

ATTIVITÀ NUCLEARI E RADIOATTIVITÀ AMBIENTALE

DATI 2023

Informazioni

L'Ispettorato nazionale per la sicurezza nucleare e la radioprotezione (ISIN), è l'Autorità di regolamentazione competente in materia di sicurezza nucleare e di radioprotezione, indipendente ai sensi delle Direttive 2009/71/Euratom e 2011/70/Euratom.

L'Ispettorato non è responsabile per l'utilizzo che può essere fatto delle informazioni contenute in questo Rapporto.

Riproduzione autorizzata citando la fonte.

ISIN – Ispettorato nazionale per la sicurezza nucleare e la radioprotezione Via Capitan Bavastro, 116 – 00154 Roma www.isinucleare.it

Coordinamento pubblicazione online

Silvia Amicucci

Elaborazione grafica copertina e impaginazione

Giuliana Bevilacqua

Indice

Presentazione		1
Informazioni generali su contenuti e autori	I	2
Introduzione		4
Excursus storico		4
Normativa di riferimento		5
Indicatore 1	Strutture autorizzate all'impiego di radioisotopi e di macchine radiogene	8
Indicatore 2	Produzione annuale di fluoro 18	14
Indicatore 3	Impianti nucleari: attività di radioisotopi rilasciati in aria e in acqua	20
Indicatore 4	Quantità di rifiuti radioattivi detenuti	76
Indicatore 5	Trasporti materie radioattive	79
Indicatore 6	Concentrazione di attività di radon indoor	94
Indicatore 7	Dose gamma assorbita in aria per esposizioni a radiazioni cosmica e terrestre	103
Indicatore 8	Concentrazione di attività di radionuclidi artificiali in matrici ambientali e alimentari (particolato atmosferico, deposizioni umide e secche, latte)	111
Indicatore 9	Stato di attuazione delle reti di sorveglianza sulla radioattività ambientale	122
Indicatore 10	Informazione e comunicazione	128

Presentazione

L'Ispettorato nazionale per la sicurezza nucleare e la radioprotezione (ISIN), svolge dal 1° agosto 2018 le funzioni di autorità nazionale di regolamentazione competente per la sicurezza nucleare e la radioprotezione, ai sensi del D.Lgs. n. 45/2014 e successive modifiche.

In particolare, nell'ambito delle proprie competenze, particolare strategicità assumono per l'Ispettorato le tecniche in materia di controllo delle "attività nucleari" e di monitoraggio della radioattività ambientale, le quali, filtrate attraverso una logica ed organizzata raccolta di dati, consentano l'elaborazione di specifici indicatori finalizzati a connotare – nei suoi vari contributi - il quadro del controllo dell'esposizione della popolazione italiana alle radiazioni ionizzanti.

Questo Rapporto è stato elaborato da ISIN sulla base dei dati risultanti dall'attività svolta nel 2023, utilizzando a tal fine il modello DPSIR (Determinanti-Pressioni-Stato-Impatto-Risposte). Il documento costituisce la sesta edizione del Rapporto che, pubblicato con cadenza almeno annuale, riporta e commenta l'andamento degli indicatori elaborati dai tecnici dell'Ispettorato, testimoniando la rigorosità e la riproducibilità del metodo di indagine adottato.

In tal modo, prosegue – al servizio del Paese ed a vantaggio degli *stakeholders* - l'attività periodica e tempestiva di pubblicazione di tali indicatori che, unitamente ai risultati delle attività di monitoraggio, istruttoria e controllo ordinario e straordinario svolti dall'Ispettorato in coerenza con i propri compiti istituzionali, consente di rappresentare in modo diretto e comprensibile lo stato della sicurezza nucleare del Paese, missione primaria per l'Ispettorato, e argomento di chiara sensibilità anche nella relazione che ISIN deve presentare annualmente al Governo e al Parlamento, ai sensi dell'art.6 comma 4 lettera h) del D.Lgs.45/2014.

I risultati dell'elaborazione degli indicatori sulla sicurezza nucleare e in materia di radioprotezione vengono quindi messi a disposizione dall'ISIN ai portatori di interesse nazionali, per l'utilizzo come ausilio nei processi di *governance*, costituendo un valido riferimento scientifico in grado di assicurare ai cittadini ed alla base sociale la necessaria informazione per promuovere nel Paese una adeguata consapevolezza sul rischio nucleare e radiologico, ed una reale cultura della sicurezza in un ambito tanto complesso quanto impattante.

Dott. Francesco Campanella Direttore

Informazioni generali su contenuti e autori

Obiettivo

Il Rapporto ISIN sugli Indicatori per le attività nucleari e la radioattività ambientale - Edizione 2024 – Dati 2023 ha l'obiettivo di aggiornare gli *stakeholder* sull'esposizione della popolazione italiana alle radiazioni ionizzanti come derivanti dalle attività nucleari e dalla presenza di radioattività nell'ambiente.

A tal fine, nel rispetto del modello DPSIR (Determinanti-Pressioni-Stato-Impatto-Risposte), presenta alcuni indicatori che, attraverso le relative serie di dati relativi all'anno 2023, approfondiscono lo stato attuale del loro controllo.

Struttura e contenuti

Nella sesta edizione del Rapporto Indicatori dell'ISIN si è sostanzialmente mantenuto il *core* set di indicatori già utilizzati nelle precedenti edizioni del Rapporto, aggiornandoli con i dati disponibili relativi al 2023.

Anche in questa edizione è stato presentato l'indicatore che valuta la diffusione e l'utilizzo degli strumenti e dei prodotti di informazione/comunicazione e di formazione; questo indicatore fornisce una panoramica sugli utenti del sito web dell'ISIN (numero, genere, età, collocazione geografica) e sull'attenzione della stampa nazionale nei confronti delle attività dell'Ispettorato (trend e volume delle uscite sulla stampa, quali testate se ne sono occupate e quali argomenti sono stati affrontati).

La raccolta ed elaborazione dei dati, grazie ad una sempre più efficace organizzazione delle attività ed al consueto impegno degli esperti ISIN coinvolti, è stata completata in anticipo rispetto alle edizioni precedenti, consentendo anche per questa edizione la pubblicazione del Rapporto entro l'anno successivo a quello cui si riferiscono i dati; tale allineamento ha l'obiettivo di rendere più tempestiva l'informazione ai cittadini ed agli *stakeholder* e di consentire la presentazione e la valutazione dell'andamento degli indicatori nell'annuale Relazione del Direttore dell'Ispettorato al Governo al Governo e al Parlamento sulle attività svolte dall'ISIN e sullo stato della sicurezza nucleare nel territorio nazionale ai sensi dell'art.6, comma 4, lettera h), del D.Lgs. n. 45/2014, da pubblicarsi entro il giugno 2023.

Il Rapporto Indicatori Edizione 2024-Dati 2023 è articolato in 10 parti, ciascuna dedicata ad uno degli indicatori, 5 dei quali sono relativi alle attività nucleari, 4 alla radioattività ambientale ed 1 all'informazione, comunicazione e formazione.

La seguente tabella riepilogativa riporta la descrizione e le caratteristiche principali di ogni indicatore e gli autori, responsabili e tecnici dell'ISIN, che hanno raccolto e verificato i dati necessari alla sua elaborazione e presentazione.

Ambito	Nr. indicatore	Nome indicatore	DPSIR	Periodicità di aggiornam	Qualità informazione	Соре	ertura	Autori
	marca cor c	marca cor c		ento		S	Т	
	1	Strutture autorizzate all'impiego di radioisotopi e di macchine radiogene	D	Annuale		I R P	2023	Luca TOLAZZI
	2	Produzione annuale di fluoro 18	D P	Annuale	\$\$\$	I R P	2023	Luca TOLAZZI
Attività nucleari	3	Impianti nucleari: attività di radioisotopi rilasciati in aria e in acqua	D P	Annuale		R P C	2023	Carmelina SALIERNO
	4	Quantità di rifiuti radioattivi detenuti	Р	Annuale	\$\$\$	I R	2023	Mario DIONISI
	5	Trasporti materie radioattive	Р	Annuale	\$\$\$	I R P	2010- 2023	Alessandro ORSINI
	6	Concentrazione di attività di radon indoor	S	Non definibile	666	I	1989- 2023	Sonia FONTANI Francesco SALVI Laura LUZZI
	7	Dose gamma assorbita in aria per esposizioni a radiazioni cosmica e terrestre	S	Annuale	666	I R (20/20)	1970- 1971 2000- 2023	Stefano ZENNARO Andrea PEPPEROSA
Radioattività ambientale	8	Concentrazione di attività di radionuclidi artificiali in matrici ambientali e alimentari (particolato atmosferico, deposizioni umide e secche, latte)	S	Annuale	\$ \$ \$	I	1986- 2023	Sonia FONTANI Giuseppe MENNA Valeria INNOCENZI
	9	Stato di attuazione delle reti di sorveglianza sulla radioattività ambientale	R	Annuale		I	1997- 2023	Sonia FONTANI Giuseppe MENNA Valeria INNOCENZI
Informazione e comunicazione	10	Utilizzo e diffusione dei prodotti di informazione, comunicazione e formazione dell'ISIN	-	Annuale		I	2023	Giuliana BEVILACQUA

LegendaDPSIR – Tipo Indicatori (Vedi nota 2)
D= Determinante

P= Pressione S= Stato I= Impatto

R=Risposta S= Copertura spaziale I= Italia

R= Regionale P= Provinciale T= Copertura temporale

Introduzione

L'obiettivo del Rapporto è presentare lo stato attuale del controllo dell'esposizione della popolazione italiana alle radiazioni ionizzanti derivanti dalle attività nucleari e dalla presenza di radioattività nell'ambiente.

L'analisi è stata condotta nel rispetto del modello DPSIR (Determinanti – Pressioni – Stato – Impatto – Risposte)¹. Con questo modello si possono descrivere in modo semplificato, sintetico e sensibile le complesse relazioni tra le attività antropiche, le relative pressioni sull'ambiente e le loro conseguenze sulla salute pubblica. Il modello DPSIR viene utilizzato come strumento di base nelle strategie di gestione del rischio e di prevenzione primaria. I risultati dell'elaborazione degli indicatori indagine possono essere utilizzati dai portatori di interesse come ausilio per i processi di *governance*, nel caso dei decisori politici, come valido riferimento scientifico o come informazione rivolta ai cittadini e alla base sociale per aumentare il grado di consapevolezza sulla sicurezza nucleare e sulla radioprotezione.

Excursus storico

In Italia le centrali nucleari e le altre installazioni connesse al ciclo del combustibile non sono più in esercizio e sono in corso le attività connesse alla disattivazione delle installazioni e alla messa in sicurezza dei rifiuti radioattivi derivanti dal pregresso esercizio. Permangono, tuttavia, in attività alcuni piccoli reattori di ricerca presso Università e Centri di ricerca. Continua, inoltre, a essere sempre più diffuso l'impiego delle sorgenti di radiazioni ionizzanti nelle applicazioni medico-diagnostiche, nell'industria e nella ricerca scientifica, che implica la gestione delle attività

¹ Il modello *Driving Forces*, Pressioni, Stato, Impatti e Risposte (DPSIR), sviluppato dall'AEA (Agenzia Europea per l'Ambiente) presenta i seguenti cinque elementi:

⁻ Le *Driving forces* (cause generatrici primarie o anche determinanti) rappresentano il ruolo dei settori economici e produttivi come cause primarie di alterazione degli equilibri ambientali. Spesso si riferiscono ad attività e comportamenti antropici derivanti da bisogni individuali, sociali ed economici, stili di vita, processi economici, produttivi e di consumo che originano pressioni sull'ambiente;

⁻ le Pressioni sull'ambiente sono, come nel modello PSR, gli effetti delle diverse attività antropiche sull'ambiente, quali ad esempio il consumo di risorse naturali e l'emissione di inquinanti nell'ambiente;

⁻ la distinzione tra Stato dell'ambiente e Impatti sull'ambiente permette un approfondimento ulteriore dei rapporti di causa ed effetto all'interno dell'elemento Stato. Nel modello DPSIR si separa infatti la descrizione della qualità dell'ambiente e delle risorse (Stato), dalla descrizione dei cambiamenti significativi indotti (Impatti), che vanno intesi come alterazioni prodotte dalle azioni antropiche negli ecosistemi e nella biodiversità, nella salute pubblica e nella disponibilità di risorse;

⁻ le Risposte sono, come nel modello PSR, le politiche, i piani, gli obiettivi e gli atti normativi messi in atto da soggetti pubblici per il raggiungimento degli obiettivi di protezione ambientale. Le Risposte svolgono un'azione di regolazione delle *Driving Forces*, riducono le Pressioni, migliorano lo Stato dell'ambiente e mitigano gli Impatti.

Secondo il modello DPSIR, gli sviluppi di natura economica e sociale (Determinanti) esercitano Pressioni, che producono alterazioni sulla qualità e quantità (Stato) dell'ambiente e delle risorse naturali. L'alterazione delle condizioni ambientali determina degli Impatti sulla salute umana, sugli ecosistemi e sull'economia, che richiedono Risposte da parte della società. Le azioni di risposta possono avere una ricaduta diretta su qualsiasi elemento del sistema In senso più generale, i vari elementi del modello costituiscono i nodi di un percorso circolare di politica ambientale che comprende la percezione dei problemi, la formulazione dei provvedimenti politici, il monitoraggio dell'ambiente e la valutazione dell'efficacia dei provvedimenti adottati.

di trasporto per la distribuzione delle sorgenti radioattive e dei rifiuti da esse derivanti. In aggiunta a tali attività, va considerata la presenza di radioattività artificiale nell'ambiente dovuta in gran parte ai test atomici della seconda metà del secolo scorso e agli incidenti nucleari, in particolare quello di Chernobyl del 1986.

In assenza di incidenti rilevanti, l'esposizione della popolazione alle radiazioni ionizzanti deriva principalmente dalla radioattività naturale. Si individua una componente di origine cosmica (dovuta ai raggi cosmici) e una di origine terrestre (dovuta ai radionuclidi primordiali presenti nella crosta terrestre fin dalla sua formazione). Tra le fonti di radioattività naturale di origine terrestre sono da annoverare i prodotti di decadimento del radon. Il radon è un gas naturale radioattivo prodotto dal decadimento del radio a sua volta prodotto dal decadimento dell'uranio, presente ovunque nei suoli e in alcuni materiali impiegati in edilizia. In aria aperta si disperde rapidamente, mentre nei luoghi chiusi (case, scuole, ambienti di lavoro, ecc.) tende ad accumularsi fino a raggiungere, in particolari casi, concentrazioni ritenute non accettabili in quanto causa di un rischio eccessivo per la salute. Occorre, inoltre, aggiungere tra le fonti di radioattività naturale quella derivante da particolari lavorazioni e attività industriali di materiali contenenti radionuclidi naturali (naturally occurring radioactive material - NORM) che possono comportare un significativo aumento dell'esposizione della popolazione e dei lavoratori. A tale proposito, la Direttiva 2013/59/EURATOM stabilisce norme fondamentali di sicurezza relative alla protezione contro i pericoli derivanti dall'esposizione alle radiazioni ionizzanti che introduce nuove attività da annoverare come NORM, oltre a regolamentare, per la prima volta, l'esposizione al radon nelle abitazioni.

Normativa di riferimento

La regolamentazione nazionale sul controllo delle attività nucleari, nonché sulla radioattività ambientale, ha subito alcuni cambiamenti a seguito dell'attuazione della direttiva 2013/59/Euratom con l'entrata in vigore, il 27 agosto 2020, del Decreto Legislativo 31 luglio 2020, n. 101 "Attuazione della direttiva 2013/59/Euratom, che stabilisce norme fondamentali di sicurezza relative alla protezione contro i pericoli derivanti dall'esposizione alle radiazioni ionizzanti, e che abroga le direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom e 2003/122/Euratom" e che ha riordinato la normativa di settore in attuazione dell'articolo 20, comma 1, lettera a), della legge 4 ottobre 2019, n. 117².

-

² Fino a quella data nel nostro Paese il controllo sulle attività nucleari, nonché sulla radioattività ambientale, che possono comportare un'esposizione della popolazione alle radiazioni ionizzanti è stato regolamentato dalla Legge 31 dicembre 1962, n. 1860, dal D.Lgs. del 17 marzo 1995, n. 230 e successive modifiche, dal D.Lgs. dell'8 febbraio 2007, n. 52, dal D.Lgs. del 4 marzo 2014, n. 45 e dal D.Lgs. del 15 febbraio 2016, n.28. Il D.Lgs. n. 101/2020, nell'attuare la direttiva 2013/59/Euratom, oltre ad apportare alcune modifiche alla Legge n. 1860/1962, ha in particolare abrogato il D.Lgs. n. 230/1995 e il D.Lgs. n. 52/2007.

Il Decreto ha introdotto nel nostro Paese importanti novità in materia di prevenzione e protezione dalle radiazioni ionizzanti, adeguando la normativa vigente a quanto previsto in sede europea. Nel gennaio 2023 è stato pubblicato ed è entrato in vigore il D.Lgs. 25 novembre 2022, n. 203 (in G.U. 03/01/2023, n.2), recante disposizioni integrative e correttive al decreto legislativo 31 Luglio 2020, n. 101. Il Decreto si è reso necessario a seguito di osservazioni espresse dalla Commissione Europea e che dovevano pertanto essere recepite nella normativa nazionale per la protezione dall'esposizione a radiazioni ionizzanti, ma anche per risolvere situazioni di criticità emersi nella prima fase di attuazione della norma pre-vigente e per apportare correzioni a refusi ed incongruenze editoriali presenti nella stesura del D. Lgs. n. 101/2020.

L'attuale legislazione nazionale conferma i principali compiti e obblighi per gli esercenti delle attività che rientrano nel suo campo di applicazione, ma anche per le amministrazioni locali (Prefetture, Regioni e Province autonome) e nazionali (Enti e Ministeri).

Si confermano anche le disposizioni del D.Lgs. 4 marzo 2014, n. 45, e sue s.m.i., che ha istituito l'Ispettorato nazionale per la sicurezza nucleare e la radioprotezione (ISIN), cui sono state attribuite dal 1º agosto 2018 tutte le attività e le funzioni in materia di nucleare e di radioprotezione dell'ISPRA.

L'ISIN svolge le funzioni e i compiti di autorità nazionale per la regolamentazione tecnica espletando le istruttorie connesse ai processi autorizzativi, le valutazioni tecniche, il controllo e la vigilanza delle installazioni nucleari non più in esercizio e in disattivazione, dei reattori di ricerca, degli impianti e delle attività connesse alla gestione dei rifiuti radioattivi e del combustibile nucleare esaurito, delle materie nucleari, della protezione fisica passiva delle materie e delle installazioni nucleari, delle attività d'impiego delle sorgenti di radiazioni ionizzanti e di trasporto delle materie radioattive, emanando altresì le certificazioni previste dalla normativa vigente in tema di trasporto di materie radioattive stesse. Emana, inoltre, guide tecniche e fornisce supporto ai Ministeri competenti nell'elaborazione degli atti di rango legislativo nelle materie di competenza e fornisce supporto tecnico alle autorità di protezione civile nel campo della pianificazione e della risposta alle emergenze radiologiche e nucleari. Partecipa, infine, alle attività di controllo della radioattività ambientale definite dalla normativa vigente che prevede reti di sorveglianza regionali e reti di sorveglianza nazionali.

All'ISIN, in particolare, sono affidate le funzioni di coordinamento tecnico delle reti nazionali al fine di assicurare l'omogeneità dei criteri di rilevamento, delle modalità dei prelievi e delle misure, nonché la diffusione dei dati rilevati e la loro trasmissione alla Commissione europea.

L'ISIN assicura gli adempimenti dello Stato italiano agli obblighi derivanti dagli accordi internazionali sulle salvaguardie, la rappresentanza dello Stato italiano nell'ambito delle attività svolte dalle organizzazioni internazionali e dall'Unione Europea nelle materie di competenza e la partecipazione ai processi internazionali e comunitari di valutazione della sicurezza nucleare degli impianti nucleari e delle attività di gestione del combustibile irraggiato e dei rifiuti radioattivi in altri paesi.

Attraverso l'istituzione dell'ISIN come autorità tecnica indipendente, si è andati nella direzione

del mantenimento delle competenze in materia di sicurezza nucleare e radioprotezione ad un livello elevato, rafforzando le attività di controllo e di monitoraggio della radioattività sull'ambiente e sugli alimenti su tutto il territorio nazionale, al fine di prevenire e proteggere i lavoratori, la popolazione e l'ambiente da esposizioni indebite alle radiazioni ionizzanti.

