The adsorption heat pump seems to be adopted by big part of the 

industry in the period 2020-2035, while improvements in the separation and compression 

section via membranes application occurs from 2027 to 2040. These technologies 

decrease both the energy consumption and the GHG emissions, contributing to half of 

savings obtained at the end of the simulation. The rest of the savings are thanks to the 

BATs. 
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Figure 40. Evolution of the specific energy consumption (TJ/ktethylene) in 2013-2050, 

according to the baseline scenario and the fuels prices alternative scenarios 

 

The specific energy consumption in both ethylene and propylene production is decreasing 

as the volumes produced increase and BATs are adopted (Figure 40 and Figure 41). The 

decrease rates of specific energy consumption for the ethylene or propylene are not 

influenced by the price of fuels or CO2 allowances. 

Figure 41. Evolution of the energy consumption (TJ/ktpropylene) in 2013-2050, according 

to the baseline scenario and the fuels prices alternative scenarios 

 

  

In the case of specific emissions in ethylene production (Figure 42), increasing the price 

of fuel prices or CO2 allowances does not influence the rate of achieving the minimum 

emission factor. In 2050 the ethylene emission intensity is 0.83 ktCO2.eq/ktethylene, while in 

2013 1.12 ktCO2.eq/ktethylene. Based on these values multiplied with the ethylene production 

in 2050, the savings calculated amount in 8.6 MtCO2.eq or almost 25%. 
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Figure 42. Evolution of the specific emissions (ktCO2.eq/ktethylene) in 2013-2050, according 

to the baseline scenario and the fuels prices alternative scenarios

 

In the case of the specific emissions of propylene, the influence of both fuel and CO2 

allowances prices is not significant. The industry achieves the minimum emission factor in 

all scenarios around 2026 and it is 0.267 ktCO2.eq/ktpropylene (Figure 43).  

Figure 43. Evolution of the specific emissions (ktCO2.eq/ktpropylene) in 2013-2050, according 

to the baseline scenario and the allowances prices alternative scenarios 

 

 

8.2.4 Hydrogen and Methanol 

In order to model the complex hydrogen industry, five different processes were 

considered (Chapter 5.4.1), together with two processes for methanol production, which 

utilises hydrogen as feedstock. It is also one of the subsectors in the chemical industry 

with promising processes affecting the non-energy use, such as electrolysis that 

decreases the fossil fuel used and the GHG emissions, but increases significantly the 

electricity consumption of the facility. As a result its adoption is not widespread (less 

than 10% of the industry coverts to it) and the total energy consumption of the hydrogen 

industry does not appear to decrease with or without retrofits (Figure 44). Another BAT 

that is adopted by a large part of the industry is preheating of the combustion air, thus 

recycling energy, but its influence in the energy consumption is not noticeable. 
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Figure 44. Trends of total energy consumption in hydrogen production, according to the 

baseline scenario  

 

 On the other hand, total GHG emissions are influenced by the adoption of BATs or ITs 

(Figure 45). Regarding innovative technologies, there are four that are considered in this 

study: the use of biomass as feedstock, improvements in the steam methane reforming, 

catalytic partial oxidation of natural gas and CCS. They are all described in detail in 

Chapter 5.4.4 and Chapter 4.6.2. The use of biomass of feedstock does not seem to 

become cost effective so as to be adopted by the industry, but about 40 % of the 

hydrogen industry retrofits improvements in the steam methane reforming from 2020 

onwards. In addition, catalytic partial oxidation of natural gas is adopted by a few 

facilities as early as 2018. The most important IT is CCS, which is already available in the 

case of hydrogen. Its adoption is foreseen to start around 2020 by as much as 70 % of 

the industry at that time (about 140 facilities (59)). This is the reason why GHG emissions 

in Figure 45 decrease in 2018. Production of hydrogen from electrolysis results in 20 PJ 

more energy consumed (in the form of electricity) compared to the current status of this 

subsector. The small increase in emissions in the period 2020-2030 is due to the parallel 

adoption of improvements in the steam methane reforming, which offsets a bit the 

savings. 

Figure 45. Trends of total GHG emissions in hydrogen production, according to the 

baseline scenario 

 

                                           

59 It should be noted that the number of facilities in this study for the hydrogen industry does not correspond to 
the actual facilities. This is because the production of hydrogen as by-product has been modelled as one 
fictitious facility per country including all the capacity that is known per country. 
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Methanol production has also the hydrogen from electrolysis as BAT and shares the 

innovative technologies with the hydrogen production, with the only exception of CCS. 

The trends of total energy consumption for this subsector are shown in Figure 46, while 

the trends in GHG emissions follow a similar behaviour as the energy. Innovative 

technologies are responsible for 81 % of the emission savings in the case of hydrogen 

and 75 % in the case of methanol.  