Indicatore 1

STRUTTURE AUTORIZZATE ALL' IMPIEGO DI RADIOISOTOPI E DI MACCHINE RADIOGENE

DESCRIZIONE

L'indicatore, classificabile come indicatore di causa primaria, documenta il numero e la distribuzione sul territorio delle strutture autorizzate (categoria A)³ all'utilizzo di sorgenti di radiazioni ionizzanti (materie radioattive e macchine generatrici di radiazioni ionizzanti).

SCOPO

Documentare il numero di strutture autorizzate all'utilizzo di sorgenti di radiazioni, limitatamente all'impiego di categoria A (per la cui definizione si rimanda al D.Lgs. n. 101/2020), e la loro distribuzione sul territorio nazionale.

QUALITÀ DELL'INFORMAZIONE

L'informazione è rilevante perché offre un'indicazione sulla dislocazione degli impianti autorizzati a livello centrale sul territorio nazionale. I dati provengono dal Ministero dello sviluppo economico, che avvia la procedura di autorizzazione richiedendo alle amministrazioni coinvolte, tra cui ISIN, un parere tecnico.

OBIETTIVI FISSATI DALLA NORMATIVA

Il D.Lgs. n. 101/2020 disciplina l'utilizzo pacifico di sorgenti di radiazioni ionizzanti al fine di garantire la protezione sanitaria dei lavoratori e della popolazione. In particolare, le strutture che rientrano nella categoria A (per la cui definizione si rimanda al D.Lgs. n. 101/2020) devono essere autorizzate preventivamente dal Ministero dell'ambiente e della sicurezza energetica (MASE), in modo da garantire che la produzione e l'impiego di radiazioni ionizzanti comportino un'esposizione per i lavoratori e la popolazione al di sotto dei limiti fissati dalla legge.

STATO E TREND

Rispetto al 2022, il numero di impianti di cat. A autorizzati è passato da 98 a 86, in quanto alcuni impianti sono stati disattivati mentre altri sono stati accorpati.

COMMENTI

La Figura 1.1 e la Tabella 1.1 evidenziano una forte concentrazione di impianti autorizzati in categoria A in Lombardia e nel Lazio. In Lombardia, la metà degli impianti autorizzati in categoria

³ L'articolo 50 del D.Lgs. n. 101/2020 (che stabilisce le norme di sicurezza relative alla protezione contro i pericoli derivanti dall'esposizione alle radiazioni ionizzanti e che ha sostituito il D.Lgs. n. 230/1995) prevede l'obbligo di nullaosta preventivo per gli impianti o strutture che intendono utilizzare sorgenti di radiazioni ionizzanti. Il suddetto nullaosta può essere di categoria A o categoria B, a seconda del superamento o meno delle soglie fissate nell'Allegato XIV al decreto stesso. La categoria A riguarda le pratiche che utilizzano sorgenti di energia o attività più elevate.

A sono ciclotroni utilizzati per la produzione di radiofarmaci per esami PET, tra i quali il F-18, installati per la maggior parte nella provincia di Milano. Nel Lazio, invece, gran parte degli impianti autorizzati sono presso l'ENEA e l'Istituto Nazionale Fisica Nucleare (INFN) e si trovano tutti nella provincia di Roma (Figura 1.2 - Tabella 1.2).

Tabella 1.1 - Distribuzione regionale degli impianti autorizzati in cat. A (2023)

Regione	Imp	ianti
Regione	n.	%
Abruzzo	3	4
Basilicata	0	0
Calabria	1	1
Campania	4	5
Emilia-Romagna	6	7
Friuli-Venezia Giulia	2	2
Lazio	14	16
Liguria	1	1
Lombardia	21	24
Marche	1	1
Molise	1	1
Piemonte	6	7
Puglia	3	4
Sardegna	1	1
Sicilia	6	7
Toscana	3	4
Trentino-Alto Adige	1	1
Umbria	3	4
Veneto	9	10
TOTALE	86	100
*I valori percentuali sono arrotondati		
Fonte: ISIN		

Tabella 1.2 - Distribuzione provinciale degli impianti autorizzati in cat. A (2023)

Avellino – AV 1 1 Bari – BA 2 2 Bologna – BO 3 3 Brescia – BS 1 1 Cagliari – CA 1 1 Cagliari – CA 1 1 Chieti – CH 2 2 Come – CO 2 2 Come – CN 1 1 Firenze – FI 1 1 Foril Cesena – FC 1 1 Genova – GE 1 1 I sernia – IS 1 1 Lecce – LE 1 1 Macerata – MC 1 1 Messina 1 1 Milano – MI 10 12 Mapoli – NA 3 3 3 Padova – PD 6 7 Palermo – PA 3 3 3 Pavia – PV 2 2 2 Perugia – PG 3 3 3 Reagno Emilia – R 1	Provincia	Impianti				
Bari - BA 2 2 2 2 8 8 8 8 3 3 3 3 3 3	Provincia	n.	%			
Bologna – BO 3 3 Brescia – BS 1 1 Cagliari – CA 1 1 Catania – CT 2 2 Chieti – CH 2 2 Como – CO 2 2 Cosenza – CS 1 1 Firenze – FI 1 1 Firenze – FI 1 1 Foril Cesena – FC 1 1 Genova – GE 1 1 Isernia – IS 1 1 Lecce – LE 1 1 Macerata – MC 1 2 Messina 1 1 Milano – MI 10 12 Napoli – NA 3 3 Padova – PD 6 7 Palermo – PA 3 3 Pavia – PV 2 2 Perugia – PG 3 3 Pescara – PE 1 1 Pisa – PI 2 2 Revenna – RA 1 </th <th>Avellino – AV</th> <th>1</th> <th>1</th>	Avellino – AV	1	1			
Brescia - BS 1 <t< th=""><th>Bari – BA</th><th>2</th><th>2</th></t<>	Bari – BA	2	2			
Cagliari - CA 1 1 Catania - CT 2 2 Chieti - CH 2 2 Como - CO 2 2 Cosenza - CS 1 1 Cuneo - CN 1 1 Firenze - FI 1 1 Forlì Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Regio Emilia - RE 1 1 Roma - RM 14 16 Trento - TN 1<	Bologna – BO	3	3			
Catania - CT 2 2 Chieti - CH 2 2 Como - CO 2 2 Cosenza - CS 1 1 Cuneo - CN 1 1 Firenze - FI 1 1 Forlì Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecc - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Trento - TN 1 1 Treviso - TV 2<	Brescia – BS	1	1			
Chieti - CH 2 2 Como - CO 2 2 Cosenza - CS 1 1 Cuneo - CN 1 1 Firenze - FI 1 1 Foriì Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Trento - TN 1 1 Treviso - TV 2<	Cagliari – CA	1	1			
Como - CO 2 2 Cosenza - CS 1 1 Cuneo - CN 1 1 Firenze - FI 1 1 Forli Cesena - FC 1 1 Genova - GE 1 1 Isernia - TS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pascara - PE 1 1 Pisa - PI 2 2 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Treviso - TV 2<	Catania – CT	2	2			
Cosenza - CS 1 1 Cuneo - CN 1 1 Firenze - FI 1 1 Forlì Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pair - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Trento - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1	Chieti - CH	2	2			
Cuneo - CN 1 1 Firenze - FI 1 1 Forli Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pair - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Tresto - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1<	Como – CO	2	2			
Firenze - FI 1 1 Forlì Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Vercelli - VC <t< th=""><td>Cosenza – CS</td><td>1</td><td>1</td></t<>	Cosenza – CS	1	1			
Forlì Cesena - FC 1 1 Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Rayenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Vercelli - VC 1 1 Verona - VR <td< th=""><td>Cuneo - CN</td><td>1</td><td>1</td></td<>	Cuneo - CN	1	1			
Genova - GE 1 1 Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Rayenna - RA 1 1 Reggio Emilia - RE 1 1 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati	Firenze – FI	1	1			
Isernia - IS 1 1 Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86	Forlì Cesena - FC	1	1			
Lecce - LE 1 1 Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati	Genova – GE	1	1			
Macerata - MC 1 2 Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati	Isernia - IS	1	1			
Messina 1 1 Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati	Lecce - LE	1	1			
Milano - MI 10 12 Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati	Macerata - MC	1	2			
Napoli - NA 3 3 Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati	Messina	1	1			
Padova - PD 6 7 Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati **I valori percentuali sono arrotondati	Milano – MI	10	12			
Palermo - PA 3 3 Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati *I valori percentuali sono arrotondati	Napoli – NA	3	3			
Pavia - PV 2 2 Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 *I valori percentuali sono arrotondati *I valori percentuali sono arrotondati	Padova – PD	6	7			
Perugia - PG 3 3 Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Palermo – PA	3	3			
Pescara - PE 1 1 Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Pavia – PV	2	2			
Pisa - PI 2 2 Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Perugia – PG	3	3			
Ravenna - RA 1 1 Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Pescara - PE	1	1			
Reggio Emilia - RE 1 1 Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Pisa – PI	2	2			
Roma - RM 14 16 Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Ravenna – RA	1	1			
Torino - TO 4 5 Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Reggio Emilia - RE	1	1			
Trento - TN 1 1 Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Roma – RM	14	16			
Treviso - TV 2 2 Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100	Torino - TO	4	5			
Trieste - TS 1 1 Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100 *I valori percentuali sono arrotondati	Trento - TN	1	1			
Udine - UD 1 1 Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100 *I valori percentuali sono arrotondati	Treviso - TV	2	2			
Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100 *I valori percentuali sono arrotondati	Trieste - TS	1	1			
Varese - VA 6 7 Vercelli - VC 1 1 Verona - VR 1 1 TOTALE 86 100 *I valori percentuali sono arrotondati	Udine - UD	1	1			
Verona – VR11TOTALE86100*I valori percentuali sono arrotondati		6	7			
TOTALE 86 100 *I valori percentuali sono arrotondati	Vercelli - VC	1	1			
*I valori percentuali sono arrotondati	Verona – VR	1	1			
*I valori percentuali sono arrotondati	TOTALE	86	100			
		o arrotondati				
Fonte: ISIN						

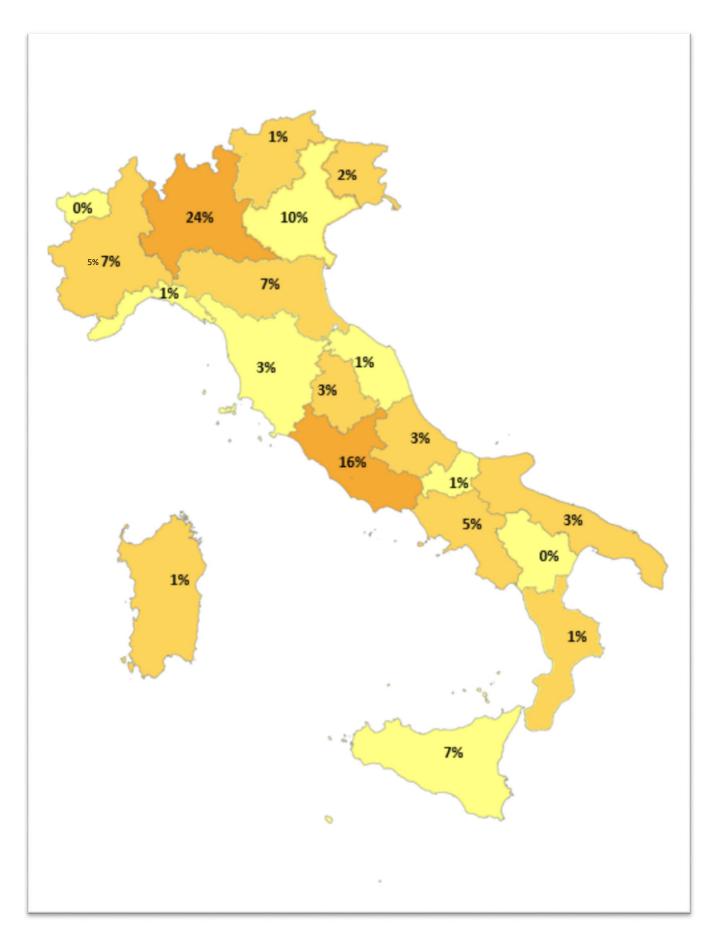


Figura 1.1 – Distribuzione regionale degli impianti di categoria A (2023)

Figura 1.2 – Distribuzione provinciale degli impianti di categoria A (2023)

Indicatore 2

PRODUZIONE ANNUALE DI FLUORO 18

DESCRIZIONE

Il fluoro18 (F18) è un radionuclide che trova largo impiego in ambito medico per la diagnosi tramite PET di diverse patologie. Questo radioisotopo viene prodotto tramite particolari acceleratori di particelle denominati ciclotroni. L'articolo 50 del D.Lgs. n. 101/20 (che disciplina l'impiego pacifico dell'energia nucleare e stabilisce le norme per la sicurezza nucleare e per la protezione sanitaria dei lavoratori e delle popolazioni contro i rischi delle radiazioni ionizzanti) prevede l'obbligo di nullaosta preventivo per gli impianti o strutture che intendono utilizzare sorgenti di radiazioni ionizzanti. Il suddetto nullaosta può essere di categoria A o categoria B, a seconda del superamento o meno delle soglie fissate nell'Allegato XIV al decreto stesso. In particolare i ciclotroni, essendo sorgenti di radiazioni con produzione media nel tempo di neutroni su tutto l'angolo solido superiore a 10⁷ neutroni al secondo, sono soggetti a nulla osta di categoria A, concesso dal Ministero dello sviluppo economico, sentito il parere tecnico dell'ISIN e di altri organismi preposti. L'indicatore rappresenta la quantità massima di produzione di F18 autorizzata in ambito nazionale, espressa in Becquerel. Non sempre la produzione reale di F18 coincide con la massima produzione autorizzata, poiché le ore di funzionamento della macchina potrebbero essere inferiori a quelle teoricamente previste.

SCOPO

Rappresentare la distribuzione sul territorio nazionale del F18 prodotto dagli impianti autorizzati che impiegano ciclotroni.

QUALITÀ DELL'INFORMAZIONE

L'informazione è rilevante perché rappresenta la distribuzione sul territorio nazionale dei ciclotroni per la produzione del F18. È comparabile sia nel tempo sia nello spazio in quanto il dato proviene da un processo di autorizzazione ministeriale previsto dalla legislazione nazionale.

OBIETTIVI FISSATI DALLA NORMATIVA

Il D.Lgs. n. 101/20 disciplina l'utilizzo pacifico di sorgenti di radiazioni ionizzanti al fine di garantire la protezione sanitaria dei lavoratori e della popolazione. In particolare, le strutture che intendono utilizzare tali sorgenti devono essere autorizzate preventivamente dal Ministero dello sviluppo economico, in modo da garantire che la produzione e l'impiego di radiazioni ionizzanti da parte delle strutture autorizzate comportino un'esposizione per i lavoratori e la popolazione al di sotto dei limiti fissati dalla legge.

STATO E TREND

Rispetto al 2022 la quantità di produzione di F18 autorizzata a livello nazionale risulta sostanzialmente invariata.

COMMENTI

La produzione di F18 deriva dalle quantità massime autorizzate annualmente ed è, quindi, il quantitativo di F18 che potrebbe al massimo essere prodotto in un anno dall'installazione. Tale valore viene stabilito nelle autorizzazioni, in base alle richieste del produttore, e tenendo conto, in particolare, dell'impatto sui lavoratori e sulla popolazione.

Come si evince dalla Tabella 2.1 e dalla Figura 2.2, la maggiore produzione si riscontra in Lombardia, Puglia e Marche. A livello provinciale, è Milano, seguita da Roma e Macerata, a detenere la maggiore produzione (Tabella 2.2 - Figura 2.2).

Tabella 2.1 - Distribuzione regionale della produzione autorizzata di F18 relativamente all'anno 2023

Danis, a	Attività	
Regione	ТВq	%
Campania	499,7	6
Emilia-Romagna	783	9
Friuli-Venezia Giulia	370	4
Lazio	624	7
Liguria	1,6	<1
Lombardia	1474,25	17
Marche	832,5	10
Molise	330	4
Piemonte	662,4	8
Puglia	1548	18
Sardegna	81,4	1
Sicilia	639,25	7
Toscana	294,2	3
Umbria	27,75	< 1
Veneto	390	5
TOTALE	8558,05	100
*I valori percentuali sono arrotondati		
Fonte: ISIN		

Tabella 2.2 - Distribuzione provinciale della produzione autorizzata di F18 relativamente al 2023

Provincia		Attività
Provincia	TBq	%
Avellino - AV	40,7	<1
Bari - BA	555,0	13
Bologna - BO	80,0	1
Brescia - BS	120,0	<1
Cagliari - CA	32,3	1
Catania - CT	231,5	3
Cuneo - CN	30,0	<1
Firenze - FI	50,0	1
Forlì Cesena - FC	666,0	8
Genova - GE	60,1	<1
Isernia - IS	330,0	4
Lecce - LE	444,0	5
Messina - ME	75,0	1
Macerata - MC	832,5	10
Milano - MI	1.060,2	16
Napoli - NA	459	5
Palermo - PA	240,5	4
Pavia - PV	92,5	1
Perugia - PG	27,8	<1
Pisa - PI	244,2	3
Reggio Emilia - RE	37,0	<1
Roma - RM	1.041,0	7
Torino - TO	632,4	7
Treviso - TV	150,0	2
Udine - UD	370,0	4
Verona - VR	240,0	3
TOTALE	8.558,05	100*
*I valori percentuali sono ar	rotondati	
Fonte: ISIN		

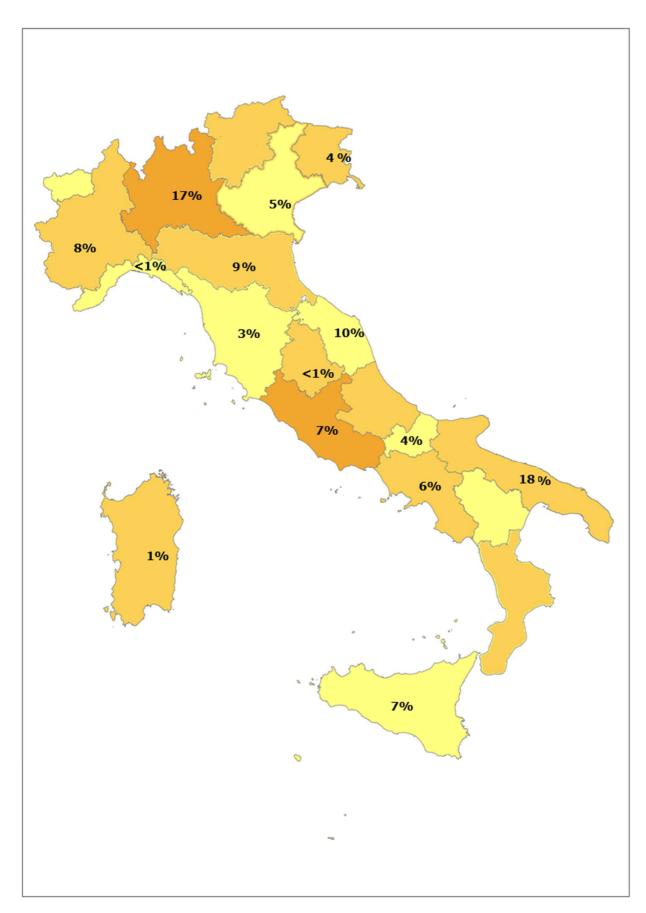


Figura 2.1 – Distribuzione regionale della produzione di F18 autorizzata relativamente al 2023

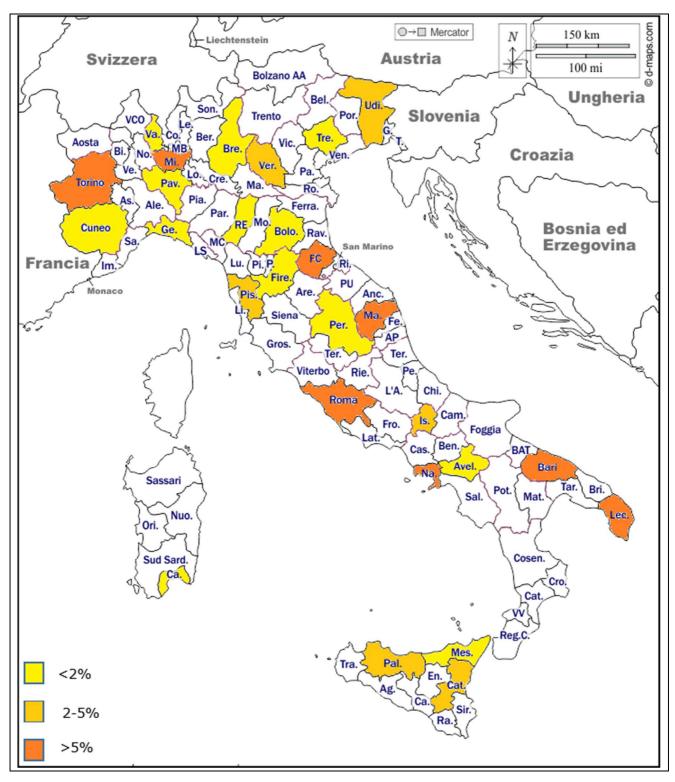


Figura 2.2 – Distribuzione provinciale della produzione di F18 autorizzata relativamente al 2023

Indicatore 3

IMPIANTI NUCLEARI: ATTIVITÀ DI RADIOISOTOPI RILASCIATI IN ARIA E IN ACQUA

DESCRIZIONE

L'indicatore, classificabile come indicatore di pressione, documenta la quantità di radioattività rilasciata annualmente nell'ambiente in qualità di scarichi liquidi e aeriformi, ponendolo in relazione con i limiti di scarico autorizzati attraverso l'impegno percentuale annuale di formula di scarico.