Figure 46. Trends of total energy consumption in methanol production, according to the 

baseline scenario 

 

 

The effect of electrolysis is even clearer in the specific energy consumption, with the pick 

observed in 2018 (Figure 47). As production increases and thanks to the rest of the 

BATs, the specific energy is then decreasing. In the case that fuel prices increase five or 

ten times more than the baseline scenario, the adoption of natural gas catalytic partional 

oxidation and CCS is slightly hindered, as a result in 2050 the specific energy in these 

two scenarios is about 1 % higher. The influence of CO2 allowances prices in the 

behaviour of the industry is similar to the fuel prices,  

Figure 47. Evolution of the energy consumption (TJ/ktH2) in 2013-2050, according to the 

baseline scenario and the fuels prices alternative scenarios
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Figure 48 shows that the broad adoption of electrolysis and CCS in the early years of the 

simulation leads to a sharp decrease of the emission intensity, making ineffective the 

higher allowances prices considered in the alternative scenarios.   

Figure 48. Evolution of the specific emissions (ktCO2.eq/kthydrogen) in 2013-2050, according 

to the baseline scenario and the allowances prices alternative scenarios 

 

 

8.2.5 Adipic acid 

Adipic acid is one of the products in the chemical industry, where changes have already 

been taking place, as explained in Chapter 5.5, due to the great interest in decreasing 

N2O emissions. This subsector consists of only a few plants that have shown interest in 

adopting end-of-pipe BATs. Only two plants have not been reported to have one of the 

available BATs in 2013. If these plants also adopt a BAT, the difference in emissions 

could reach 70 %.   

Figure 49. Trends of total energy consumption in adipic acid production, according to 

the baseline scenario 
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There are three BATs available for N2O abatement and, according the model, both plants 

install tertiary measures as early as 2014. CHP is also further installed in the facilities 

producing adipic acid, adding in total about 20 MW electrical capacity. From the 

electricity produced per year from CHP 87 % is consumed inside the facilities and the rest 

(7500 MWh) is sold out. In 2030 there is the next change taking place, when the efficient 

and environmentally friendly "one-step adipic acid process" becomes available and is 

adopted by almost all the plants. The description of the IT is done in Chapter 5.5.4. This 

innovative technology is responsible of the abrupt decrease in the total energy 

consumption shown in Figure 49.  

Figure 50. Evolution of the specific energy consumption (TJ/ktadipic acid) in 2013-2050, 

according to the baseline scenario and the fuels prices alternative scenarios 

 

 

As far as the specific energy consumption and GHG emissions are concerned, the 

presence of BATs or ITs decrease them significantly, but the adipic acid industry is not 

sensitive to fuel (Figure 50) or CO2 allowances prices (Figure 51), as the same changes 

take place irrespective of the scenario. Specific energy consumption decreases from 31.6 

TJ/kt in 2013 to about 22.4 TJ/kt in 2050, thanks to the "one-step" process. Equivalently, 

the specific emission factors decrease from 2.9 ktCO2.eq/ktadipic acid to 0.3 ktCO2.eq/ktadipic acid, 

corresponding to 89% savings or in absolute terms 2.1 MtCO2.eq (based on the 2050 

production of adipic acid). 
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Figure 51. Evolution of the specific emissions (ktCO2.eq/ktadipic acid) in 2013-2050, 

according to the baseline scenario and the allowances prices alternative scenarios 

 

 

8.2.6 Soda ash 

All European soda ash is produced using the Solvay process, also called the ammonia 

soda process (Chapter 5.6.1). For this process there are four BATs available, all 

described in detail in Chapter 5.6.3. From these four, integrated design and operation is 

the technology adopted by 11 out of the 17 facilities in 2050, while optimisation of the 

process to avoid excessive CO2 emissions by 9 and the vertical shaft kiln by only 3. As a 

result, if retrofits are allowed, the soda ash industry decreases in 2050 its total energy 

consumption by about 13 %, as can be seen in Figure 52, and its total emissions by 

39 % (Figure 53).  

Figure 52. Trends of total energy consumption in soda ash production, according to the 

baseline scenario 
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Figure 53. Trends of total GHG emissions in soda ash production, according to the 

baseline scenario 

 

 

In 2050, the specific energy consumption is around 11.4 TJ/ktsoda ash and is affected 

mostly by the application of integrated design and operation. On the contrary, specific 

emissions are more influenced by the increase in production and the fact that the 

facilities are becoming more emission efficient (Figure 54). Increasing the fuel or 

emission allowances prices does not result in any difference in the evolution of the 

specific energy or emissions. In 2050 the specific emission intensity is 0.59 ktCO2.eq/ktsoda 

ash, while in 2013 1.0 ktCO2.eq/ktsoda ash. Taking into consideration the production of soda 

ash in 2050, 42 % savings are achieved and in absolute terms 4.3 MtCO2.eq.    

Figure 54. Evolution of the specific emissions (ktCO2.eq/ktsoda ash) in 2013-2050, according 

to the baseline scenario and the fuel prices alternative scenarios 
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Figure 55. Trends of total energy in benzene production, according to the baseline 

scenario

 

Since, in the case of aromatics, our database does not include actual number of facilities 

but actual number of production lines, the two terms are not directly comparable. As an 

indication of the level of adoption of energy integration, 60 % of the benzene productions 

lines adopt this technology. Regarding CHP, the newly installed electrical capacity is 76.7 

MW attributed to the aromatics production. From the electricity produced, 65 % is sold, 

while the rest is used internally. Attention should be given when quantifying the CHP 

installations in the aromatics industry, as they are produced both in the chemical and in 

the refining industries.   