SCOPO

Monitorare gli scarichi radioattivi al fine di quantificare e controllare l'emissione di radioattività, in aria e in acqua, nelle normali condizioni di gestione delle installazioni nucleari.

QUALITÀ DELL'INFORMAZIONE

La qualità dell'informazione è buona ed è utilizzabile sia per valutare la coerenza con i risultati degli anni precedenti, sia per confermare la non rilevanza radiologica sulla cui base sono state autorizzate le stesse formule di scarico.

OBIETTIVI FISSATI DALLA NORMATIVA

Lo smaltimento di effluenti radioattivi liquidi ed aeriformi nell'ambiente da parte degli impianti nucleari, nonché da installazioni che utilizzano macchine radiogene o sorgenti radioattive in forma sigillata e non, è soggetto ad apposita autorizzazione. In essa sono stabiliti i limiti massimi di radioattività rilasciabile nell'ambiente e le modalità di scarico (formula di scarico).

STATO E TREND

L'analisi dei dati disponibili relativi al 2023, tenendo conto che i dati degli esercenti pervengono ad ISIN entro il primo semestre dell'anno successivo a quello di riferimento, porta alla conclusione che lo scarico autorizzato degli effluenti nell'ambiente, anche per il 2023, può considerarsi mediamente stabile o addirittura in diminuzione.

Infatti, relativamente agli scarichi liquidi, è da segnalare che nel corso del 2023 non sono stati effettuati scarichi per gli impianti EUREX, FN, Centro ricerche della Casaccia, Deposito Avogadro e Reattore LENA e, pertanto, l'impegno annuale della formula di scarico risulta nullo. L'impegno della Formula di Scarico autorizzata per i liquidi risulta costante per il Centro di Ricerca JRC e per la Centrale Nucleare di Caorso, mentre la Centrale Nucleare del Garigliano registra una diminuzione; per gli impianti di Latina e Trino da segnalare una controtendenza rispetto agli anni precedenti poiché registrano un leggero incremento nell'impegno della Formula di Scarico per i liquidi dovuto al prosieguo delle attività propedeutiche alla disattivazione.

Per quanto riguarda gli effluenti aeriformi nel corso del 2023 l'impegno della Formula di Scarico risulta stabile per tutte le installazioni nucleari italiane tranne per la Centrale Nucleare di Trino

che riporta un leggero aumento e per la Centrale Nucleare del Garigliano per la quale l'impegno della Formula di Scarico è leggermente diminuito.

COMMENTI

I grafici di seguito riportati e commentati mettono a confronto i valori massimi misurati e il limite di rilevabilità della tecnica di misura.

INTRODUZIONE

Il limite di rilevabilità, in termini di MDC (minimum detectable concentration) o MDA (minimum detectable activity) rappresenta, rispettivamente, il valore di concentrazione di attività (Bq/kg) o di attività (Bq) che ha una specifica possibilità di essere rilevata; sostanzialmente rappresenta una stima della capacità di rilevamento di una tecnica di misura e deve essere calcolata prima di eseguire la misura stessa.

Il limite di rilevabilità è la concentrazione, ovvero l'attività più bassa, che si prevede di misurare con un livello fisso di certezza che è di solito il 95%. Ciò significa che se la concentrazione di attività o l'attività in un campione è uguale alla MDC o alla MDA, esiste una probabilità del 95% che venga rilevato materiale radioattivo nel campione.

Il limite di rilevabilità dipende da numerosi fattori tra cui il tempo di misura (più è lungo il tempo di misura più sarà piccolo il valore del limite di rilevabilità), l'efficienza della strumentazione e il conteggio del fondo.

Essendo l'efficienza di rivelazione dipendente dall'energia della radiazione emessa dal radionuclide in misura, si comprende come, per ogni radioisotopo, si avranno differenti valori di MDC o MDA.

Una misura superiore al limite di rilevabilità vuol dire certamente che nel campione è misurabile il radioisotopo che si vuole determinare; ciò tuttavia, per tutti i casi rappresentati di seguito, non è indice di rilevanza radiologica visto che le misure sono sempre all'interno della variabilità statistica dei valori di fondo registrati sul territorio italiano per le matrici corrispondenti.

Per l'impianto FN di Bosco Marengo, nelle tabelle del resoconto del 2023, oltre a trovare il valore della MDC viene inserito anche un ulteriore limite denominato "Limited Counting" strumentale che tiene conto delle manipolazioni effettuate sul campione da misurare ed è un valore inferiore rispetto alla MDC.

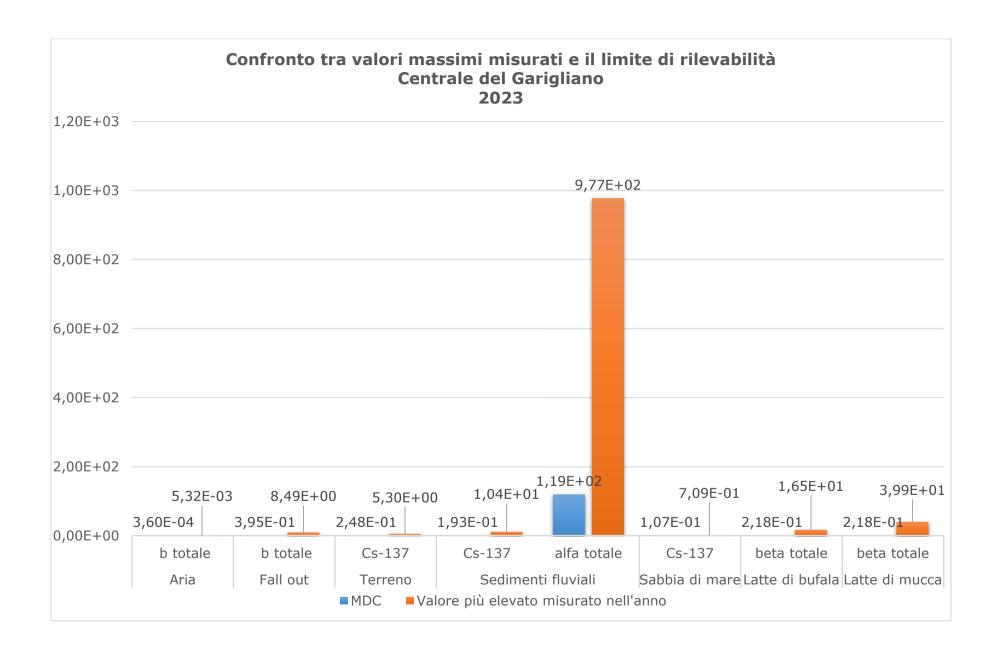
CENTRALE DEL GARIGLIANO (CE)

Scarichi effettuati nel 2023

	Scarichi liquidi									
Nuclide	H-3	Cs-137	Co-60	Sr-90	a totale	Ni-63	Fe-55	Ni-59	% F.d.S impegnata	Dose all'individuo rappresentativo della popolazione (µSv/anno)
Attività (Bq)	4,26E+05	7,93E+06	2,05E+05	7,65E+03	1,15E+04	1,99E+06	9,84E+05	2,19E+06	1,43E-02	8,09E-03
				Scarich	ni aeriformi					
Nuclide	H-3	Co-60	Cs-137	Fe-55+Ni-63+Ni-59	Sr-90	а			% F.d.S impegnata	
Attività (Bq)	2,34E+08		8,35E+03	2,03E+05	6,02E+03				2,41E-03	<1

Risultati della sorveglianza ambientale 2023

Matrice	Tipo di misura	MDC	Valore più elevato misurato nell'anno
	β totale	3,60E-04 Bq/m3	5,32E-03
	Be-7	2,35E-04	8,05E-03
Aria	Co-60	1,19E-05	(*)
	Cs-137	1,82E-05	(*)
	Cs-134	1,05E-05	(*)
	β totale	3,95E-01 Bq/m2	8,49E+00
	Be-7	2,14E+01	(*)
	Co-60	1,45E+00	(*)
Fall out	Cs-137	1,90E+00	(*)
	Cs-134	1,90E+00	(*)
	K-40	5,95E+01	(*)
	H-3	4,12E+01	(*)


	K-40	4,79E+00 Bq/l	(*)
	Co-60	1,07E-01	(*)
	Cs-137	1,39E-01	(*)
	Cs-134	6,03E-02	(*)
Acqua di superficie	Sr-90	9,96E-02	(*)
	Fe-55	1,12E+01	(*)
	Ni-59	1,77E+01	(*)
	Ni-63	3,64E-01	(*)
	H-3	1,98E+00	(*)
	a totale	1,18E-02	(*)
	Co-60	7,36E-02 Bq/kg	(*)
Terreno	Cs-137	2,48E-01	5,30E+00
refreno	Cs-134	1,07E-01	(*)
	K-40	3,41E+00	1,42E+03
	Co-60	1,53E-01 Bq/kg	(*)
Erba	Cs-137	2,01E-01	(*)
	Cs-134	7,71E-02	(*)
	K-40	1,22E+00	3,20E+02
	H-3	5,47E+00 Bq/l	(*)
	Co-60	3,62E-02	(*)
	Cs-137	1,76E-01	(*)
	Cs-134	5,37E-02	(*)
	K-40	2,32E+00	(*)
Acqua di falda e	Sr-90	9,71E-02	(*)
Pozzo Centrale	a totale	6,68E-02	(*)
	Pu-238	1,64E-03	(*)
	Pu-239/240	1,16E-03	(*)
	Am-241	3,42E-03	(*)
	Cm-244	4,15E-03	(*)
	Pu-241	8,64E-01	(*)
	Co-60	4,08E-02 Bq/kg	(*)
Sedimenti fluviali	Cs-137	1,93E-01	1,04E+01
	Cs-134	5,04E-02	(*)

	K-40	2,69E+00	1,15E+03
	a totale	1,19E+02	9,77E+02
	Pu-238	3,41E-01	(*)
	Pu-239/240	1,39E-01	(*)
	Am-241	2,00E-01	(*)
	Cm-244	2,41E-01	(*)
	Pu-241	2,68E+01	(*)
	Co-60	7,75E-02 Bq/kg	(*)
Sabbia di mare	Cs-137	1,07E-01	7,09E-01
Sabbia di iliale	Cs-134	3,64E-02	(*)
	K-40	2,32E+00	1,15E+03
	Co-60	1,10E-01 Bq/kg	(*)
Pesce di fiume	Cs-137	2,94E-02	(*)
Pesce ai fiume	Cs-134	1,70E-02	(*)
	K-40	1,00E+00	8,50E+01
	Co-60	1,01E-01 Bq/kg	(*)
Mitili Golfo di	Cs-137	1,53E-01	(*)
Gaeta	Cs-134	1,28E-01	(*)
	K-40	6,38E+00	1,08E+02
	Co-60	1,83E-02 Bq/kg	(*)
Carne bovina	Cs-137	2,03E-02	(*)
Carne bovilla	Cs-134	1,80E-02	(*)
	K-40	1,45E+00	5,48E+01
	60Co	1,83E-02 Bq/kg	(*)
Marravalla	137Cs	2,03E-02	(*)
Mozzarella	134Cs	1,80E-02	(*)
	40K	1,45E+00	1,31E+01
	β totale	2,18E-01 Bq/l	1,65E+01
	Sr-90	4,18E-02	(*)
Latte di bufala	Co-60	4,69E-02	(*)
Latte ui Dufaia	Cs-137	8,48E-02	(*)
	Cs-134	7,03E-02	(*)
	K-40	3,43E+00	3,24E+01

	β totale	2,18E-01 Bq/l	3,99E+01
	Sr-90	4,18E-02	(*)
Latte di mucca	Co-60	4,69E-02	(*)
Latte ul illucca	Cs-137	8,48E-02	(*)
	Cs-134	7,03E-02	(*)
	K-40	3,43E+00	4,00E+01
	Co-60	3,66E-02 Bq/l	(*)
Acqua di mare	Cs-137	6,89E-02	(*)
Acqua ul mare	Cs-134	3,11E-02	(*)
	K-40	4,83E+00	5,04E+00
	Co-60	3,66E-02 Bq/I	(*)
Acqua di fiume	Cs-137	6,89E-02	(*)
Acqua di fidifie	Cs-134	3,11E-02	(*)
	K-40	4,83E+00	(*)
	Co-60	1,10E-02 Bq/kg	(*)
Frutta e Verdura	Cs-137	1,80E-02	(*)
Fiulta e Veidula	Cs-134	1,72E-02	(*)
	K-40	8,74E-01	8,32E+01
	Co-60	1,89E-02 Bq/kg	(*)
Pesce di mare	Cs-137	2,94E-02	(*)
	Cs-134	1,70E-02	(*)
	K-40	1,00E+00	9,82E+01
Rateo di dose ambiente			280 microSv/anno

Legenda

- a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati a;
- (*) valori inferiori alla minima attività rilevabile;
- (**) per il Centro Casaccia non è stata definita una formula di scarico; (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;
- N.A. misura non applicabile;
- N.S. non scaricato;
- HTO acqua triziata.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale presenti nelle matrici tra cui il K-40 e il Be-7.

I valori superiori al limite di rilevabilità (MDC) sono in linea con quelli riscontrati negli anni precedenti, come si può evincere dai grafici riportati nelle precedenti edizioni dell'annuario ISIN e risultano, in ogni caso, inferiori a quelli della media nazionale. Si può concludere, dunque, che non sono attribuibili alla presenza della centrale sul territorio.

Per quanto riguarda la sabbia di mare, il valore di Cs-137 è 0,709 Bq/kg, leggermente più elevato rispetto al valore più alto registrato in Italia e corrisponde alla regione Calabria (0,51 Bq/kg). Tuttavia, poiché tutte le altre determinazioni effettuate nello stesso punto per altre matrici non hanno fatto registrare nessun tipo di anomalia, il valore può essere attribuito alla normale fluttuazione statistica. Relativamente alla misura dei sedimenti, la cui concentrazione di Cs-137 è paria 10 Bq/kg, il valore è più basso rispetto a quello dell'anno precedente e in linea con il valore più alto misurato a livello nazionale di 19 Bq/kg (Veneto).

Relativamente al terreno, la misura di 5,3 Bq/Kg di Cs-137 è perfettamente in linea con il range di valori riscontrati sul territorio italiano che varia da 0,2 a 2100 Bq/kg ed è in linea con i valori determinati nella stessa matrice negli anni precedente fermo restando le normali fluttuazioni statistiche. I valori al di sopra del limite di rilevabilità riscontrati per le misure di beta totale rispettivamente nel latte di mucca e di bufala e nel particolato sono da attribuire alla presenza di radioisotopi naturali.

Nell corso del 2023 è stato effettuato un monitoraggio integrativo sui sedimenti fluviali, su richiesta di ISIN, dal quale è stato evidenziato che i valori di alfa totale che, come si può notare dal grafico non solo relativo al 2022 ma anche agli anni precedenti, sono diverse volte più elevati rispetto alla MDC, esclusivamente per la presenza di radioisotopi di origine naturale. Infatti, valori dello stesso ordine di grandezza sono stati riscontrati sia a monte che a valle dell'impianto ed inoltre una determinazione del Pu-241, effettuata attraverso scintillazione liquida, non ha evidenziato presenza di radioisotopi emettitori alfa di origine artificiale.

CENTRALE DI LATINA

Scarichi effettuati nel 2023

Scarichi liquidi											
Nuclide	C-14	Pu-239	Cs-137	Sr-90	Co-60	Ni-63	Fe-55	Pu-241	H-3	% F.d.S impegnata	Dose all'individuo rappresentativo (µSv/anno)
Attività (Bq)	1,37E+08	1,07E+06	6,26E+08	1,89E+08	2,68E+05	1,98E+06	8,18E+06	8,52E+06	2,31E+08	1,69E-02	1,10E-01
	Scarichi aeriformi										
Nuclide	H-3	C-14	Fe-55	Co-60	Ni-63	Sr-90	Cs-137	Pu-239	Pu-241	% F.d.S impegnata	
Attività (Bq)	2,99E+03	7,19E+06	4,38E+03	3,75E+04	3,08E+05	4,13+04	5,68E+04	6,59E+03	1,11E+04	2,00E-05	1,95E-04

Risultati della sorveglianza ambientale 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
Aria	Co-60	1,00E-04 Bq/m3	(*)
Arid	Cs-137	1,00E-04	(*)
Fall out	Co-60	1,00E+06 Bq/km2	(*)
raii out	Cs-137	1,00E+06	(*)
	Co-60	3,00E+00 Bq/kg	NP
Periphyton	Cs-137	3,00E+00	NP
	Sr-90	3,00E-01	NP
	Co-60	3,00E+00 Bq/kg	(*)
Erba	Cs-137	3,00E+00	(*)
	Sr-90	1,00E+00	(*)
	H-3	5,5 Bq/l	(*)
Acqua di falda	Cs-137	3,00E-02	(*)
Acqua di Idida	Sr-90	7,00E-02	(*)
	Pu-239	1,00E-02	(*)

	Co-60	1,00E+00 Bq/kg	(*)
Sedimenti di acque dolci	Cs-137	1,00E+00	2,70E+00
	Sr-90	5,00E-01	(*)
	Co-60	1,00E+00 Bq/kg	(*)
Sabbia e sedimenti in ambiente marino	Cs-137	1,00E+00	(*)
	Sr-90	5,00E-01	(*)
Pesce di mare	Co-60	1,00E-01 Bq/kg	(*)
resce di mare	Cs-137	1,00E-01	(*)
Molluschi bivalvi	Co-60	1,00E+00 Bq/kg	NP
Monusciii bivaivi	Cs-137	1,00E+00	NP
	Sr-90	5,00E-02 Bq/l	(*)
Latte di pecora o di mucca	Co-60	1,00E-01	(*)
	Cs-137	1,00E-01	(*)
	Co-60	3,00E-02 Bq/l	(*)
Acqua di mara	Cs-137	3,00E-02	(*)
Acqua di mare	Sr-90	1,00E-02	(*)
	H-3	5,50E+00	(*)
	Co-60	3,00E+00 Bq/kg	(*)
Vegetali a foglia	Cs-137	3,00E+00	(*)
	Sr-90	5,00E-02	(*)
	Cs-137	1,00E+00 Bq/kg	6,24E+00
Tawwana	Co-60	1,00E+00	
Terreno	Sr-90	5,00E-01	
	Pu-239	5,00E+00	
Dose integrata gamma	rateo di dose gamma		0,48µSv/h

Legenda

a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati α ;

^(*) valori inferiori alla minima attività rilevabile;

^(**) per il Centro Casaccia non è stata definita una formula di scarico; (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata.

I risultati delle determinazioni del programma di sorveglianza ambientale della centrale di Latina, anche alla luce dei nuovi punti di campionamento che hanno implementato il Programma di Sorveglianza Ambientale a seguito dell'approvazione delle operazioni di disattivazione, hanno confermato che l'impatto della centrale sul territorio circostante è trascurabile dal punto di vista della radioprotezione. Valori superiori alla MDC sono stati misurati nei sedimenti di acqua dolce e nel terreno e riguardano il Cs-137. Le concentrazioni misurate risultano in linea con quanto rilevato negli anni precedenti e comunque nel range di variabilità nazionale compreso tra 0,136 e 28,47 Bq/kg per i sedimenti e tra 0,2 e 2100 Bq/kg per il terreno e, pertanto, non rappresentano una singolarità.