Concerning the specific energy consumption, there is only small variations in the period 

2013-2020 and they do not depend on fuels or allowances prices. For benzene the 

average energy consumption is 28 TJ/ktbenzene, while for toluene and xylenes, it is 42.2 

TJ/kttoluene and 43 TJ/ktxylenes respectively. In 2050 the specific emissions for the three 

aromatics are 0.78 ktCO2.eq/ktbenzene, 0.15 ktCO2.eq/kttoluene and 0.17 ktCO2.eq/ktxylenes. There is 

rather an increase in the emissions in the aromatics industry that can be attributed to the 

installation of CHP.  

8.2.8 Carbon black 

Carbon black is produced via the furnace black process (Chapter 5.8.1) and there are not 

BATs or ITs available that are considered in this study, as the available ones either were 

outside of the scope of this study or there was limited information about their 

performances, as explained in detail in Chapter 5.8.3 and 5.8.4. The only exception is 

CHP.  

Already more than 60 % of the carbon black industry has been identified to have CHP 

installed in 2013. According to the model, no further installations are foreseen. As a 

result, both total energy and GHG emissions are similar with or without retrofits and they 

grow in parallel with the production (Figure 56).   
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Figure 56. Trends of total energy in carbon black production, according to the baseline 

scenario 

 

 

Varying the prices of fuels or CO2 allowances does not affect the performance of this 

subsector of the chemical industry.  

 

8.2.9  Ethylene oxide and Monoethylene glycol 

Ethylene oxide (EO) and monoethylene glycol (MEG) are two connected processes. The 

main BAT available for this sub-sector of the chemical industry is the OMEGA process, 

whose final product is MEG, as a result any savings in energy are more obvious in the 

MEG production part (Figure 57). About 70 % of the MEG industry adopts the new 

process, since it avoids the production of higher glycols, but its effect in energy savings is 

dual. From one side it decreases the feedstock and steam consumed, but it increases the 

electricity consumption. In the baseline scenario and for 2050, the energy savings 

between allowing retrofits and not are 4.2 % and in absolute terms 0.2 PJ.  

Figure 57. Trends of total energy consumption in MEG production, according to the 

baseline scenario 

 

  

90

100

110

120

130

140

150

T
o
ta

l 
e
n
e
rg

y
 (

P
J)

 

Total with and

without retrofits

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

T
o
ta

l 
e
n
e
rg

y
 (

P
J)

 

Total with retrofits

Total without retrofits



171 

 

On the other hand, as far as the ethylene oxide production part is concerned, CCS is a 

possible technology for this subsector and is installed in facilities after 2030. By 2050 

70% of the facilities practice CCS, which leads to emission savings as illustrated in Figure 

58. In 2050 the savings between allowing retrofits and not in the baseline scenario reach 

40 % and in absolute terms 1.6 MtCO2.eq.    

Figure 58. Trends of total GHG emissions in ethylene oxide production, according to the 

baseline scenario 

 

 

As far as the specific energy consumptions for the two chemicals is concerned, in 2050 

for ethylene oxide is 25.3 TJ/ktEO and for monoethylene glycol 2.5 TJ/ktMEG. Variations of 

fuels or allowances prices do not affect the behaviour of the industry for the energy point 

of view.  

Equivalently, the specific GHG emissions in 2050 for monoethylene glycol are 1 

ktCO2.eq/ktMEG and for ethylene oxide 0.6 ktCO2.eq/ktEO and remain the same with varying 

fuels or allowances prices. In 2013 they were 1 ktCO2.eq/kt for both products. If the 

production of the two chemicals in 2050 is taken into consideration, the combined 

savings of GHG emissions for the ethylene oxide and MEG amounts up 1.6 MtCO2.eq. The 

evolution in the specific GHG emissions in the case of ethylene oxide for the different 

allowances alternative scenarios is shown in Figure 59. The sharp decrease is thanks to 

CCS.  

Figure 59. Evolution of the specific emissions (ktCO2.eq/ktEO) in 2013-2050, according to 

the baseline scenario and the allowances prices alternative scenarios 
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8.2.10 Ethylene dichloride and Vinyl chloride monomer 

As in the case of ethylene oxide and MEG, ethylene dichloride (EDC) and vinyl chloride 

monomer (VCM) are also connected processes. The main BAT available for this sub-

sector of the chemical industry is the pigging technology, which is really a cleaning 

technology, leading to lower loss of valuable products. It is described in detail in Chapter 

5.11.3. About 60% of the facilities producing EDC and 50 % of the ones producing VCM 

install this technology in the period 2013-2050. Besides pigging, the industry adopts 

CHP. 1710 MW electrical capacity is attributed to the ethylene dichloride industry and 

730 MW to the VCM industry. From the electricity produced via CHP 94 % in the EDC part 

and 80 % in the VCM part is sold out.  

The effect of adopting BATs is neither visible in total energy nor in total GHG emissions. 

Any decrease in emissions achieved thanks to the pigging technology is offset by the 

increase due to CHP (Figure 60). As the pigging technology decreases mainly the 

electricity consumption, the savings in energy are not so obvious either, since feedstock 

is the main contributor to the energy consumption. In 2050, the energy savings between 

allowing retrofits and not are only 0.6 % in EDC production and 2% in VCM production. 

Similarly, the emissions savings are 1.4 % in EDC and 0.4 % in VCM.  

Figure 60. Trends of total GHG emissions in EDC production, according to the baseline 

scenario

 

 

Figure 61. Evolution of the specific energy consumption (TJ/ktEDC) in 2013-2050, 

according to the baseline scenario and the fuels prices alternative scenarios 
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Concerning the specific energy consumptions for ethylene dichloride, it hardly changed 

the 7.8 TJ/ktEDC from 2013-2050, which corresponds to 104 PJ for the 2050 production of 

2050. In the case of vinyl chloride monomer the savings are only 1 PJ or about 3 %, 

since the specific energy consumptions in 2013 and 2050 are 5.8 TJ/ktVCM and 5.6 

TJ/ktVCM respectively. 

On the other hand, the specific GHG emissions in the case of VCM decreased from 0.48 

ktCO2.ew/ktVCM in 2013 to 0.47 ktCO2.ew/ktVCM,in 2050 leading to 3% savings (based on the 

2050 production). For EDC the specific emission intensity decreased only marginally, 

resulting in only 2 % emissions savings. Variations of fuels prices or CO2 allowances 

prices do not affect the industries for energy or emissions.  

 

8.2.11 PVC 

PVC is an interesting set of products, as there are two configurations (suspension or PVC-

S and emulsion or PVC-E), as well as a recycled product, which is considered to be the 

innovative technique of the subsector. 

Figure 62. Trends of total GHG emissions in PVC-S production in the baseline scenario

 

  

Actually, there is only one BAT available for the two types of PVC and that is the pigging 

technology, of course, besides CHP. The industry adopts this technology at a percentage 

more than 90 % for both PVC-S and –E. As already explained before, this BAT minimises 

the loss of valuable products and affects mainly the total emissions. On the other hand, 

CHP is slightly increasing the emissions if adopted and in the case of the two virgin PVC 

there are new installations. The new electrical capacity in PVC-S amounts to 5 MW and in 

PVC-E to 39 MW. All electricity produced via CHP is consumed internally in this industry 

and it covers 17 500 MWh in the case of PVC-S and 132 000 MWh in PVC-E.  

Figure 62 is indicative of the trends in total emissions for PVC-S and PVC-E is similar. In 

2050 the savings in GHG emissions between allowing retrofits and not reach only 0.9 % 

and 0.7 % for PVC-S and –E respectively. Similar is the situation in the case of total 

energy is only 0.5 % and 0.9 % respectively.    

PVC recycling is a rather new technology and there are no variations besides mechanical 

recycling considered in this study. It is, after all, a better technology than producing 

virgin PVC. The only trend that can be mentioned in this case is that production is 

foreseen to increase and by 2050 to be 3 times higher than currently.  
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Concerning the specific energy consumptions, adopting BATs would save about 1.5 PJ in 

the PVC-S process and 273 TJ in the PVC-E one (considering the 2050 production and the 

emission intensities in 2013 and 2050). Based on similar calculations, the specific 

emissions in the case of PVC-S change only marginally and lead to 1.5 % or 18 ktCO2.eq. 

Whereas in the PVC-E industry the savings reach 4.5 % or 17.5 ktCO2.eq, as they decrease 

from 0.41 ktCO2.eq/ktPVC-E in 2013 to 0.39 ktCO2.eq/ktPVC-E in 2050 (Figure 63). Variations of 

fuels prices or CO2 allowances prices do not affect the industry, as can be seen in Figure 

63. 

Figure 63. Evolution of the specific energy consumption GHG emissions (ktCO2.eq/ktPVC-E) 

in 2013-2050, according to the baseline scenario and the fuel prices alternative scenarios 

 

  

8.2.12 Ethylbenzene and Styrene 

Figure 64 and Figure 65 display the trends in total energy consumption and GHG 

emissions in the case of ethyl benzene production. Advanced control and optimisation is 

considered as BAT in this subsector of the chemical industry, as well as CHP. Both are 

being adopted and it is the reason why allowing retrofits leads to savings compared to 

the case where retrofits do not take place. These savings in 2050 correspond to 0.9 PJ or 

2.7% in energy and 50 ktCO2.eq or 3.2 % in emissions between allowing retrofits and not.  