CENTRALE DI TRINO (VC) Scarichi effettuati nel 2023

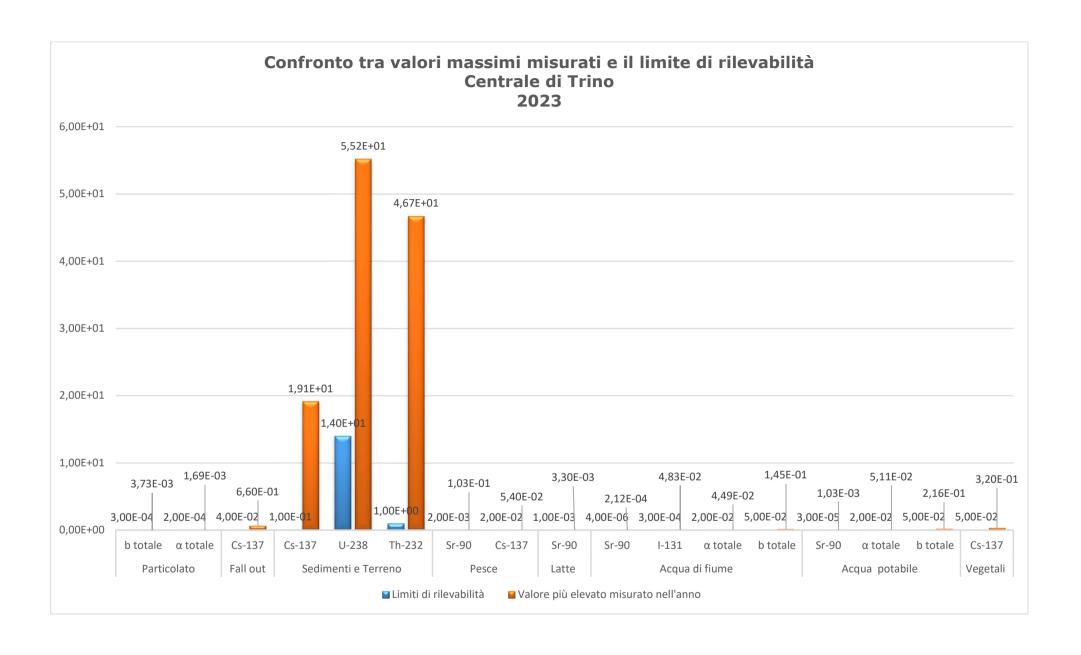
Scarichi liquidi										
Nuclide	Am-241	C-14	Co-60	Ag-108m	Cs-134	Cs-137	Eu-152	Eu-154	Fe-55	Dose all'individuo rappresentativo della popolazione (µSv/anno)
Attività (Bq)	7,14E+03	6,42E+06	3,74E+05	3,56E+05	1,93E+05	8,48E+05	8,18E+05	7,05+05	1,45E+06	<1
Nuclide	H-3	Mn-54	Ni-59	Ni-63	Pu-239	Pu-241	Sb-125	7,14E+03	% F.d.S. impegnata	
Attività (Bq)	4,14E+07	1,06E+05	1,82E+06	8,28E+05	8,50E+03	7,52E+05	5,85E+05	3,84E+04	2,45E-03	
					Scarichi aer	iformi				
Nuclide	H-3	Co-60	Cs-134	Cs-137	Sr-90	a-emettitori				Dose all'individuo rappresentativo della popolazione (µSv/anno)
Attività (Bq)	2,34E+08	5,08E+04	6,10+04	6,69E+04	5,84E+03	2,33E+04				<1

Risultati della sorveglianza ambientale 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
	β totale	3,00E-04 Bq/m3	3,73E-03
Aria (narticalata atmosfarica)	Cs-137	1,00E-05	(*)
Aria (particolato atmosferico)	Cs-134	1,00E-05	(*)
	Sr-90	2,00E-07	(*)

	I-131	2,00E-05	(*)
	Ag-108m	1,00E-05	(*)
	a totale	2,00E-04	1,69E-03
	Cs-134	4,00E-02 Bq/m2	(*)
Fall out	Cs-137	4,00E-02	6,60E-01
raii out	Ag-108m	4,00E-02	(*)
	I-131	2,00E+00	(*)
	Co-60	1,0E-01 Bq/kg	(*)
	Cs-137	1,00E-01	1,91E+01
	Cs-134	1,00E-01	(*)
Sedimenti e Terreno di risaia	Mn-54	1,00E-01	(*)
	Ag-108m	1,00E-01	(*)
	U-238	1,40E+01	5,52E+01
	Th-232	1,00E+00	4,67E+01
Acqua di falda piezometri di centrale	H-3	2,5E+00 Bq/l	(*)
	Cs-134	5,00E-02 Bq/Kg	(*)
Riso,mais	Cs-137	5,00E-02	(*)
Kiso, iliais	Ag-108m	5,00E-02	(*)
	I-131	5,00E-02	(*)
	Co-60	2,00E-02 Bq/kg	(*)
	I-131	2,00E-02	(*)
Dance	Ag-108m	2,00E-02	(*)
Pesce	Sr-90	2,00E-03	1,03E-01
	Cs-134	2,00E-02	(*)
	Cs-137	2,00E-02	5,40E-02
	Sr-90	1,00E-03 Bq/l	3,30E-03
	Ag-108m	4,00E-02	(*)
Latte	I-131	4,00E-02	(*)
Latte	H-3	2,50E+00	(*)
	Cs-134	4,00E-02	(*)
	Cs-137	4,00E-02	(*)
	Co-60	3,0E-04Bq/l	(*)
Acqua di fiume	Cs-137	2,00E-04	(*)
	Cs-134	2,00E-04	(*)

	Sr-90	4,00E-06	2,12E-04
	I-131	3,00E-04	4,83E-02
	a totale	2,00E-02	4,49E-02
	β totale	5,00E-02	1,45E-01
	Pu-239/240	5,00E-03	(*)
	Ag-108m	2,00E-04	(*)
	H-3	2,50E+00	(*)
	Co-60	5,00E-04 Bq/l	(*)
	Cs-137	5,00E-04	(*)
	Cs-134	5,00E-04	(*)
	Sr-90	3,00E-05	1,03E-03
Acqua di pozzo potabile cascine	I-131	5,00E-04	(*)
	a totale	2,00E-02	5,11E-02
	β totale	5,00E-02	2,16E-01
	Ag-108m	5,00E-04	(*)
	H-3	2,50E+00	(*)
Dose integrata gamma	rateo di dose gamma		250 nGy/h
	Cs-137	5,00E-02 Bq/kg	0,32
Wanatali adali a ada	Cs-134	5,00E-02	(*)
Vegetali eduli e erba	I-131	5,00E-02	(*)
	Ag-108m	5,00E-02	(*)


a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ; c) formula di scarico per i particolati α;
(*) valori inferiori alla minima attività rilevabile;
(**) per il Centro Casaccia non è stata definita una formula di scarico;
(+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.S. non scaricato;

HTO acqua triziata;

N.P. non presente.

N.A. misura non applicabile;

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7.

Relativamente alla sorveglianza ambientale intorno alla centrale di Trino, si è evidenziata la presenza di valori di Cs-137 superiori alla MDC nel terreno di risaia, nel pesce e nei vegetali. Per quanto riguarda la prima matrice il valore (19 Bq/kg) è confrontabile, e in questo caso più basso, con quelli registrati negli anni precedenti ed in linea con quelli derivanti dal *fallout* di Chernobyl (0,2÷2100 Bq/kg). Il Cs-137 presente nella matrice pesce (0,052 Bq/kg) ha valori confrontabili con quelli riscontrati negli anni precedenti e in ogni caso simili sia per il pescato a monte che per quello a valle della centrale e in linea con il range di variabilità nazionale (0,1 e 4,5 Bq/kg).

La misura di Sr-90 (0,103 Bq/kg) ha evidenziato lo stesso ordine di grandezza per i valori riscontrati sia a monte che a valle ed in linea con i valori degli anni precedenti cosi come la presenza di Cs-137 e pertanto non attribuibili agli scarichi di centrale I valori superiori alle MDC nel latte per lo Sr-90 (0,0033 Bq/l) sono in linea con il range nazionale compreso tra 0,0060 e 0,699 Bq/kg.

Per l'acqua di fiume e per quella di pozzo, infine, i valori superiori alle MDC per lo Sr-90 (3,16E-04 e 7,50E-04 Bq/l), risultano inferiori a quelli rilevati negli anni precedenti e al di sotto del livello di riferimento pari a 0,27 Bq/l. Non risulta significativo il valore superiore alla MDA per alfa e beta totali attribuibili a radionuclidi di origine naturale.

Per quanto riguarda il particolato atmosferico, i valori superiori alla MDC per alfa e beta totale sono da imputare alla presenza di radionuclidi di origine naturale e risultano, in ogni caso inferiori, ai livelli di riferimento dell'impianto per tale matrice.

CENTRALE DI CAORSO

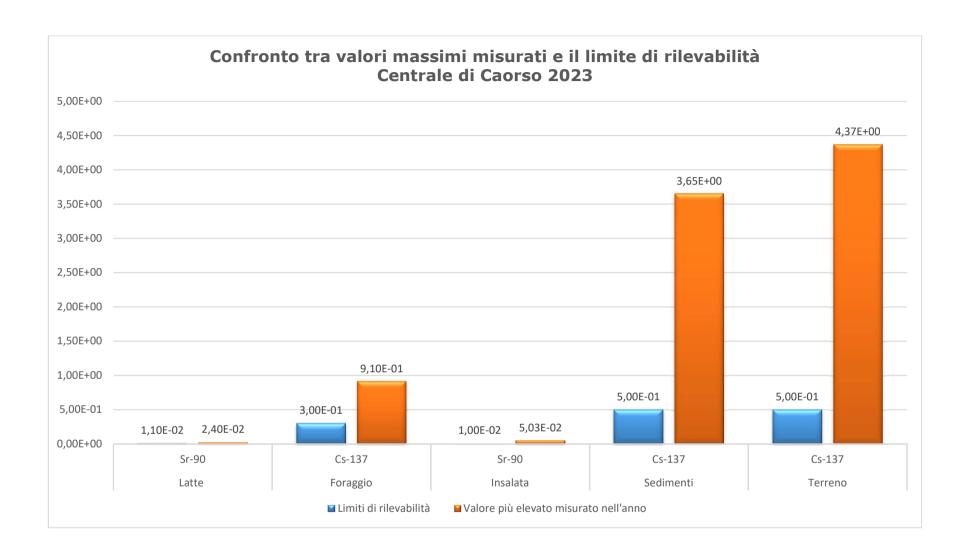
Scarichi effettuati nel 2023

	Scarichi liquidi											
Nuclide	Co-60	Cs-137	Sr-90	Sb-125	Fe-55	Ni-59	H-3	Ni-63	a totale	β totale	% F.d.S impegnata	Dose all'individuo rappresentativo della popolazione (µSv/anno)
Attività (Bq)	1,61E+06	1,16E+07	3,13E+05	1,28E+06	8,30E+04	1,96E+06	1,38E+06	6,60E+06	3,68E+05	8,94E+06	7,55E-03	2,41E-03
						Scario	hi aeriforr	ni				
Nuclide	Co-60	Cs-137	Sr-90	Sb-125	Fe-55	Ni-59	H-3	Ni-63	a totale	β totale	% F.d.S impegnata	
Attività (Bq)			2,66E+04		5,55E+04		5,13E+08	1,23E+07	2,06E+05	4,00E+05	5,73E-02	3,92E-03

Risultati della sorveglianza ambientale 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
	β totale	1,8E-04 Bq/m3	4,58E-03
Aria (particolato atmosferico)	Co-60	1,28E-05	(*)
	Cs-137	1,35E-05	(*)
	Sr-90	1,10E-02 Bq/l	2,40E-02
Latte	Co-60	3,89E-02	(*)
	Cs-137	3,32E-02	(*)
Farancia	Co-60	5,17E-01 Bq/kg	(*)
Foraggio	Cs-137	3,00E-01	9,10E-01
	Sr-90	1,00E-02 Bq/kg	5,03E-02
Insalata	Co-60	1,41E-01	(*)
	Cs-137	1,33E-01	(*)
Mais	Co-60	1,00E-01 Bq/kg	(*)
ladi2	Cs-137	9,74E-02	(*)
Domodoni.	Co-60	1,38E-02 Bq/kg	(*)
Pomodori	Cs-137	1,20E-02	(*)

Sama avina	Co-60	1,27E-01 Bq/kg	(*)
Carne suina	Cs-137	1,25E-01	(*)
Carne bovina	Co-60	6,61E-02 Bq/kg	(*)
Carne bovina	Cs-137	9,40E-02	(*)
Pesce	Co-60	1,32E-01 Bq/kg	(*)
Pesce	Cs-137	1,27E-01	(*)
	Co-60	9,71E-03 Bq/l	(*)
Acqua di Po-soluzione	I-131	1,34E-01	(*)
	Cs-137	1,02E-02	(*)
	Co-60	1,81E-02 Bq/l	(*)
Acqua di Po-sospensione	I-131	1,44E-02	(*)
	Cs-137	1,90E-02	(*)
	Sr-90	4,94-E-03 Bq/l	(*)
Acqua di pozzo	Co-60	2,49E-03	(*)
	Cs-137	2,78E-03	(*)
Sedimenti	Co-60	2,28E-01 Bq/kg	(*)
Sedifferiti	Cs-137	5,00E-01	3,65E+00
Terreno	Co-60	2,43E-01 Bq/kg	(*)
reneno	Cs-137	5,00E-01	4,37E+00
Uova	Co-60	9,16E-02 Bq/kg	(*)
OUVA	Cs-137	8,95E-02	(*)
Dose esterna (TLD)	rateo di dose gamma in aria		110 nGy/h
	Co-60	1,52E+00 Bq/m2	(*)
Fallout	Cs-137	1,82E+00	(*)
	β totale	1,00E+00	7,38E+00


a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati α ; (*) valori inferiori alla minima attività rilevabile; (**) per il Centro Casaccia non è stata definita una formula di scarico; (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata;

N.P. non presente.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale.

Continua il trend positivo anche per l'anno 2023, permanendo la presenza nel terreno di modeste quantità di Cs-137 (4,37 Bq/kg) che risultano in linea con le determinazioni degli anni precedenti e con il range nazionale (0,2 e 2100 Bq/kg).

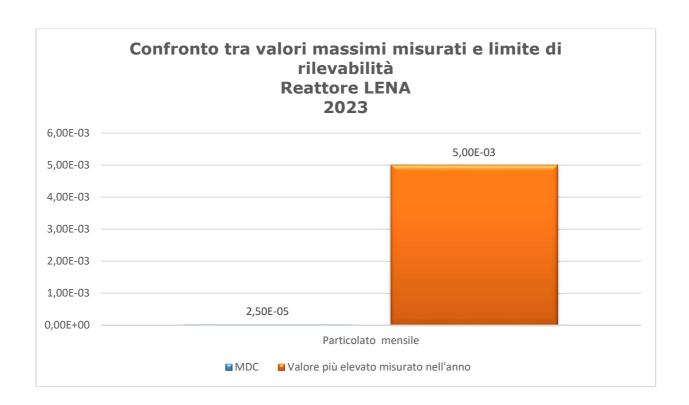
Nei sedimenti fluviali, in linea con gli anni precedenti, sono state riscontrate tracce di Cs-137 (3,65 Bq/kg); in ogni caso non si evidenziano differenze tra le concentrazioni di Cs-137 misurate a valle e a monte degli scarichi di competenza della Centrale e le stesse risultano coerenti con l'intervallo di variabilità nazionale (0,136 e 28,7 Bq/kg) e con le determinazioni degli anni precedenti.

Il valore di Sr-90 (2,40E-02 Bq/l) riscontrato nel latte è in linea con il range di variabilità nazionale compreso tra 0,0060 e 0,699 Bq/l mentre la determinazione di Sr-90 nell'insalata pari a 5,03E-02 Bq/kg, risulta in linea con la variabilità nazionale (0,0033÷10,176 Bq/kg).

Nel foraggio è stato riscontrato un valore di 0,910 Bq/kg di Cs-137 nel campione prelevato nella zona 1 nel primo semestre; il valore misurato, seppur leggermente superiore alla MDC risulta ampiamente all'interno del range di variabilità nazionale (0,05÷45,3 Bg/kg).

REATTORE TRIGA LENA DELL'UNIVERSITÀ DI PAVIA (PV)

Scarichi effettuati nel 2023


	Scarichi liquidi											
Nuclidi	Cs-134	Cs-137	Ru-106	Sr-85	% F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)						
Attività (Bq)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
			Scarichi a	eriformi								
Nuclidi			Ar-41		% F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)						
Attività (Bq)			1,78E+10		(+)	1,24						

Risultati della sorveglianza ambientale 2023

Matrice	Tipo di misura	MDC	Valore più elevato misurato nell'anno
	Te-132*	1,4 E-03 Bq/m3	(*)
Particolato atmosferico misura giornaliera	Te-131m*	5,70E-03	(*)
giornanera	I-131	1,90E-03	(*)
	Cs-137	2,40E-03	(*)

Matrice	Tipo di misura	MDC	Valore più elevato misurato nell'anno
	Be-7	2,50E-05	5,00E-03
Particolato atmosferico	I-131	6,10E-06	(*)
misura mensile	Cs-137	7,60E-06	(*)
	Cs-134	5,90E-06	(*)

- a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati a;
- (*) valori inferiori alla minima attività rilevabile; (**) per il Centro Casaccia non è stata definita una formula di scarico;
- (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;
- N.A. misura non applicabile;
- N.S. non scaricato;
- HTO acqua triziata;
- N.P. non presente.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7.

I valori misurati nel particolato atmosferico evidenziano la sola presenza di radioisotopi naturali, mentre i valori dei radioisotopi artificiali sono sempre al di sotto della MDC. Ne deriva che l'impatto dell'impianto dal punto di vista della radioprotezione sull'ambiente circostante, è trascurabile.

DEPOSITO AVOGADRO DELLA FIAT-AVIO, SALUGGIA (VC)

Scarichi effettuati nel 2023

	Scarichi liquidi											
Nuclidi	Co-60	Cs-134	Cs-137	Sr-90	H-3	a totale	% F.d. S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)				
Attività (Bq)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
				Scarichi aerif	ormi							
Nuclidi	Kr-85	Co-60	Cs-134	Cs-137	Sr-90	a totale	% F.d.S.					
	≤ 12,4E+09	≤3235	≤2109	≤3857	≤220,92	≤6538,55	a) ≤ 0,13	<1				
Attività (Bq)							b) ≤ 0,32	<1				
							c) ≤ 1,21	<1				

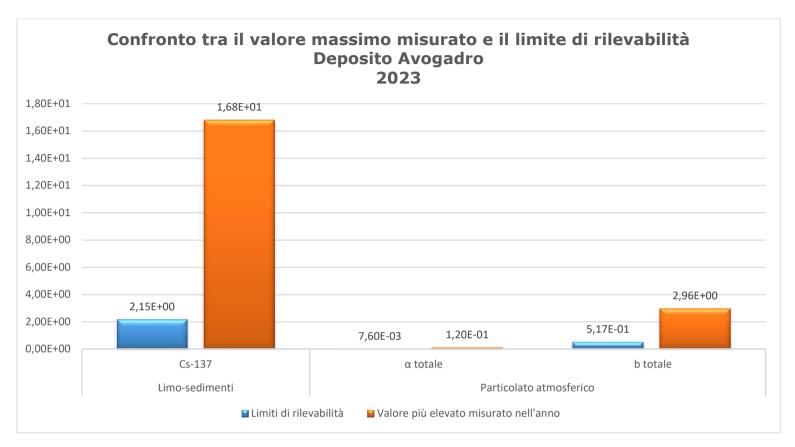
Risultati della sorveglianza ambientale 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
	Co-60	1,51E-01 Bq/l	(*)
Latte	Cs-134	9,72E-02	(*)
	Cs-137	1,26E-01	(*)
	Co-60	1,85E+02 mBq/l	(*)
Acqua di fiume su liquido	Cs-134	1,73E+02	(*)
Acqua di fiume su fiquido	Cs-137	2,12E+02	(*)
	Sr-90	2,11E+00	(*)
	Co-60	8,86E-01 Bq/kg secco	(*)
Limo-sedimenti	Cs-134	5,34E-01	(*)
Lillio-Sedillieliti	Cs-137	2,15E+00	1,68E+01
	Sr-90	3,65E-01	(*)
Ortaggi	Sr-90	1,45E-01 Bq/kg	(*)
Ortaggi	Co-60	4,08E-01	(*)

	Cs-134	2,35E-01	(*)
	Cs-137	2,24E-01	(*)
	a totale	7,60E-03 mBq/m3	1,20E-01
	β totale	5,17E-01	2,96E+00
Particolato atmosferico	Co-60	1,19E-01 Bq totali	(*)
	Cs-134	1,04E-01	(*)
	Cs-137	1,01E-01	(*)
A causa di firmana arranaidre	Co-60	10,1 mBq/l	(*)
Acqua di fiume su residuo secco	Cs-134	5,43E+00	(*)
	Cs-137	7,58E+00	(*)

a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati α ;

(*) valori inferiori alla minima attività rilevabile;


(**) per il Centro Casaccia non è stata definita una formula di scarico; (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata;

N.P. non presente.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7.