CHP is further adopted in the ethylbenzene industry. The new CHP electrical capacity 

amounts to 165 MW and from the electricity produced 63 % is sold out and the rest 

consumed internally.  
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Figure 64. Trends of total energy consumption in ethyl benzene production according to 

the baseline scenario

 

 

Figure 65. Trends of total GHG emissions in ethyl benzene production according to the 

baseline scenario 

 

 

Figure 66 shows the trend of total GHG emissions for the styrene industry, which grow 

linearly with production. It has the same BATs as the ethyl benzene industry, as the two 

processes are connected. The savings from retrofits in 2050 amount to 1.6 PJ or 0.5 % in 

energy and 163 ktCO2.eq or 3.1 % in emissions.   

10

15

20

25

30

T
o
ta

l 
e
n
e
rg

y
 (

P
J)

 

Total with retrofits

1

1.1

1.2

1.3

1.4

1.5

1.6

E
m

is
s
io

n
s
 (

M
t 

C
O

2
.e

q
) Emissions with retrofits

Emissions without retrofits



176 

 

Figure 66. Trends of total GHG emissions in styrene production in the baseline scenario

 

  

There is also an innovative technology available, the Exelus styrene process, but it does 

not become cost efficient, so as to be adopted by the industry. 

The specific emissions intensity between 2013 and 2050 decreases marginally both in the 

case of ethylbenzene (Figure 67) and styrene. If the production of each product of 2050 

is taken into consideration, the savings in emissions correspond to 90 ktCO2.eq or 5.5 % 

for ethylbenzene and 290 ktCO2.eq or 5.5 % for styrene, 

Figure 67. Evolution of the specific GHG emissions (ktCO2.eq/ktethylbenzene) in 2013-2050, 

according to the baseline scenario and the fuels prices alternative scenarios 

 

 

Equivalently, the specific energy consumption for the two products is also changing 

marginally. Based on the same calculations as for emissions, in the case of styrene 2.1 PJ 

or 0.6 % is saved (Figure 68), but for ethylbenzene 12 PJ more are needed.  

Figure 68. Evolution of the specific energy consumption (TJ/ktstyrene) in 2013-2050, 

according to the baseline scenario and the fuel prices alternative scenarios 
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8.2.13 Chlor-alkali 

Chlorine is one of the most electricity-intensive subsectors of the chemical industry. It 

can be produced by three processes of which the membrane cells are considered to be 

best available technique, as they are less energy intensive and, hence, less impacting in 

terms of GHG emissions (Chapter 5.9.3). The facilities with mercury cells convert readily 

to membrane cells, while asbestos diaphragm cells are also abandoned throughout the 

whole period of the study. CHP on the other hand does not get installed in the industry 

further than the current situation.  

Besides the conversion of the other two types in membrane cells and CHP, high 

performance bipolar membrane cells are also considered as BAT in the current study. It 

becomes cost-effective quite early in the simulation period and gets installed in about 

half the plants producing chlorine.  

In addition to these BATs, there is also an innovative technology considered in the study: 

the oxygen–depolarised cathodes. It is a variant of the membrane cells and is described 

in detail in Chapter 5.9.4. It is installed in a few facilities until 2020, but after this point 

the interest of the industry in it grows.  

Figure 69. Trends of total energy consumption in chlorine production according to the 

baseline scenario 
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Figure 69Error! Reference source not found. and Figure 70 depict the trends in total 

energy consumption and total GHG emissions for the chlor-alkali industry. Both 

quantities grow linearly with the production. If BATs are installed, the savings in 2050 

add up to 33.2 PJ or 20 % in energy and 3.8 MtCO2.eq or 16.5 % in emissions. 

Figure 70. Trends of total emissions in chlorine production in the baseline scenario 

 

 

As far as it concerns the specific energy consumption, the value in 2013 was 12.3 

TJ/ktchlorine, while in 2050 it is 9.3 TJ/ktchlorine and is rather insensitive to changes in fuel or 

CO2 allowances prices (Figure 71). Based on the chlorine production of 2050, there will 

be 41.8 PJ or 24 % energy savings between 2013 and 2050. 

Figure 71. Evolution of the specific energy consumption (TJ/ktchlorine) in 2013-2050, 

according to the baseline scenario and the emissions allowances prices alternative 

scenarios 
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On the other hand, the specific GHG emissions decrease more strongly. Figure 72 shows 

the evolution of the specific emission factors for the different variations in CO2 allowances 

prices. The specific emission intensity in 2013 was 1.3 ktCO2.eq/ktchlorine and in 2050 is 

foreseen to become 0.9 ktCO2.eq/ktchlorine. By multiplying these values with the chlorine 

production in 2050, almost 32 % emissions savings are calculated, corresponding to 5.8 

MtCO2.eq .  