Per tutte le matrici della rete di sorveglianza ambientale, fatta eccezione per i limo-sedimenti e per il particolato, si registrano valori corrispondenti al fondo. Per il limo si registrano tracce di Cs-137 in linea con i valori registrati negli anni precedenti; il valore più alto per i 3 campioni effettuati nel corso dell'anno è quello presso il punto di scarico, che non si spiega, tenendo presente i possibili punti di accumulo derivanti dalle portate di acqua limitate. Per i sedimenti fluviali il valore registrato di 16,8 Bq/kg risulta ampiamente nel range di variabilità nazionale compreso tra 0,136 e 28,47 Bq/kg. I valori di alfa totale e beta totale leggermente al di sopra del limite di rilevabilità nel particolato sono attribuibili alla presenza di radioisotopi di origine naturale.

CENTRO EURATOM DI ISPRA (VA)

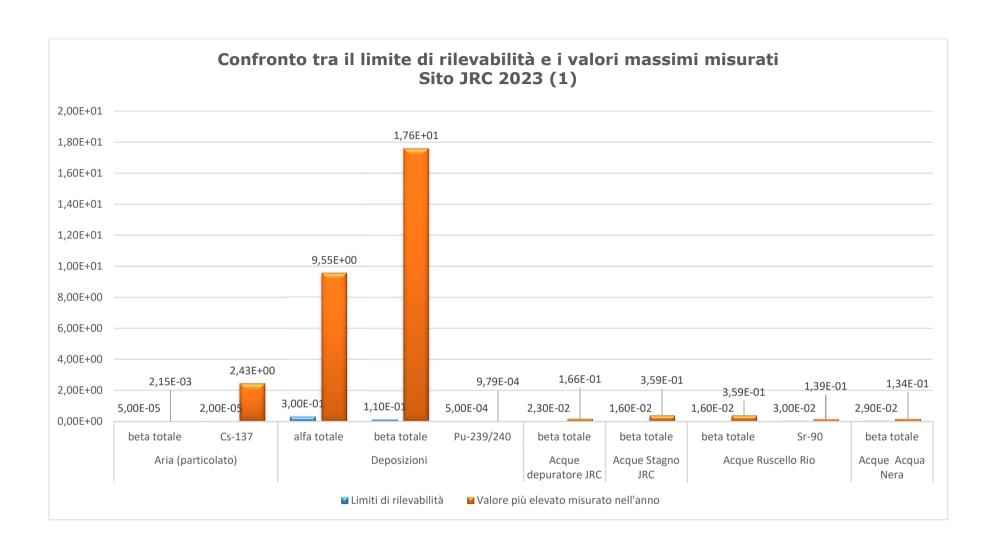
Scarichi effettuati nel 2023

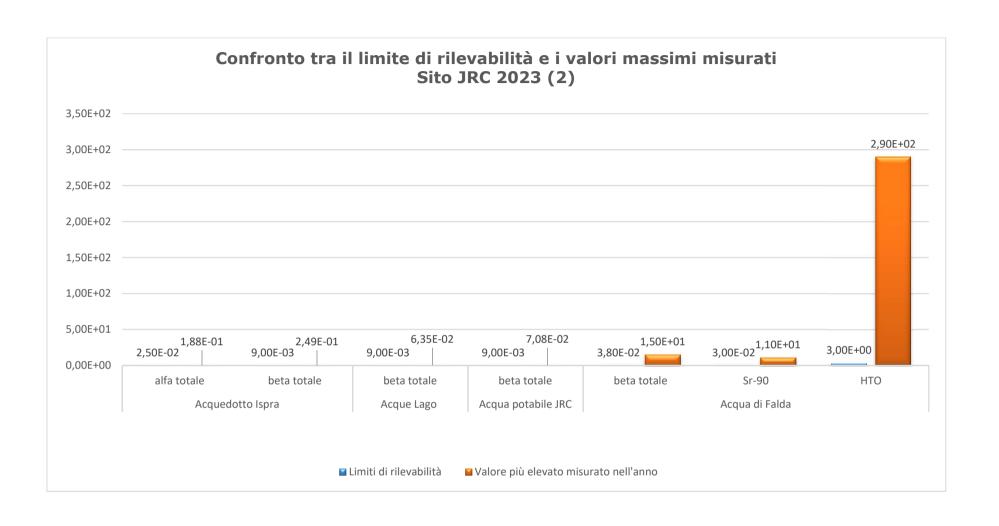
	Scarichi liquidi											
Nuclide	нто	Fe-55	Ni-63	Sr-90	Cs-137	Am-241	Pu-239	β/γ	а	% F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)	
Attività (Bq)	3,96E+08	4,35E+05	5,48E+05	3,63E+05	1,62E+06	2,59E+03	2,39E+02	3,81E+05	5,12E+04	5,77E-02	<1	
					Sca	richi aerifoi	mi					
Nuclide	H-3	Fe-55	Ni-63	Sr-90	U-238	β /γ	а			% F.d.S.		
Attività (Bq)	6,08E+10	1,27E+04	1,27E+04	1,30E+03	1,90E+03	2,25E+04	2,08E+02			7,31E-01	<1	

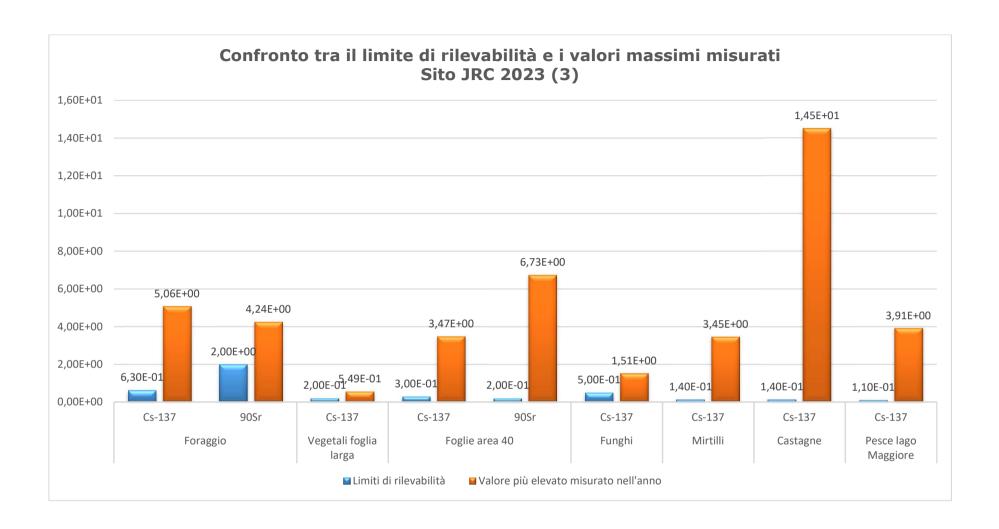
Sorveglianza ambientale nel 2023

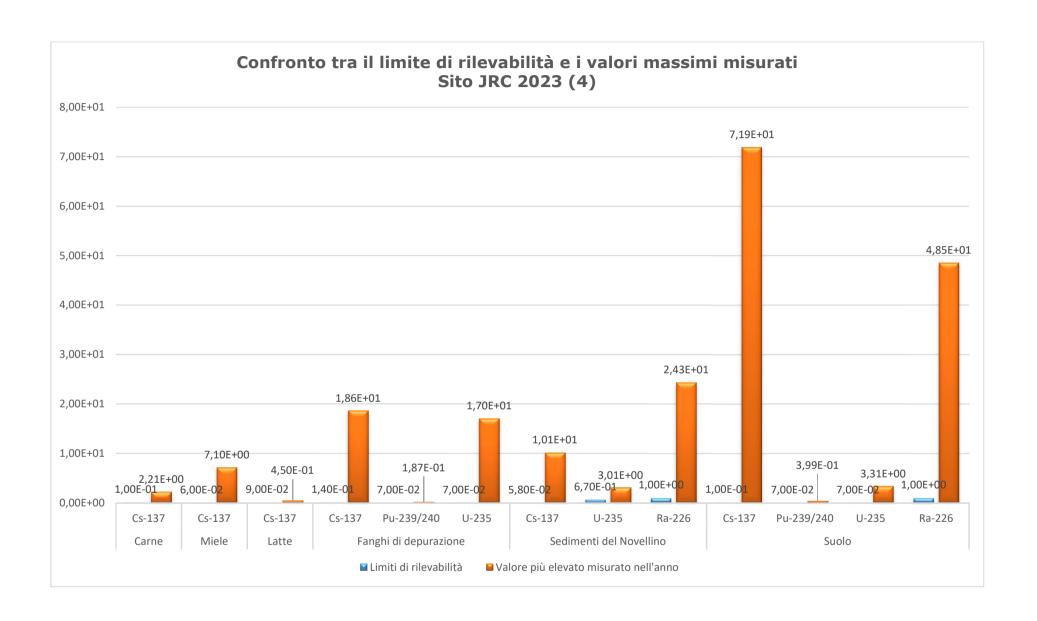
Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
	a totale	9,0E-05 Bq/m3	(*)
	β totale	5,00E-05	2,15E-03
Aria (particolato atmosferico)	Am-241	1,90E-04	(*)
	Cs-137	2,00E-05	2,43E+00
	Co-60	3,00E-05	(*)
Vapore acqueo	HTO	4,40E-02 Bq/m3	(*)
Dose esterna (TLD)	rateo di dose gamma		0,2 μSv/h
	Cs-137	2,00E-02 Bq/m2	(*)
Deposizioni umide e secche	Co-60	2,00E-02	(*)
	Am-241	2,00E-02	(*)
	a totale	3,00E-01	9,55E+00

	β totale	1,10E-01	1,76E+01
	Pu-238	5,00E-04	(*)
	Pu-239/240	5,00E-04	9,79E-04
	Sr-90	1,00E-02	(*)
	HTO	1,00E+03	(*)
	a totale	6,00E-02 Bq/l	(*)
	β totale	2,30E-02	1,66E-01
Acres consuliciali (demonstrato IDC	Am-241	7,00E-02	(*)
Acque superficiali (depuratore JRC al Novellino)	Co-60	7,00E-02	(*)
ai Novellillo)	Cs-137	7,00E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	3,30E-02 Bq/l	(*)
	β totale	1,60E-02	3,59E-01
A	Am-241	3,60E-02	(*)
Acque superficiali (Stagno interno JRC)	Co-60	3,60E-02	(*)
JRC)	Cs-137	3,60E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	4,500E-02 Bq/l	(*)
	β totale	1,60E-02	3,59E-01
	Am-241	4,90E-02	(*)
Acque superficiali (Ruscello Rio)	Co-60	4,90E-02	(*)
	Cs-137	4,90E-02	(*)
	Sr-90	3,00E-02	1,39E-01
	HTO	3,00E+00	(*)
	a totale	8,00E-02 Bq/l	(*)
Acque superficiali ruscello Acqua Nera	β totale	2,90E-02	1,34E-01
	Am-241	8,00E-02	(*)
	Co-60	8,00E-02	(*)
	Cs-137	8,00E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	2,40E-02 Bq/l	(*)


	β totale	8,40E-03	8,31E-02
	Am-241	2,60E-02	(*)
Acque superficiali del lago	Co-60	2,60E-02	(*)
Maggiore	Cs-137	2,60E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	2,30E-02 Bq/l	(*)
	β totale	8,20E-03	7,37E-02
	Am-241	2,50E-02	(*)
Acque superficiali fiume Ticino	Co-60	2,50E-02	(*)
	Cs-137	2,50E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	2,50E-02 Bq/l	1,88E-01
	β totale	9,00E-03	2,49E-01
	Am-241	2,70E-02	(*)
Acque acquedotto Ispra	Co-60	2,70E-02	(*)
	Cs-137	2,70E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	2,50E-02 Bq/l	(*)
	β totale	9,00E-03	6,35E-02
	Am-241	2,70E-02	(*)
Lago da potabilizzare	Co-60	2,70E-02	(*)
	Cs-137	2,70E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)
	a totale	2,50E-02 Bq/l	(*)
	β totale	9,00E-03	7,08E-02
	Am-241	2,70E-02	(*)
Acqua potabile JRC	Co-60	2,70E-02	(*)
	Cs-137	2,70E-02	(*)
	Sr-90	3,00E-02	(*)
	HTO	3,00E+00	(*)


	a totale	1,10E-01 Bq/l	(*)
	β totale	3,80E-02	1,50E+01
	Am-241	1,20E-01	(*)
Acqua di Falda	Co-60	1,20E-01	(*)
	Cs-137	1,20E-01	(*)
	Sr-90	3,00E-02	1,10E+01
	HTO	3,00E+00	2,90E+02
	Am-241	6,30E-01 Bq/kg secco	(*)
	Co-60	6,30E-01	(*)
Foraggio	Cs-137	6,30E-01	5,06E+00
	Sr-90	2,00E+00	4,24E+00
	Am-241	8,00E-01 Bq/kg secco	(*)
Vegetali foglia larga	Co-60	2,00E-01	(*)
	Cs-137	2,00E-01	5,49E-01
	Am-241	1,00E+00 Bq/kg secco	(*)
	Co-60	3,00E-01	(*)
Foglia quercia area 40	Cs-137	3,00E-01	3,47E+00
	Sr-90	2,00E-01	6,73E+00
	Am-241	5,00E-01 Bq/kg secco	(*)
	Co-60	5,00E-01	(*)
Funghi	Cs-137	5,00E-01	1,51E+00
	Sr-90	2,00E+00	(*)
	Am-241	5,60E-01 Bq/kg secco	(*)
Mirtilli	Co-60	1,40E-01	(*)
	Cs-137	1,40E-01	3,45E+00
	Am-241	1,40E-01 Bq/kg secco	(*)
Castagne	Co-60	1,40E-01	(*)
	Cs-137	1,40E-01	1,45E+01
	Am-241	1,40E-01 Bq/kg secco	(*)
Mele	Co-60	1,40E-01	(*)
	Cs-137	1,40E-01	(*)


	Am-241	6,10E-01 Bq/kg secco	(*)
Dagas dal lana Manniana	Co-60	1,10E-01	(*)
Pesce del lago Maggiore	Cs-137	1,10E-01	3,91E+00
	Sr-90	1,00E+00	(*)
	Am-241	5,20E-01 Bq/kg secco	(*)
Cown	Co-60	6,90E-01	(*)
Carne	Cs-137	1,00E-01	2,21E+00
	Sr-90	1,00E+00	(*)
	Am-241	3,70E-01	
Miele	Co-60	6,00E-02	
	Cs-137	6,00E-02	7,10E+00
	Am-241	4,10E-01 Bq/l	(*)
Latte	Co-60	9,00E-02	(*)
Latte	Cs-137	9,00E-02	4,50E-01
	Sr-90	1,40E-01	(*)
	Am-241	2,10E+00 Bq/kg secco	(*)
	Co-60	3,50E-01	(*)
	Cs-137	1,40E-01	1,86E+01
	Cs-134	1,40E-01	(*)
Fanghi di depurazione	Pu-238	7,00E-02	(*)
	Pu-239/240	7,00E-02	1,87E-01
	Sr-90	3,00E+00	(*)
	U-235	7,00E-02	1,70E+01
	Ra-226	1,60E+02	(*)
	Am-241	1,30E+00 Bq/kg secco	(*)
	Co-60	2,40E-01	(*)
	Cs-137	5,80E-02	1,01E+01
	Cs-134	1,80E-01	(*)
Sedimenti del Novellino	Pu-238	6,70E-01	(*)
	Pu-239/240	6,70E-01	(*)
	Sr-90	3,40E+01	(*)
	U-235	6,70E-01	3,01E+00
	Ra-226	1,00E+00	2,43E+01
	•	•	


	Am-241	1,20E+00 Bq/kg secco	(*)
	Co-60	1,00E-01	(*)
	Cs-137	1,00E-01	7,19E+01
	Cs-134	1,00E-01	(*)
Suolo	Pu-238	7,00E-02	(*)
	Pu-239/240	7,00E-02	3,99E-01
	Sr-90	3,00E+00	(*)
	U-235	7,00E-02	3,31E+00
	Ra-226	1,00E+00	4,85E+01

- a) formula di scarico per i gas nobili; b) formula di scarico per i particolati βγ; c) formula di scarico per i particolati α;
- (*) valori inferiori alla minima attività rilevabile; (**) per il Centro Casaccia non è stata definita una formula di scarico;
- (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;
- N.A. misura non applicabile;
- N.S. non scaricato;
- HTO acqua triziata;
- N.P. non presente.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7. In relazione all'elevato numero di matrici e i diversi radionuclidi considerati, per comodità di presentazione, il grafico che rappresenta l'andamento dei valori massimi misurati nel corso del 2023 nelle matrici rispetto al limite di rilevabilità (MDC) è stato suddiviso in 4 parti: le prime 2 sono riferite alle determinazioni nel particolato, alle deposizioni secche ed umide e nelle acque superficiali mentre le restanti 2 sono riferite alle determinazioni effettuate sulle matrici alimentari.

Per quanto riguarda le concentrazioni di radioattività misurate nel particolato e nelle deposizioni umide e secche esse sono in linea con quelle degli ultimi anni. Infatti, il valore di beta totale di 2,15E-03 Bq/m³ e del Cs-137 di 2,41 Bq/m³ sono inferiori ai rispettivi livelli di indagine di 2,5E-3 e 1,5E-02 Bg/m³.

Per le acque superficiali nel ruscello Rio si riscontrano valori di beta totale e di Sr-90 rispettivamente di 0,4 e 0,14 Bq/l; tali valori risultano inferiori di almeno il 30%ai rispettivi livelli di indagine (0,5 e 0,3 Bq/l) e a quelli misurati negli anni precedenti negli stessi punti. Inoltre, gli studi idrogeologici condotti nell'area non hanno consentito di correlare le suddette determinazioni con le attività condotte nell'Area 40 anche se sono in corso ulteriori indagini.

Nell'acqua potabile il valore di alfa totale (0,19 Bq/l) superiore alla MDC è dovuto alla presenza di U-naturale nelle acque; anche il valore registrato relativamente alla misura di beta totale è dovuto alla presenza di radionuclidi di origine naturale; pur risultando leggermente più alto del valore massimo del range a livello nazionale (0,011 \div 0,23 Bq/l) esso tuttavia non supera il livello di indagine posto a 0,5 Bq/l.

Per quanto riguarda l'acqua di falda, in alcuni pozzi piezometrici, nello specifico, è stata riscontrata nei campioni dei pozzi secchi e dei pozzi romani la presenza di Sr-90 HTO e Beta totale in valori superiori alla MDC ma sempre inferiori rispetto al livello di riferimento stabilito dall'Esperto di Radioprotezione; in ogni caso i valori rimangono in linea con quelli misurati negli ultimi anni, segno di una condizione di raggiunto equilibrio, e comportano una esposizione trascurabile per la popolazione.

Per uno dei pozzi monitorati nell'Area 52 si è registrato un valore di beta totale (1,6 Bq/l) superiore al livello di indagine (0,5 Bq/l). Per lo stesso pozzo nel 2023 si è registrato, nel IIIº trimestre, un valore di Sr-90 pari a 0,84 Bq/l superiore al livello di indagine di 0,80 Bq/l, ma inferiore rispetto al livello di intervento (0,98 Bq/l); nel IVº trimestre per lo stesso pozzo il valore è ritornato al di sotto del livello di indagine.

Per alcuni pozzi interni al sito si sono registrati valori di alfa totale superiori alla MDC e, in alcuni casi, anche superiori ai livelli di indagine anche se a periodi alterni; questa situazione è legata quasi certamente alla presenza di U-naturale nelle acque di falda; in ogni caso l'esercente ha posto in essere una valutazione supplementare di spettrometria alfa su alcuni campioni per i quali si è in attesa dei risultati definitivi.

Anche per il 2023 si conferma l'estrema variabilità della concentrazione di HTO che in diversi casi, e sempre nell'Area 40, risulta superiore al livello di indagine, ma comunque in linea con i valori storici dell'area come a dimostrare la stazionarietà della situazione.

Nonostante non sia stato possibile stabilire una correlazione tra la presenza di rifiuti interrati nell'area SGRR e la presenza di alcuni radioisotopi nei pozzi piezometrici, l'impianto sta continuando a portare avanti i progetti per il recupero e il condizionamento dei rifiuti stessi.

Sono state trovate tracce di Cs-137 (19 Bq/kg) nei fanghi del depuratore interno al JRC, come atteso; tuttavia esse sono confrontabili con i valori misurati negli anni precedenti per la stessa matrice ed in ogni caso inferiori rispetto al livello di indagine (39 Bq/kg). La concentrazione massima di Pu-239/240, pari a 0,19 Bq/kg, è superiore alla MDC ma inferiore di 4 ordini di grandezza rispetto al livello di indagine (1,6E+03 Bq/kg). Anche la misura di U-235 nei fanghi di depurazione (17 Bq/kg) è superiore al livello di indagine di 8,3 Bq/kg (ma inferiore rispetto al livello di intervento di 41 Bq/kg) ed è attribuibile all'uranio naturale, considerato il rapporto tra le attività specifiche di U-238 e U-235.

Nei sedimenti del ruscello Novellino è stata rilevata la presenza di tracce di Cs-137 (10 Bq/kg), in concentrazioni coerenti con quelle determinate in punti non correlati con la presenza dell'impianto e pertanto essi sono attribuibili all'incidente di Chernobyl (0.136÷28,47 Bq/kg). La presenza di U-235 (3 Bq/kg) e di Ra-226 (24,3 Bq/kg), risulta superiore alla MDC ma in ogni caso inferiorierispetto ai relativi livelli di indagine (3,4 Bq/kg e 54 Bq/kg).

Stesse considerazioni possono essere fatte per il Cs-137 riscontrato nei campioni di suolo (72 Bq/kg), il cui range di variabilità a livello nazionale è compreso tra 0,2 e 2100 Bq/kg. La presenza di U-235 e di Ra-226 è attribuibile alla presenza di radioisotopi di origine naturale ed in linea con quanto misurato negli anni precedenti.

La presenza di tracce di Cs-137 in alcune matrici alimentari è in linea con i valori misurati negli anni precedenti, ma sono confrontabili con i valori misurati in altri punti della regione sulle stesse matrici ed attribuibili all'incidente di Chernobyl; per il foraggio il valore misurato, 5,06 Bq/kg, è in linea con il range di valori compreso tra 0,05 e 45,3 Bq/kg; per i funghi la concentrazione di 1,51 Bq/kg è all'interno del range 0,2÷31.000 Bq/kg; per le castagne il valore di 14,5 Bq/kg è entro il range 0,2÷82 Bq/kg; per il miele la misura 7,1 Bq/kg è ricompresa nell'intervallo 0,1÷44 Bq/kg; per la carne, il valore di 2,21 Bq/kg, è all'interno del range 0,04÷15 Bq/kg.

La presenza nel latte di tracce di Cs-137 (0,28 Bq/kg) è ampiamente compresa nell'intervallo di variabilità a livellol nazionale (0,03÷21,8 Bq/l).

Anche per il 2023 sono stati tuttavia previsti campionamenti aggiuntivi di latte e foraggio (il valore di 90Sr nel foraggio anche per il 2023 è comunque in linea con quello dei anni precedenti) ,ma va sottolineato che l'alimentazione animale è costituita solo parzialmente da foraggio e mangimi locali. In ogni caso i produttori di latte presso cui avviene il campionamento utilizzano il latte principalmente per autoconsumo risultando quindi un contributo trascurabile alla dose alla popolazione.

La presenza di Cs-137 nella matrice pesce di lago (3,91 Bq/kg) è confrontata con il range ottenuto misurando il Cs nei pesci di fiume $(0,1\div4,5 \text{ Bq/kg})$.

CENTRO CASACCIA DELL'ENEA (RM)

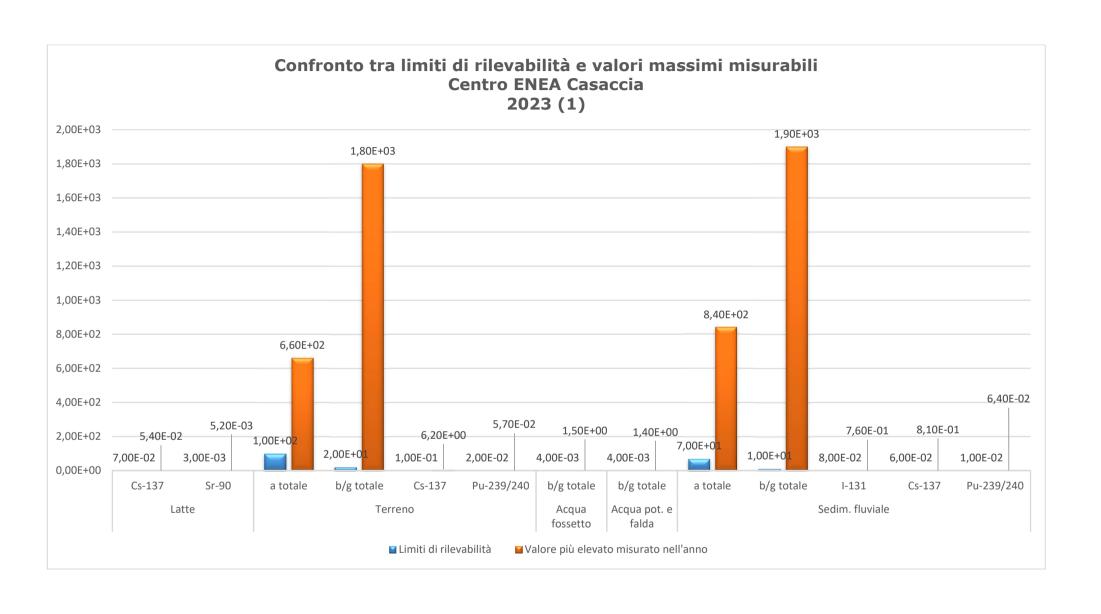
Scarichi effettuati nel 2023

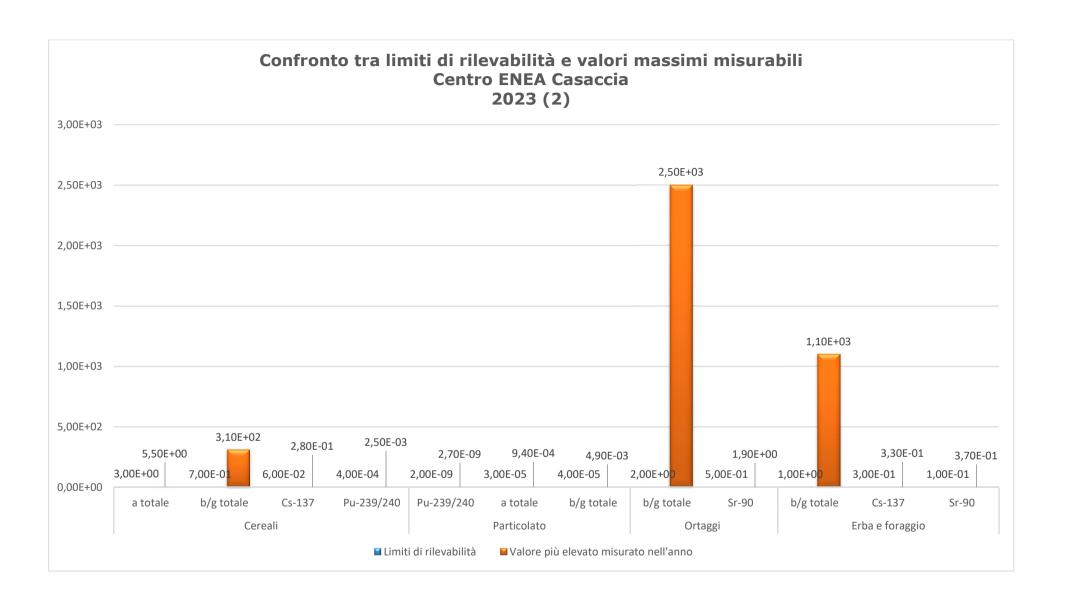
				Scarichi	liquidi				
Nuclide	H-3	C-14	Co-60	Sr-89	Sr-90	Ru-106	I-125	% F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)
Attività (Bq)								0,00E+00	
Nuclide	I-131	Cs-134	Cs-137	Eu-152	Ra-226	Th-232	U-235		
Attività (Bq)									
Nuclide	U-238	Pu-238	Pu-239	Pu-240	Pu-241	Am-241	Pu-242		
Attività (Bq)									
				Scarichi a	eriformi				
Nuclide	a totale (impianti ENEA)	β/γ totale (impianti ENEA)	I-131	Ar-41 (impianti ENEA)	a totale (Imp. Plutonio)	a totale (Imp. Opec 2)	β/γ totale (Opec 1)	% F.d.S.	
Attività (Bq)	<6,82E+04	<1,13E+05	<1,00E+06		1,52E+04	3,37E+04	3,04E+0 5	(**)	

Sorveglianza ambientale nel 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
	Cs-137	7,00E-02 Bq/l	5,40E-02
Latte	I-131	1,00E-02	(*)
	Sr-90	3,00E-03	5,20E-03
Terreno	a totale	1,00E+02 Bq/kg secco	6,60E+02
Terreno	β/γ totale	2,00E+01	1,80E+03
	Co-60	1,00E-01	(*)

	Cs-137	1,00E-01	6,20E+00
	Pu-238	2,00E-02	(*)
	Pu-239/240	2,00E-02	5,70E-02
	Co-60	7,00E-02 Bq/l	(*)
Acque reflue	I-131	1,00E-01	(*)
	Cs-137	8,00E-02	(*)
	a totale	2,00E-02 Bq/l	(*)
	β/γ totale	4,00E-03	1,50E+00
	Co-60	2,00E-02	(*)
Acqua del fossetto	I-131	6,00E-02	(*)
	Cs-137	1,00E-03	(*)
	Pu-238	1,00E-06	(*)
	Pu-239/240	1,00E-06	(*)
	a totale	2,00E-02 Bq/l	(*)
	β/γ totale	4,00E-03	1,40E+00
Acqua potabile e di falda	Co-60	2,00E-02	(*)
	I-131	6,00E-02	(*)
	Cs-137	1,00E-03	(*)
	a totale	7,00E+01 Bq/kg	8,40E+02
	β/γ totale	1,00E+01	1,90E+03
	Co-60	8,00E-02	(*)
Sedimento fluviale	I-131	8,00E-02	7,60E-01
	Cs-137	6,00E-02	8,10E-01
	Pu-238	1,00E-02	(*)
	Pu-239/240	1,00E-02	6,40E-02
	a totale	3,00E+00 Bq/Kgsecco	5,50E+00
	β/γ totale	7,00E-01	3,10E+02
Cereali	Co-60	1,00E-01	(*)
	Cs-137	6,00E-02	2,80E-01
	Sr-90	9,00E-02	(*)
	Pu-238	4,00E-04	(*)
	Pu-239/240	4,00E-04	2,50E-03
Particolato atmosferico	Pu-238	4,70E-09 Bq/m3	(*)
Particulato atmosferico	Pu-239/240	2,00E-09	2,70E-09


	a totale	3,00E-05	9,40E-04
	β/γ totale	4,00E-05	4,90E-03
	Co-60	2,00E-06	(*)
	I-131	7,00E-05	(*)
	Cs-137	2,00E-06	(*)
	a totale	1,00E+01 Bq/kgsecco	(*)
	β/γ totale	2,00E+00	2,50E+03
	Co-60	3,00E-01	(*)
Ortaggi	Cs-137	2,00E-01	(*)
	Sr-90	5,00E-01	1,90E+00
	Pu-238	2,00E-03	(*)
	Pu-239/240	2,00E-03	(*)
	a totale	5,00E+01 Bq/kgsecco	(*)
	β/γ totale	1,00E+00	1,10E+03
	Co-60	4,00E-01	(*)
Erba e foraggio	Cs-137	3,00E-01	3,30E-01
	Sr-90	1,00E-01	3,70E-01
	Pu-238	6,00E-04	(*)
	Pu-239/240	6,00E-04	(*)
Dose esterna (TLD)	rateo di dose gamma	Valore massimo	1,40 mSv/anno


a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati α ; (*) valori inferiori alla minima attività rilevabile;
(**) per il Centro Casaccia non è stata definita una formula di scarico;
(+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7.

Per comodità di lettura e rappresentazione, i risultati della sorveglianza ambientale sono riportati in 2 grafici separati.

I valori di alfa e beta totale riscontrati nel terreno, nei sedimenti fluviali, nel particolato e nei cereali, cosi come i valori di beta totale, negli ortaggi, nell'erba e nelle acque del Fossetto, di falda e potabile, sono da attribuire alla radioattività naturale e sono in linea con i valori registrati negli anni precedenti. La presenza in tracce dello Sr-90, del Cs-137 e del Pu-239/240, sono in linea con i valori misurati negli anni precedenti, da imputare in parte all'evento di Chernobyl (Sr-90, Cs-137) e solo marginalmente ai pochi scarichi effettuati da Nucleco negli anni.

Per il Cs-137 nel terreno (6,2 Bq/kg), infatti, la variabilità sul territorio nazionale è compresa nel range tra 0,2 e 2100 Bq/kg. Per la matrice erba e foraggio il valore misurato di Sr-90 (0,37 Bq/kg), è all'interno del range di variabilità nazionale (0,033÷10,17 Bq/kg).

Anche per i valori di Cs-137 e Sr-90 registrati nel latte (Cs-137 5,4E-02 Bq/l e Sr-90 5,2E-03 Bq/l) si può affermare che essi sono all'interno dell'intervallo di variabilità nazionale compreso tra 0,03 e 21,8 e 0,006 e 0,699 Bq/l rispettivamente e risultano confrontabili con i valori misurati nel campione imperturbato della zona definito "bianco di riferimento".

Per quanto riguarda la misura di Sr-90 negli ortaggi, essa è stata registrata una sola volta in una matrice campionata nel mese di ottobre per la matrice "melanzane"; per gli altri mesi e le altre matrici campionate il valore è risultato sempre inferiore alla MDA.

I pochi valori nelle matrici alimentari superiori alla MDC risultano, in ogni caso, di molto inferiori rispetto ai livelli notificabili riportati nell'allegato III Euratom 2000/473.

I valori di concentrazione di I-131 misurati nel sedimento campionato presso il Fossetto della Casaccia Sud sono dovuti, in assenza di ulteriori riscontri di altri radionuclidi nelle matrici campionate, allo scarico derivante da persone sottoposte ad indagini di tipo clinico e/o terapeutico.

Complessivamente le attività del centro della Casaccia hanno portato a valori che risultano in linea con quelli misurati negli anni precedenti e sono stati tali da avere un impatto trascurabile dal punto di vista radiologico sulla popolazione circostante il sito.

IMPIANTO DELLA FABBRICAZIONI NUCLEARI BOSCO MARENGO (AL)

Scarichi effettuati nel 2023

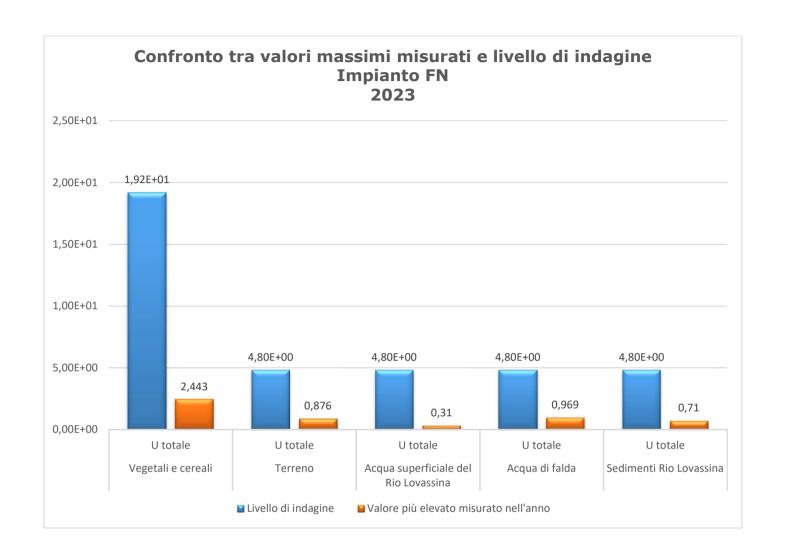
	Scarichi liquidi					
Nuclide	Uranio	%F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)			
Quantità (kg)	0	0	0,00E+00			
			Scarichi aeriformi			
Nuclide	Uranio	%F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)			
Attività (Bq)	1,1E+03	2,00E-02	1,47E-05			

Sorveglianza ambientale nel 2023

Matrice	Tipo di misura	Livello di indagine	Valore più elevato misurato nell'anno
Vegetali e cereali	U totale	19,2 ppb	2,443
Terreno	U totale	4,80E+00	0,876
Acqua superficiale Rio Lovassina	U totale	4,80E+00	0,31
Acqua di falda	U totale	4,80E+00	0,969
Sedimenti Rio Lovassina	U totale	4,80E+00	0,71
Dose esterna (TLD)			400 μSv

	Tipo di misura	LC-Limited counting strumentale (§)	MDC-Minima Concentrazione Rilevabile	Valore più elevato misurato nell'anno
Acqua superficiale Rio Lovassina	Co-60	5,19E-02 Bq/l	1,07E-01 Bq/l	(§)
	Cs-137	4,50E-02	9,23E-02	(§)
	Th-232	1,81E-01	3,69E-01	6,27E-01
	U-235	2,76E+02	5,58E+02	(§)
	U-238	4,23E+03	8,72E+03	(§)
	Am-241	1,27E+02	2,58E+02	(§)
Sedimenti di fiume	Co-60	1.19E-04 Bq/g	2,42E-04 Bq/g	(§)
	Cs-137	1,66E-04	2,14E-04	1,65E-02
	Th-232	5,71E-04	1,16E-03	4,41E-02
	U-235	7,76E-04	1,56E-03	2,58E-03
	U-238	1,23E-02	2,49E-02	6,21E-02
	Am-241	6,93E-04	1,56E-03	(§)
Grano	Co-60	1.65E-01 Bq/g	3,35E-01 Bq/g	(§)
	Cs-137	1,18E-01	2,41E-01	(§)
	Th-232	7,11E-01	1,44E+00	(§)
	U-235	1,13E+00	2,28E+00	2,28 (MDC)
	U-238	1,91E+01	3,87E+01	(§)
	Am-241	1,07E+00	2,16+00	(§)

a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati α ; (*) valori inferiori a LC (Limited Counting Strumentale);


(**) per il Centro Casaccia non è stata definita una formula di scarico; (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata.

(§) Valore inferiore rispetto alla Minima Concentrazione Rilevabile

Il grafico relativo al 2023, che riporta le concentrazioni di Uranio nelle matrici campionate confrontate con il rispettivo livello di indagine, conferma che i valori misurati risultano tutte ampiamente inferiori rispetto al livello di indagine stesso e in linea con i valori del fondo ambientale misurato nel corso degli anni precedenti. Inoltre, nel corso del 2023 tutte le determinazioni, effettuate su radionuclidi alfa e beta-gamma emettitori, non hanno evidenziano valori anomali rispetto alla variabilità caratteristica del fondo ambientale misurato in zone non influenzate dalla presenza dell'impianto; infatti le misure risultate superiori al "Limited Counting" strumentale per il Th-232 sono da imputare totalmente a radionuclidi di origine naturale. È utile sottolineare che il valore di LC sopra menzionato è sempre inferiore rispetto al relativo valore di MDC.