Figure 72. Evolution of the specific GHG emissions (ktCO2.eq/ktchlorine) in 2013-2050, 

according to the baseline scenario and the fuel prices alternative scenarios 
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9 Conclusions 

Before drawing any conclusions about this study, some precautions should be 

highlighted. This document reflects the potential trend in energy consumption and GHG 

emissions of the chemical industry under some assumptions. Deviation from these 

assumptions will make the actual trends differ from the results estimated. The first and 

most demanding assumption is that the European industry remains globally competitive, 

and therefore, we assume that the European demand for chemicals is met by the 

European production in the same way as currently. This can be challenging for some of 

the scenarios analysed, if there are not similar global conditions (especially in the high 

fuel prices and allowances prices). The rationale of those scenarios is to analyse what the 

industry could provide in a cost-effective fashion to reduce GHG emissions and energy 

consumption under those circumstances. This potential is analysed without assigning 

more or less credibility to those scenarios. In any case, and as the communication on the 

Energy Union states (EC, 2015d) the policies to prevent carbon leakage should reflect the 

degree of efforts undertaken in other major economies. The Commission, together with 

Member states, will engage with other major economies to convince them to join 

Europe's ambition, which is reflected in the agreement on the 2030 and 2050 climate and 

energy framework. The EU has committed to at least 40 % of domestic reduction in GHG 

emissions, compared to 1990 by 2030; and 80 % by 2050. 

In addition, although the uncertainty of some potential factors affecting the interest in 

adopting technological improvements has been tackled varying those factors in different 

scenarios, the values assigned to some of the detailed characteristics of the technologies 

are not exempt from uncertainty. Moreover, the list of technologies cannot be 

comprehensive, as for some of them there is no information publicly available.  

Keeping in mind these precautions, we also have to asset the ambition and degree of 

detail of this exercise. The chemical and petrochemical industry is a very diversified and 

complex sector in terms of portfolio of manufactured products, processes and 

technologies in use or under development, differences in production capacities, 

performances etc. Nevertheless, this study analyses the energy consumption and GHG 

emissions trends of the industry based on detailed information at facility level for all 

plants involved in the production of 26 major chemical products. These 26 products cover 

75 % of the total energy and non-energy use of the EU-28 chemical industry in 2013, 

and most of the emissions in the same year. As such, this model can be considered the 

first-of-its-kind for this industry.  

The baseline scenario indicates that the adoption of best available and innovative 

technologies would mean annual savings of 72.5 MtCO2.eq and 225 PJ (5.4 Mtoe) by 2050. 

Including these savings, the total annual emissions and energy consumption by 2050 of 

the products covered in this study amounts up to 129 Mt MtCO2.eq and 5515 PJ (131.7 

Mtoe). In absolute terms, from 2013-2050 the total energy consumption increases by 

39.2 % and the GHG emissions' decrease by 14.7 %; these values include the effect (and 

depend on) a demand increase of 45.6 %. The different scenarios, varying significantly 

the fuel prices and the price of the CO2 allowances, hardly change these results; 

meaning that, practically all the savings potentials are materialised under the 

assumptions of the baseline scenario.  

The small improvement of just only 4% (225 PJ) of total energy consumption by 2050 

can be partly explained by the fact that non-energy consumption is not affected a lot by 

the new technologies, while it represents on average 77% of the total energy 

consumption. In fact, the peculiarity of the chemical and petrochemical industry of 

incorporating most of the energy consumed in its products is unique among the energy-

intensive industries. Most BATs and ITs reduce the electricity, thermal energy or steam 

consumed in the processes, but not directly the energy consumed as feedstock. Big 

changes in non-energy consumptions are expected only from technologies that replace 

the fossil feedstock with some more sustainable alternative, such as production of 

hydrogen from electrolysis or if chemicals could be produced by biomass. Electrolysis 
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unfortunately increases the electricity consumption of the facilities, while break-through 

technologies such as biomass as feedstock are so early in research stages that either will 

not be available before 2050 or there is no information available for the performances, so 

they could not be included in the current study. A small fraction of the savings identified, 

about 16%, can be attributed to savings of feedstock, while the rest 84% (corresponding 

to 189 PJ in 2050) is savings in the electricity or fuels (used for thermal needs or steam 

in the processes). If only this part is taken into consideration for the calculation, then the 

percentage of savings is 13% in the case of the baseline scenario.  

Concerning the chemical products that contribute the most to the savings of GHG 

emissions between 2013 and 2050, nitric acid and adipic acid play an important role ; 

their specific emission factors in 2050 is 75% and 90% lower than in 2013, respectively. 

This is an expected result, as the chemical industry has shown already great interest in 

reducing the nitrous oxide emissions, which have a really high global warming potential. 

In the case of nitric acid, the industry prefers installing primary and secondary 

abatement measures; while the adipic acid subsector, tertiary measures. It is assumed 

that, after 2030, there will be an innovative technology in the adipic acid industry that 

will contribute in decreasing the process emissions not related to nitrous oxide. 

Ethylene, chlorine, ammonia and hydrogen are important as they are the most produced 

chemicals (16% of the total production in 2050 for ethylene, 11% for chlorine and 6% for 

ammonia). The reduction of the specific GHG emissions of these four chemicals is 

estimated to be 27% for ethylene, 31% for chlorine, 54% for ammonia and 75% for 

hydrogen. Advanced process control is already considered as a default technology for 

steam crackers, but savings can be attributed mainly to improvements in the 

compression and separation section and the use of adsorption heat pumps, and 

secondarily to improved furnace design and the use of membranes in the separation 

section. In the case of chlorine, all of the three BATs special for this industry (conversion 

of mercury and asbestos diaphragm cells to membrane ones and high performance 

bipolar membrane cells) are being installed in big part of the industry. Further 

improvements are thanks to oxygen-depolarised cathodes, which is though not available 

before 2020. 

Soda ash, ethylene oxide and monoethylene glycol have also high reduction potentials, 

but their importance is smaller as their production volumes represent a smaller share in 

the whole production. For soda ash the most important BAT is integrated design and 

operation, while for ethylene oxide/monoethylene glycol the savings are firstly due to 

adoption of the OMEGA technology and further installing CHP, but mainly thanks to CCS. 

The potentials for them were estimated at around 42% for soda ash and for ethylene 

oxide and 1% for MEG. 

The specific energy consumption of the chemical industry is foreseen to decrease in 2050 

compared to 2013, with only few exceptions. The highest improvements happen for 

ammonia (24% lower), which can be attributed to the high extent of revamping the 

plants so as to improve energy efficiency, for adipic acid (29% lower), thanks to the 

innovative technology that is based on alternative synthetic pathways or innovative 

catalysts, chlorine (24% lower), mainly because the older and less efficient cell-types are 

abandoned for more efficient and environmentally friendly options..  

There are two cross-cutting technologies considered in this study: combined heat and 

power (CHP) and carbon capture and storage (CCS). Although CHP is already installed to 

a large extent in the chemical industry, the model foresees the installation of additional 

2750 MW of electrical capacity. Mainly in the production of: adipic acid, benzene, 

ethylbenzene, ethylene dichloride, vinyl chloride monomer, PVC-S and PVC-E. Only 12% 

of the 9.4 TWh/y electricity produced via CHP is consumed inside the processes, while 

the excess is sold. On the other hand, the model installs CCS in all three subsectors that 

are sources of high purity CO2. In the case of ammonia the technology becomes popular 

only in the part of the industry that is not integrated with urea production, but it is only 

expected, as CO2 is usually consumed in producing urea. In the hydrogen industry, about 

70% of the facilities install CCS, while in the ethylene oxide subsector 80%. 
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It is worth noting that the model also relies on the hypothesis that some technology 

innovations will become available at some point in the future. Since these key 

technologies include carbon capture and storage (CCS), these findings confirm the critical 

nature of these technologies (EC, 2015d) in order to achieve the 2050 climate objectives 

cost-effectively. In particular, CCS in processes resulting in near-pure CO2 streams (e.g. 

ammonia, hydrogen, ethylene oxide etc.) has a considerable contribution in terms of 

GHG emissions reductions. In some cases, it is a technically ready technology (e.g. 

ammonia), but the rest of the cases are of more importance for the chemical industry. 

Therefore, one of the main conclusions of this study is the clear need for a decisive push 

for some technologies and to create the right conditions to make these potential savings 

happen.  
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Annex 1: Abbreviations 

  

AA Adipic acid 

AHR Adsorption heat pump 

APC Advanced process control 

BAT Best available technique 

BTX Benzene, toluene, xylenes 

CB Carbon black 

CCS Carbon Capture and Storage 

Cefic Conseil Européen des Fédérations de l'Industrie Chimique 

CEPCI Chemical engineering plant cost index 

CHP Combined heat and power 

CWT CO2 weighted tonne 

DEG Diethylene glycol 

DME Dimethyl ether 

ECVM European Council of vinyl manufacturers 

EDC Ethylene dichloride 

EEA European Environmental Agency 

ELV Emission limit value 

EMS Energy management systems 

EO Ethylene oxide 

E-PRTR European Pollutant Release and Transfer Register 

ESAPA European Soda Ash Producers Association 
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EU European Union 

EU-ETS EU Emissions Trading System 

FCC Fluid catalytic cracking 

GDP Gross domestic product 

GHG Greenhouse gas 

HDPE High density polyethylene 

HFCs Hydro-fluorocarbons 

HHV Higher heating value 

HVC High value chemicals 

IGCC Integrated gasification combined cycle 

IED Industrial Emissions Directive 

IPPC Integrated Pollution Prevention and Control 

IT Innovative technology 

KA oil Ketone alcohol oil (mixture cyclohexanone – cyclohexanol) 

LHV Lower heating value 

LDAR Leak detection and repair (programmes) 

LDPE Low density polyethylene 

LLDPE Linear low density polyethylene 

LPG Liquefied petroleum gas  

MEK Methyl ethyl ketone 

MEG Monoethylene glycol 

MTBE Methyl tert-butyl ether 

MTO Methanol to olefin 
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MVR Mechanical vapour recompressing 

NGCC Natural gas combined cycle 

NGL Natural gas liquids 

NRP New reference plant 

NSCR Non selective catalytic reduction 

ΟΕ Overall efficiency 

OECD Organisation for economic co-operation and development 

ODC Oxygen depolarised cathode 

OPEX Operating expenses 

PBP Payback period 

PE Polyethylene 

PEM Polymer electrolyte membrane 

PES Primary energy savings 

PFCs Perfluorocarbons  

PET Polyethylene terephthalate 

PVC Polyvinylchloride 

REACH Registration, evaluation, authorisation and restriction of chemicals 

SC Steam cracking 

SCR Selective catalytic reduction 

SEC Specific energy consumption 

SNCR Selective non-catalytic reduction 

SOEC Solid oxide electrolyser cell 

TAME tert-Amyl methyl ether 
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TDI toluene diisocyanates 

TEG Triethylene glycol 

toe Tonne of oil equivalent 

UNFCCC United Framework Convention on Climate Change 

VCM  Vinyl chloride monomer 

VSA Vacuum swing adsorption 
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Annex 2: Basic chemical product chains 

This annex presents the range of products from the basic chemical substances. The 

pictures belong to the American Chemical Council (ACC, 2013). 