IMPIANTO EUREX C.R. ENEA, SALUGGIA (VC)

Scarichi effettuati nel 2023

	Scarichi liquidi									
Nuclide	ß totale	a totale						% F.d.S.	Dose all'individuo rappresentativo della popolazione (µSv/anno)	
Attività (Bq)	0,00E+00	0,00E+00						0,00E+00	,	
				Scari	chi aeriform					
Nuclide	Cs-134	Cs-137	I-129	Sr-90	Pu-239	particolato β/γ	particolato a	% F.d.S		
Attività (Bq)	≤9,70E+03	≤1,10E+04	< 4,11E+04	≤6,86E+02	≤6,86E+02	≤3,47E+04	≤7,00E+03	a) 0,0		
								b) 3,16E-02		
								c) 3,67E-02	0,5	

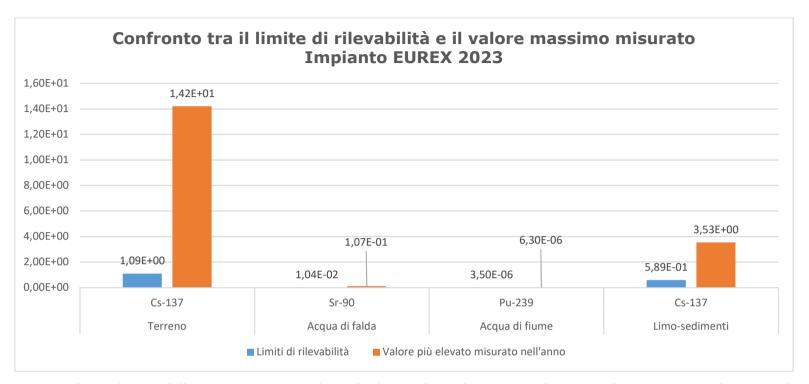
Sorveglianza ambientale nel 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
	Cs-137	1,27E-01 Bq/l	(*)
Latte	I-129	1,27E-02	(*)
	Sr-90	1,50E-02	(*)
Terreno	Cs-137	1.09E+00 Bqkg	1,42E+01
	Cs-137	1.58E-04 Bq/l	(*)
Acqua di falda	Sr-90	1,04E-02	1,07E-01
	Pu-239	9,00E-06	(*)
Acqua di fiuma	Cs-137	7,69E-03 Bq/l	(*)
Acqua di fiume	Pu-239	3,50E-06	6,30E-06
Acqua potabilo	Cs-137	1.34E-02 Bq/l	(*)
Acqua potabile	Pu-239	1,20E-05	(*)

	Sr-90	6,10E-03	(*)
Lima cadimonti	Cs-137	5,89E-01 Bq/kg	3,53E+00
Limo-sedimenti	Pu-239	6,90E-03	(*)
Mais	Sr-90	3.90E-02 Bq/kg	(*)
Mais	Cs-137	8,45E-01	(*)
Particolato atmosferico	Sr-90	5.86E-07 Bq/m3	(*)
Particolato atmosferico	Cs-137	5,30E-07	(*)
	Cs-137	2.28E-01 Bq/m2	(*)
Fallout	Pu-239	3,00E-03	(*)
	Sr-90	8,60E-02	(*)
Dose esterna (TLD)			143 nSv/h

Legenda

a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ c) formula di scarico per i particolati α ;


(*) valori inferiori alla minima attività rilevabile;

(**) per il Centro Casaccia non è stata definita una formula di scarico; (+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7.

Tutti i valori misurati sono risultati al di sotto della MDC tranne che per i campioni di terreno e limo per i quali si registrano tracce di Cs-137 in linea con i valori degli anni precedenti e coerenti con le concentrazioni dovute all'incidente di Chernobyl; infatti sia per il terreno, per il quale il valore misurato è di 14,2 Bq/kg, sia per il limo la cui determinazione è di 3,53 Bq/kg, sono perfettamente in linea con il range di variabilità nazionale compreso tra 0,2 e 2100 Bq/kg e 0,147 e 19 Bq/kg per terreno e limo rispettivamente.

Per la presenza di Sr-90 nell'acqua di falda va ricordato che il sito di EUREX effettua da alcuni anni un monitoraggio straordinario dell'acqua di falda, legato alla presenza di alcune perdite dalla piscina rilevate prima che fosse svuotata definitivamente.

I risultati mostrano una stazionarietà delle concentrazioni di Sr-90 rispetto agli anni precedenti; i valori misurati non mostrano correlazioni concentrazioni anomale di Sr-90 rilevate da ARPA Piemonte all'esterno del sito EUREX.

IMPIANTO ITREC (MT)

Scarichi effettuati nel 2023

	Scarichi liquidi							
Nuclide	H-3	Sr-90	Emettitori β/γ	Emettitori a	% F.d.S impegnata	Dose all'individuo rappresentativo della popolazione (µSv/anno)		
Attività (Bq)	1,94E+07	4,53E+06	8,49E+06	9,79E+05	1,20E-01	4,32E-03		
			Scarichi aeri	formi				
Nuclide Gas Particolato				% F.d.S impegnata	Dose all'individuo rappresentativo della popolazione (μSv/anno)			
Attività (Bq)	5,71E+12	2,38E+06			a) 3,86 b) + c) 0,08	Trascurabile		

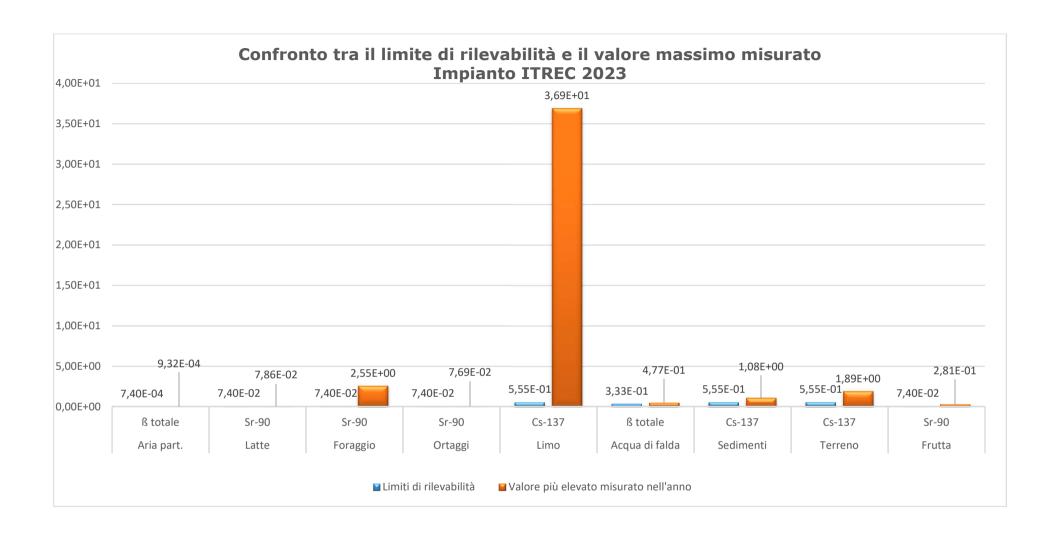
Sorveglianza ambientale nel 2023

Matrice	Tipo di misura	Limiti di rilevabilità	Valore più elevato misurato nell'anno
Aria	β totale	7,4E-04 Bq/m3	9,32E-04
(particolato atmosferico)	Pu-239	2,22E-06	(*)
(particolato atmosferico)	Cs-137	7,40E-05	(*)
Latte	Sr-90	7,40E-02 Bq/l	7,86E-02
Latte	Cs-137	3,70E-01	(*)
Favaraia	Sr-90	7,4E-02 Bq/kg	2,55E+00
Foraggio	Cs-137	9,25E-01	(*)
Outoggi	Sr-90	7,4E-02 Bq/kg	7,69E-02
Ortaggi	Cs-137	1,48E-01	(*)
Molluschi	Cs-137	7,4E-02 Bq/kg	(*)
Limo	Pu-239	2,22E-02	(*)

	Cs-137	5,55E-01 Bq/kg	3,69E+01
Pesce	Cs-137	1,48E-01 Bq/kg	(*)
	Cs-137	3,70E-02 Bq/l	(*)
Acqua di mare	Th-nat	0,02 (μg/lt)	(*)
Acqua di mare	Sr-90	7,40E-02	(*)
	H-3	2,59E+01	(*)
Acqua di falda	β totale	3,33E-01 Bq/l	4,77E-01
Acqua di falda	Cs-137	3,70E-02	(*)
Sedimenti	Cs-137	5,55E-01 Bq/kg	1,08E+00
Terreno	Cs-137	5,55E-01 Bq/kg	1,89
Frutta	Sr-90	7,40E-02 Bq/kg	2,81E-01
riutta	Cs-137	1,48E-01	(*)
Dose esterna (TLD)	rateo di dose gamma in aria		100 μSv
Fallout	Cs-137	3,33E-01 Bq/m2	(*)
Sabbia	Cs-137	5,55E-01 Bq/kg	(*)
Sabbia (irraggiamento diretto)		0,01 μSv/h	0,063

Legenda

a) formula di scarico per i gas nobili; b) formula di scarico per i particolati β/γ ; c) formula di scarico per i particolati α ;


(*) valori inferiori alla minima attività rilevabile;
(**) per il Centro Casaccia non è stata definita una formula di scarico;
(+) per il reattore TRIGA LENA non è stata definita una formula di scarico per gli effluenti aeriformi;

N.A. misura non applicabile;

N.S. non scaricato;

HTO acqua triziata;

N.P. non presente.

Il grafico rappresenta le risultanze delle misure non considerando il contributo dovuto ai radioisotopi di origine naturale tra cui il K-40 e il Be-7.

Anche per il 2023 sono state trovate tracce di Cs-137 nel terreno (1,89 Bq/kg), nel limo (36,9 Bq/kg) esse sono in linea con i valori misurati negli anni precedenti e non risultano attribuibili alla presenza dell'impianto sul territorio, anche perché i valori misurati sono ricompresi nel range di variabilità nazionale, che per il terreno è tra 0,2÷2100 Bq/kg e per il limo tra 0,147÷19 Bq/kg. La presenza di Cs-137 nel limo dello scarico Oxigest, in concentrazioni più elevate rispetto ai valori determinati in altri punti di scarico, è in ogni caso in linea con i valori determinati negli anni precedenti e con la particolare tipologia di scarico afferente a questo punto.

Anche la presenza di tracce di Sr-90 nel foraggio (2,55 Bq/kg), negli ortaggi (0,079 Bq/kg), nella frutta (0,28 Bq/kg) e nel latte (0,079 Bq/l) risultano coerenti con le determinazioni effettuate negli anni precedenti e rientrano all'interno del range di variabilità nazionale (0,0033 \pm 10,176 Bq/kg ortaggi e foraggio e 0,006 \pm 0,69Bq/l latte).

Per l'acqua di falda la misura del beta totale (0,477 Bq/l) è all'interno dell'intervallo di valori nazionali (0,037÷1,95 Bq/l), mentre il valore di beta totale più elevato nel particolato atmosferico è riconducibile alla presenza di radioisotopi di origine naturale.

È utile riportare che il sito di ITREC è oggetto, da alcuni anni, di una campagna straordinaria di misura relativamente a pozzi piezometrici lungo la condotta a mare e in altri punti all'interno del perimetro di sito, nonché per quanto attiene a misure supplementari di sedimenti marini. Le misure eseguite in doppio da SOGIN e ARPAB, su campioni prelevati nello stesso momento e suddivisi in 2 aliquote equivalenti, hanno evidenziato una situazione sostanzialmente costante negli anni e praticamente indistinguibile dal fondo naturale.

Indicatore 4

QUANTITÀ DI RIFIUTI RADIOATTIVI DETENUTI

DESCRIZIONE

L'indicatore documenta la distribuzione dei siti dove sono detenuti rifiuti radioattivi con informazioni su tipologia e quantità dei medesimi. Si tratta di un indicatore di pressione.

SCOPO

Documentare tipologia e quantità di rifiuti radioattivi secondo la distribuzione nei siti di detenzione.

QUALITÀ DELL'INFORMAZIONE

L'indicatore risponde alla domanda di informazione; alcune riserve vanno poste sulla precisione dei dati relativi ad alcuni siti; nessuna riserva sulla comparabilità nel tempo e nello spazio.

OBIETTIVI FISSATI DALLA NORMATIVA

L'attività di allontanamento/raccolta/deposito di rifiuti radioattivi è disciplinata dal D.Lgs. n. 101/2020 e successive modifiche e integrazioni, specificata- mente al Titolo VII. La gestione dei rifiuti radioattivi negli impianti nucleari è disciplinata dal D.Lgs. n. 101/2020 al Titolo IX.

STATO E TREND

Lo stato dell'indicatore è sufficientemente descritto, anche se esistono alcune tipologie di rifiuti radioattivi per i quali gli esercenti non posseggono informazioni complete, in particolare in termini di contenuto radiologico. Il trend dell'indicatore è da considerarsi sostanzialmente stazionario, in quanto, in termini quantitativi, non sussiste una produzione di rifiuti radioattivi, fatta eccezione per i rifiuti ospedalieri. Si prevede, nei prossimi anni, una consistente crescita della quantità dei rifiuti radioattivi con l'avvio delle attività di smantellamento delle installazioni nucleari italiane.

COMMENTI

I dati riportati in Tabella 4.1 costituiscono una fotografia dei quantitativi di rifiuti radioattivi (volume e attività) delle sorgenti dismesse (attività) e del combustibile irraggiato (attività) detenuti nei siti nucleari e ripartiti nelle diverse regioni. Da sottolineare che nella grande maggioranza dei casi si tratta di rifiuti radioattivi ancora da condizionare, i volumi finali da considerare per il loro smaltimento saranno quindi maggiori.

Tabella 4.1 - Inventario dei rifiuti radioattivi, delle sorgenti dismesse e del combustibile irraggiato per regione di ubicazione (2023)

	Rifiuti radioattivi				Sorgenti dismesse	Combustibile irraggiato	Totale R-	-S+CI
REGIONE	Volu	ume	Attività		Attività	Attività	Attività	%
	m3	%	GBq	%	GBq	TBq	TBq	970
Piemonte	5.971	18,28	1.932.303	70,36	2.195	25.998	27.932,5	79,24
Lombardia	6.435	19,70	145.664	5,30	5.425	4.277	4.428,4	12,56
Emilia Romagna	1.246	3,82	1.012	0,04	61.912	0	62,9	0,189
Toscana	1.041	3,19	6.845	0,25	1.820	0	8,7	0,025
Lazio	10.549	32,30	54.604	1,99	763.540	38	855,9	2,43
Campania	2.595	7,95	343.619	12,51	0		343,6	0,97
Basilicata	4.280	13,10	262.337	9,55	0	1.358	1.620,6	4,60
Puglia	546	1,67	7	0,000	0		0,01	0,00
TOTALI	32.663,1		2.746.389,7		834.890,6	31.671,4	35.252,7	

Fonte: Elaborazione ISIN - Inventario nazionale sui rifiuti radioattivi su dati Esercenti impianti nucleari

Legenda:

GBq: 10⁹ Bq TBq: 10¹² Bq

Indicatore 5

TRASPORTI MATERIALE RADIOATTIVO

INTRODUZIONE

Il trasporto di materiale radioattivo comprende il trasporto di radioisotopi per usi industriali, medici e di ricerca, nonché dei rifiuti radioattivi e di materiale del ciclo del combustibile nucleare⁴. Il trasporto del materiale radioattivo fa parte del più vasto campo del trasporto delle "merci pericolose", così come sono definite dalle "Recommendations on the Transport of Dangerous Goods" pubblicate dall'ONU.

Le merci pericolose sono caratterizzate da rischi associati alla loro natura quali esplosività, infiammabilità, corrosività, etc., che possono causare danni alle persone e all'ambiente in caso di incidente. Il rischio connesso alle radiazioni ionizzanti, emesse dal materiale radioattivo, al contrario di tutte le altre merci pericolose, si manifesta anche in condizioni di trasporto normali, cioè in assenza di incidenti. Questa peculiarità dei materiali radioattivi, unitamente al fatto che il loro trasporto avviene nel cosiddetto pubblico dominio ha comportato, fin dall'inizio dell'uso pacifico delle tecnologie nucleari, la necessità di stabilire a livello internazionale "standards" e requisiti di sicurezza in grado di garantire, nei diversi paesi attraversati dal trasporto, un adeguato livello di protezione per le persone, i beni e l'ambiente.

I requisiti e gli "standards" di sicurezza, applicabili al trasporto internazionale di materiale radioattivo, sono stabiliti nella "Regulations for the Safe Transport of Radioactive Material (2018 Edition) No. SSR-6 (Rev.1)" pubblicata dall'International Atomic Energy Agency (IAEA) di Vienna. La Regolamentazione IAEA No.SSR-6 (Rev.1), ha lo status di "raccomandazione" e trova applicazione nella legislazione nazionale attraverso il recepimento dei regolamenti internazionali ADR (strada), RID (ferrovia), ADN (acque interne), IMDG Code (mare), ICAO TI (aereo).

Oltre ai requisiti e agli standard di sicurezza da rispettare, a livello nazionale sono stabilite norme che prescrivono un regime autorizzativo per svolgere il trasporto di materiale radioattivo e, coloro che intendano trasportare materiale radioattivo sul territorio italiano devono essere in possesso del decreto di autorizzazione al trasporto rilasciato dal Ministero dell'ambiente e della sicurezza energetica, emesso di concerto con le altre amministrazioni responsabili per le varie modalità di trasporto, come stabilito all'articolo 43 del Decreto legislativo 31 luglio 2020, n.101.

In data 22.10.2021 è stato pubblicato in Gazzetta Ufficiale il comunicato con cui ISIN ha reso noto l'operatività di STRIMS – Sistema di Tracciabilità dei Rifiuti radioattivi dei Materiali e delle Sorgenti di radiazioni ionizzanti, ai sensi dell'art. 241 del Decreto

⁴ I materiali del ciclo del combustibile sono i materiali radioattivi legati alla catena di produzione e gestione del combustibile nucleare utilizzato nelle istallazioni nucleari e comprende sia il combustibile irraggiato esaurito che i rifiuti radioattivi prodotti a seguito dell'esercizio delle centrali nucleari.

legislativo 31 luglio 2020, n.101. Ai sensi del D.Lgs. n. 101/2020, tutti i soggetti che operano a vario titolo con le sorgenti di radiazioni ionizzanti devono registrarsi a STRIMS e in particolare tutti i vettori autorizzati al trasporto di materiali radioattivi dal gennaio del 2022 comunicano a STRIMS, secondo le tempistiche stabilite nel D.Lgs. n. 101/2020, le informazioni relative al trasporto dei materiali radioattivi e ciò in sostituzione di quanto stabilito al comma 3 dell'articolo 21⁵ del D.Lgs. n. 230/95 che sanciva l'obbligo per i vettori autorizzati di inviare, trimestralmente all'ISIN, il riepilogo dei trasporti effettuati secondo le modalità e nei termini di compilazione riportati nel Decreto del 18 ottobre 2005 del Ministero delle attività produttive (riepiloghi trimestrali).

Il presente rapporto è relativo al <u>trasporto stradale</u> dei colli radioattivi dell'anno 2023 ed è basato sull'elaborazione dei dati pervenuti all'ISIN tramite STRIMS. Esso illustra il numero e la tipologia dei colli impiegati, i materiali radioattivi trasportati, l'attività dei vari radionuclidi (Bq) e, di particolare interesse per gli aspetti di radioprotezione, i dati sull'Indice di Trasporto (IT) che costituisce un valido indicatore del campo di radiazioni presente nelle vicinanze del collo nelle condizioni normali di trasporto.

La Tabella 5.1 riporta l'Indice di Trasporto totale (IT totale), quello medio e il numero di colli/tratte⁶ stradali che hanno interessato le province italiane nel 2023. I trasporti di materiale radioattivo sono dovuti in massima parte all'impiego dei materiali radioattivi nella medicina nucleare con un contributo minore dovuto al trasporto di sorgenti radioattive impiegate nel settore industriale (Tabella 5.2).

Dall'elaborazione dei dati sul trasporto si ricava un quadro completo sulle quantità e sulle caratteristiche dei materiali radioattivi importati e movimentati in Italia e in particolare sui flussi in arrivo e in transito in ciascuna provincia italiana (Tabella 5.1). La conoscenza di questi dati aggregati, unitamente a quelli di dettaglio, costituisce la base di conoscenza per l'elaborazione, da parte delle varie prefetture, dei piani di emergenza provinciali per il trasporto di materiale radioattivo e fissile.