Ammonia 

 

  



221 

 

Ethylene 
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Benzene 
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Toluene 
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Xylene 
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Chlor-alkali 
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Annex 3: Calculation of national energy mixes 

For some products, such as hydrogen and PVC recycling, fictitious facilities are used. In 

these cases the fuel used is not clearly defined and as a result it is assumed that the 

national energy mix of the country they are located in is the fuel used in the process. It 

should be noted that this methodology is used only for these fictitious facilities and 

nowhere else in the study. 

In order to decide the energy mix of the different European member states in 2013, the 

information for the chemical and petrochemical sector available from the IEA World 

energy balances are used (IEA, 2015). Only coal, peat, crude oil, oil products, natural 

gas and biofuels and waste are taken into consideration. The percentage of each one of 

them in the fuel use of 2013 is shown in the table below. 

Fuel use in the EU-28 chemical and petrochemical sector in 2013 

Product 
Coal / coal 

products 

Peat / peat 

products 

Crude, 

NGL 

Oil 

products 

Natural 

gas 

Biofuels 

/ waste 

Country (%) 

Belgium    1.67 97.42 0.91 

Bulgaria 26.24   4.71 68.80 0.25 

Czech Republic 44.88   0.20 53.88 1.04 

Denmark 0.51   6.41 93.06 0.02 

Germany 6.90   20.97 69.11 3.02 

Estonia    2.92 97.01 0.06 

Ireland    33.30 66.70  

Greece    43.60 56.40  

Spain 5.39  0.15 4.49 89.81 0.15 

France 13.82   14.03 68.82 3.33 

Croatia    2.81 97.19  

Italy 0.09   29.31 65.74 4.86 

Cyprus    100.00   

Latvia    18.91 51.78 29.31 

Lithuania    1.63 96.03 2.34 

Luxembourg    4.74 95.26  

Hungary 0.34   9.73 89.87 0.06 

Netherlands   51.99 1.36 46.62 0.03 

Austria 2.81   6.34 69.27 21.58 

Poland 57.04   25.22 16.47 1.28 

Portugal 6.81   6.33 85.57 1.29 

Romania 7.98  0.29 21.60 68.16 1.97 

Slovenia    10.23 69.71 20.05 

Slovakia    7.16 87.47 5.37 

Finland    88.20 4.94 6.86 

Sweden  3.71  39.79 52.75 3.75 

United Kingdom 3.89   7.16 88.94  

Based on the information of this table, we are able to calculate characteristics such as 

emission factors, lower heating values (LHV) and prices for the fuel mix of each country. 

The following table includes these values. For emission factors and LHVs the values in 

Regulation 601/2012 (EC, 2012b) are used, while prices are the weighted average of the 
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fuel prices per country according to (IEA, 2016a) and (IEA, 2016b). Information about 

biofuels is restricted, as a result for all countries the average value between bioethanol 

and biodiesel was used, as these are reported in (OECD, 2014). 

Lower heating values, emission factors and prices 2013 for each country fuel mix 

Product 
Lower heating value Emission factor Price 2013 

Country (GJ/t) (tCO2/ GJ) (EUR/GJ) 

Belgium 47.66 0.05584 8.57 

Bulgaria 41.51 0.06689 9.91 

Czech Republic 37.04 0.07305 8.63 

Denmark 47.60 0.05724 12.95 

Germany 44.57 0.06021 11.45 

Estonia 47.86 0.05650 10.26 

Ireland 16.58 0.06104 14.52 

Greece 46.15 0.06257 15.78 

Spain 46.48 0.05880 9.78 

France 43.13 0.06171 11.40 

Croatia 47.88 0.05652 10.81 

Italy 45.28 0.05776 15.05 

Cyprus 43.75 0.07095 18.57 

Latvia 38.42 0.04246 14.58 

Lithuania 47.23 0.05503 10.92 

Luxembourg 47.80 0.05680 11.58 

Hungary 47.49 0.05764 9.90 

Netherlands 45.46 0.06286 11.57 

Austria 40.61 0.04603 12.37 

Poland 33.03 0.08137 7.70 

Portugal 45.73 0.05898 12.11 

Romania 44.59 0.06135 12.16 

Slovenia 41.56 0.04637 14.27 

Slovakia 46.09 0.05415 11.27 

Finland 42.20 0.06535 23.63 

Sweden 43.77 0.06176 17.27 

United Kingdom 46.77 0.05868 9.46 
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