I dati sull'Indice di Trasporto dei colli radioattivi sono utilmente impiegati dagli Esperti di Radioprotezione per eseguire la stima preventiva della dose da radiazioni ionizzanti ricevuta dalla popolazione e dai lavoratori addetti al trasporto dei materiali radioattivi e ai fini dell'adozione di misure correttive in attuazione del principio di ottimizzazione.

⁵ Il 12 agosto 2020 è stato pubblicato sulla G.U. il Decreto Legislativo 31 luglio 2020, n.101 che ha abrogato il D.Lgs n.230/95.

⁶ Il termine tratta indica che <u>lo stesso collo</u> può essere oggetto (nell'arco di una spedizione) di più operazioni di trasporto (es. spedizione di un collo con una tratta aerea e due stradali).

DESCRIZIONE DELL'INDICATORE INDICE DI TRASPORTO (IT)

L'Indice di Trasporto esprime la misura del rateo di dose alla distanza di un metro dall'imballaggio contenente il materiale radioattivo (collo). Le principali elaborazioni effettuate sull'indice di trasporto sono riassunte nelle figure che seguono e rappresentano un valido indicatore del rischio di esposizione alle radiazioni ionizzanti dei lavoratori del trasporto e della popolazione.

Oltre a fornire una misura del rateo di dose, l'IT è indispensabile per stabilire la corretta etichettatura del collo (etichetta di pericolo) ed è impiegato per stabilire la distanza di segregazione al fine di limitare l'esposizione alle radiazioni ionizzanti dei lavoratori e, più in generale, della popolazione nel corso del trasporto e nell'immagazzinamento in transito del materiale radioattivo. La conoscenza dei dati relativi all'Indice di Trasporto consente inoltre di valutare l'efficacia delle procedure attuate dai vettori autorizzati allo scopo di limitare le dosi da esposizione alle radiazioni ionizzanti.

QUALITÀ DELL'INFORMAZIONE

L'indicatore (Indice di Trasporto) consente di ricavare una valida e significativa informazione sull'impatto radiologico relativo al trasporto di materiale radioattivo e presenta una buona copertura temporale. La comparabilità nel tempo, che risale al 1987, è garantita dalla sistematicità della raccolta dei dati effettuata dall'ISIN e, prima della sua istituzione, dagli enti che lo hanno preceduto. I dati relativi all'IT e tutti gli altri che completano le informazioni relative al trasporto confluiscono in un database denominato TraRad sviluppato e gestito dall'ISIN.

La buona qualità dell'indicatore è dovuta al fatto che i riepiloghi dei dati sul trasporto sono inviati all'ISIN per mezzo di un applicativo web dell'ISIN (STRIMS) che consente anche di sfruttare l'interoperabilità tra i sistemi per l'invio massivo dei dati. Il sito web STRIMS implementa numerose procedure di controllo che contribuiranno al generale miglioramento dei dati sull'impiego, detenzione e trasporto di sorgenti, dei materiali e dei rifiuti radioattivi.

OBIETTIVI FISSATI DALLA NORMATIVA

Con il D.Lgs. 27 gennaio 2010, n. 35 "Attuazione della Direttiva 2008/68/CE, relativa al trasporto interno di merci pericolose" viene recepito l'ADR l'accordo europeo relativo al trasporto internazionale delle merci pericolose su strada che fissa per l'Indice di Trasporto un valore massimo pari a 10⁷. Tale valore corrisponde a un rateo di dose di

⁷Per un collo nelle condizioni di trasporto non esclusivo.

0,1 mSv/h a un metro di distanza dalla superficie esterna del collo. I valori limite dell'Indice di Trasporto del rateo di dose a contatto di un collo garantiscono un'adeguata protezione sanitaria dei lavoratori e della popolazione, devono comunque essere ottimizzati in modo tale che il livello delle dosi individuali, il numero delle persone esposte e la probabilità di incorrere nell'esposizione siano mantenute basse per quanto ragionevolmente ottenibile come richiesto dai principi di radioprotezione.

STATO E TREND

Il trend è in generale correlato al numero dei colli trasportati ogni anno, alla loro tipologia e al tipo di radioisotopo trasportato (Figure 5.3 – 5.4 – 5.5 e 5.6). Nell'arco temporale osservato si può notare in alcuni anni un aumento dell'Indice di Trasporto totale che è dovuto al maggiore impiego in medicina nucleare del Fluoro-18 (F-18).

COMMENTI

In diversi settori industriali si utilizzano sorgenti radioattive come ad esempio nell'industria tessile o cartaria o nell'industria siderurgica per la misura dello spessore. Sorgenti di alta attività (HASS) (in particolare di Ir-192, Co-60 e Cs-137) sono impiegate per il controllo non distruttivo delle saldature (gammagrafie industriali).

La maggior parte dei colli trasportati contiene materiale radioattivo impiegato nella medicina nucleare, settore che utilizza tale materiale a scopo diagnostico, terapeutico (radiofarmaci) e di ricerca biomedica come risulta evidente dall'esame delle tabelle 5.2, 5,3 e 5.4.

Le metodiche diagnostiche consistono, in generale, nello studio metabolico effettuato con radioisotopi legati a una molecola *carrier* (vettore). Il materiale radioattivo impiegato in medicina comprende le grandi sorgenti di Co-60 (elevata attività) impiegate per la radioterapia e il materiale radioattivo non sigillato composto da radioisotopi a vita molto breve come il Fluoro-18, impiegato nei reparti di medicina nucleare a scopo diagnostico. Nella maggior parte dei casi, i radioisotopi impiegati in medicina nucleare, provengono da produttori situati all'estero; una delle poche eccezioni è ben rappresentata dal Fluoro-18 che è prodotto anche in Italia per mezzo di acceleratori di particelle (ciclotrone).

Il trasporto del materiale radioattivo avviene con diverse tipologie di imballaggi classificati dalla normativa tecnica in base alle loro caratteristiche di resistenza e alla quantità di radioattività (attività) ammissibile al loro interno. Le tipologie di colli maggiormente trasportate sono quelle identificate come colli esenti e colli di "Tipo A". I

colli esenti sono utilizzati per il trasporto di piccole quantità di materiale radioattivo e presentano caratteristiche di resistenza limitate in relazione alle minime conseguenze radiologiche a cui possono dar luogo in caso di rottura dell'imballaggio. I colli di "Tipo A" sono utilizzati per il trasporto di quantità di radioattività più elevate e devono soddisfare requisiti di resistenza a fronte di prove di qualificazione atte a simulare piccoli incidenti che possono verificarsi durante il trasporto e la movimentazione.

Il termine tratta, che compare nelle elaborazioni e nei grafici, è stato introdotto per indicare che lo stesso collo può essere oggetto (nell'arco di una spedizione) di più operazioni di trasporto (es. spedizione di un collo con una tratta aerea e due stradali). La percorrenza di più di una tratta stradale con lo stesso collo avviene in particolare in quelle province dove sono localizzati i principali aeroporti, dove i colli in arrivo vengono movimentati per il successivo inoltro (smistamento) via strada alla destinazione finale. Anche nel caso di trasporto di sorgenti radioattive impiegate in campo industriale, per gli esami non distruttivi, lo stesso collo percorre una prima tratta stradale dal deposito dove è abitualmente detenuto fino al cantiere/fabbrica dove viene utilizzata la sorgente, e una seconda tratta stradale per il percorso di ritorno. L'interesse per il numero di tratte percorse, anziché per il numero di colli (distinti) trasportati, scaturisce quindi dal fatto che ogni operazione di carico e scarico di un collo dall'automezzo di trasporto comporta una esposizione alle radiazioni ionizzanti per i lavoratori addetti al trasporto e per la popolazione, la cui entità è in relazione diretta al valore dell'Indice di Trasporto (IT), al numero di movimentazioni e al tempo impiegato per la movimentazione dei colli e per quello impiegato a percorrere la tratta.

In Figura 5.1 sono evidenziate, nei toni del rosso-scuro, le province che presentano i valori più alti della somma degli Indici di Trasporto. Tali province ospitano importanti centri di smistamento (Varese - Aeroporto di Milano Malpensa -) oltre che importanti centri ospedalieri e diagnostici (Milano, Roma e Napoli) e significative produzioni di F-18 (Forlì-Cesena, Isernia).

Focalizzando l'attenzione sulla somma degli Indici di Trasporto, in relazione all'impiego del materiale radioattivo, risulta evidente che il contributo maggiore è dato dall'impiego di questo materiale in medicina nucleare (circa il 90%), come si evince dalla serie storica dei dati (Figura 5.4), mentre non contribuiscono in maniera significativa i trasporti relativi al ciclo del combustibile nucleare, correlati alla disattivazione delle centrali elettronucleari. La Figura 5.2 pone in evidenza che il trasporto stradale dei materiali radioattivi è effettuato prevalentemente con colli di "Tipo A" ed "Esenti" impiegati in modo quasi esclusivo per il trasporto di radiofarmaci e radioisotopi per la diagnostica

medica. La Tabella 5.2, relativa al trasporto stradale dei materiali radioattivi nel periodo che va dal 2010 al 2023, evidenzia una diminuzione, in taluni anni, significativa del numero di colli/tratte che si è accentuata nel 2020 a causa della pandemia di Covid-19 che ha generato una significativa diminuzione dell'attività di screening in medicina nucleare.

La figura 5.4 evidenzia il progressivo aumento dell'Indice di Trasporto medio per collo dovuto al crescente numero di trasporti del Fluoro 18. Tale radioisotopo, molto diffuso nella diagnostica medica PET (Tomografia a Emissione di Positroni), contribuisce in modo significativo all'Indice di Trasporto totale con un "peso" superiore al 50% (Figure 5.5 e 5.6).

Tabella 5.1 – Distribuzione dei colli/tratte e dell'indice di trasporto (IT) nelle province (2023)

Regione	Provincia	Colli/tratte n.	IT totale [mSv/h*100]	Colli/tratte per medicina nucleare n.	IT totale medicina nucleare [mSv/h*100]	IT medio medicina nucleare [mSv/h*100]
	Chieti	684	231	75	46	0,6
Abruzzo	L'Aquila	814	390	734	388	0,5
ADI UZZO	Pescara	881	1813	792	1813	2,3
	Teramo	625	1021	493	1010	2,0
Basilicata	Matera	346	187	342	187	0,55
Basilicata	Potenza	2780	1349	2081	1320	0,63
	Catanzaro	3404	1871	3240	1871	0,6
	Cosenza	2652	2085	2580	2085	0,8
Calabria	Crotone	109	0	7	0	0,0
Calabria	Reggio- Calabria	2077	1666	1864	1662	0,9
	Vibo- Valentia	60	0	0	0	0,0
	Avellino	554	848	548	847	1,5
	Benevento	284	422	244	422	1,7
Campania	Caserta	2345	1318	1721	1281	0,7
	Napoli	7891	10311	7418	10302	1,4
	Salerno	1093	1093	1005	1076	1,1
	Bologna	1258	571	786	540	0,7
	Ferrara	1156	1136	733	1050	1,4
	Forli-Cesena	13244	22973	9852	22644	2,3
	Modena	719	1275	675	1268	1,9
Emilia	Parma	1120	1888	850	1605	1,9
Romagna	Piacenza	692	526	74	144	1,9
	Ravenna	4840	134	65	2	0,0
	Reggio- Emilia	487	289	435	287	0,7
	Rimini	5	0	0	0	0,0
	Gorizia	45	8	2	6	3,0

Regione	Provincia	Colli/tratte n.	IT totale [mSv/h*100]	Colli/tratte per medicina nucleare n.	IT totale medicina nucleare [mSv/h*100]	IT medio medicina nucleare [mSv/h*100]
Friuli	Pordenone	700	1082	328	819	2,5
Venezia	Trieste	689	830	658	826	1,3
Giulia	Udine	3170	6428	2197	5533	2,5
	Frosinone	415	266	292	230	0,8
	Latina	1346	1223	1251	1216	1,0
Lazio	Rieti	0	0	0	0	0,0
Luzio	Roma	26302	24181	22379	23500	1,1
	Roma	0	0	0	0	0,0
	Viterbo	793	338	521	253	0,5
	Genova	2100	1695	1215	1168	1,0
Liguria	Imperia	2	0	0	0	0,0
Liguria	La-Spezia	895	569	426	422	1,0
	Savona	520	860	351	699	2,0
	Bergamo	1505	1361	867	1044	1,2
	Brescia	2052	462	1658	433	0,3
	Como	1057	2442	800	2407	3,0
	Cremona	584	976	537	973	1,8
	Lecco	463	423	172	116	0,7
	Lodi	80	1	0	0	0,0
Lombardia	Mantova	677	810	459	740	1,6
	Milano	20805	13794	11159	10331	0,9
	Monza- Brianza	5584	9600	3868	6967	1,8
	Pavia	1882	2085	930	1772	1,9
	Sondrio	222	148	214	141	0,7
	Varese	30223	6044	17104	4144	0,2
	Ancona	1117	612	671	611	0,9
	Ascoli- Piceno	461	177	380	177	0,5
Marche	Fermo	2	0	0	0	0,0
	Macerata	3352	440	3151	435	0,1
	Pesaro- Urbino	720	677	385	588	1,5
Molise	Campobasso	603	426	291	309	1,1
Piolise	Isernia	18813	47020	18780	47020	2,5
	Alessandria	1554	1627	878	1624	1,8
	Asti	1	0	0	0	0,0
	Biella	92	0	0	0	0,0
Piemonte	Cuneo	498	334	176	128	0,7
1 icinonte	Novara	1269	2507	930	2394	2,6
	Torino	19918	7221	8868	6182	0,7
	Verbania	2	0	0	0	0,0
	Vercelli	1117	4	839	0	0,0
Puglia	Bari	18055	11209	16113	10666	0,7

Regione	Provincia	Colli/tratte n.	IT totale [mSv/h*100]	Colli/tratte per medicina nucleare n.	IT totale medicina nucleare [mSv/h*100]	IT medio medicina nucleare [mSv/h*100]
	Barletta- Andria-Trani	1820	979	1808	966	0,5
	Brindisi	1629	567	869	560	0,6
	Foggia	3031	1454	2858	1442	0,5
	Lecce	2490	1055	2163	951	0,4
	Taranto	3335	718	1492	671	0,4
	Cagliari	3105	1026	1902	990	0,5
	Nuoro	2	8	0	0	0,0
Sardegna	Oristano	0	0	0	0	0,0
_	Sassari	660	1029	623	1015	1,6
	Sud Sardegna	38	2	2	0	0,0
	Agrigento	689	189	401	142	0,4
	Caltanissetta	256	4	107	4	0,0
	Catania	2841	650	2072	453	0,2
	Enna	328	132	216	132	0,6
Sicilia	Messina	1329	233	1051	229	0,2
	Palermo	5412	1540	3225	1329	0,4
	Ragusa	257	41	256	41	0,2
	Siracusa	548	53	229	37	0,2
	Trapani	292	101	145	14	0,1
	Arezzo	344	575	331	575	1,7
	Firenze	2183	3861	2012	3849	1,9
	Grosseto	220	155	216	155	0,7
	Livorno	621	1030	534	992	1,9
T	Lucca	343	784	336	783	2,3
Toscana	Massa- Carrara	3138	885	339	857	2,5
	Pisa	4351	6590	3161	5710	1,8
	Pistoia	160	241	85	109	1,3
	Prato	494	1489	472	1482	3,1
	Siena	294	646	279	644	2,3
Trentino	Bolzano	781	2336	656	2336	3,6
Alto Adige	Trento	439	675	291	329	1,1
11,	Perugia	749	546	651	546	0,8
Umbria	Terni	541	266	448	266	0,6
Valle d'Aosta	Aosta	255	227	245	217	0,9
	Belluno	237	239	161	120	0,7
	Padova	2119	3040	1596	2799	1,8
	Rovigo	759	1627	677	1571	2,3
Veneto	Treviso	1419	2047	809	1949	2,4
	Venezia	2933	1940	1331	1499	1,1
	Verona	2218	4063	1945	4058	2,1
	Vicenza	938	1344	636	1224	1,9

Tabella 5.2 - n. Colli/tratte in funzione dell'impiego del materiale radioattivo trasportato

Anno	Medicina Nucleare & Ricerca	Rifiuti	Industria	Altro	Ciclo del combustibile (nota 1)	TOTALE
2010	168.464	23.855	12.342	199	25	204.888
2011	155.913	22.622	12.026	191	7	190.759
2012	150.597	21.829	10.927	3476	15	186.844
2013	152.688	21.999	11.366	4066	11	190.130
2014	158.418	13.529	10.955	37	3	182.942
2015	140.857	12.456	14.210	93	7	167.623
2016	137.600	12.695	14.129	250	0	164.674
2017	138.503	13.403	14.428	610	0	166.944
2018	130.596	12.297	11.904	400	0	155.197
2019	120.939	15.148	11.948	702	0	148.737
2020	98.967	9.882	14.088	373	0	123.310
2021	108.796	11.032	15.294	463	0	135.585
2022	96.997	6.758	12.272	5525	0	121.552
2023	88.701	6353	13.917	767	0	109.738

Nota (1): I trasporti di rifiuti radioattivi derivanti dal ciclo del combustibile sono compresi nei rifiuti e la voce comprende il solo trasporto degli elementi di combustibile dismessi ed inviati al riprocessamento in Inghilterra ed in Francia.

Tabella 5.3 - IT totale in funzione dell'impiego del materiale radioattivo trasportato [mSv/h*100]

Anno	Medicina Nucleare & Ricerca	Rifiuti	Industria	Altro	Ciclo del combustibile (nota 1)	TOTALE
2010	79.061	170	7.967	12	10	87.220
2011	89.106	179	8.128	34	6	97.453
2012	87.623	162	6.300	4	3	94.092
2013	99.218	264	6.673	4	5	106.164
2014	109.394	456	6.523	5	0,2	116.378
2015	111.381	364	7.941	5	9,7	119.701
2016	108.326	382	8.055	19	0	116.782
2017	114.576	473	7.590	15	0	122.654
2018	113.132	776,5	6.918	15	0	120.841
2019	106.549	450	6.814	78	0	113.891
2020	91.769	628	6.855	22	0	99.275
2021	103.335	750	7.371	77	0	111.533
2022	101.523	475	5.809	590	0	108.397
2023	106.334	667	6.297	2	0	113.300

Tabella 5.4 - IT medio per collo/tratta in funzione dell'impiego del materiale radioattivo [mSv/h*100]

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Medicina Nucleare & Ricerca	0,47	0,57	0,58	0,65	0,69	0,79	0,79	0,83	0,87	0,88	0,93	0,95	1,05	1,20
Rifiuti	0,01	0,01	0,01	0,01	0,03	0,03	0,03	0,04	0,06	0,03	0,06	0,07	0,07	0,10
Industria	0,65	0,68	0,58	0,59	0,60	0,56	0,57	0,53	0,58	0,57	0,49	0,48	0,47	0,45
Altro	0,06	0,18	0,00	0,00	0,14	0,05	0,08	0,03	0,04	0,11	0,06	0,17	0,11	0,00
Ciclo del combustibile (nota1)	0,38	0,86	0,20	0,45	0,07	1,39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

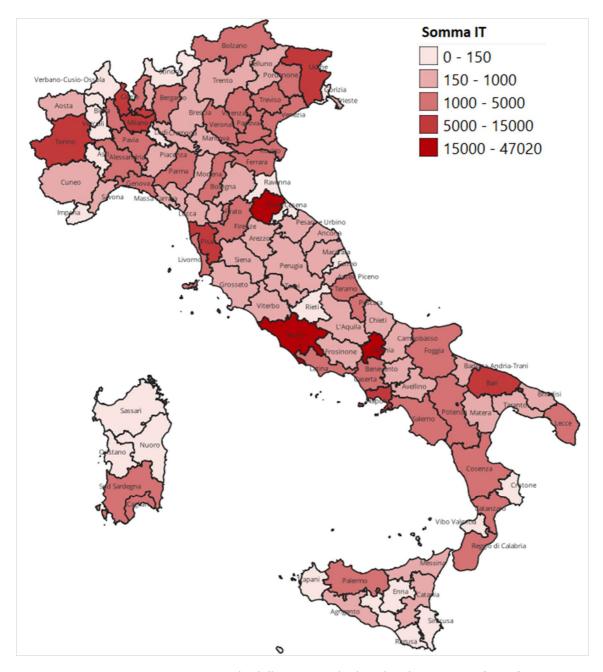


Figura 5.1 - Carta tematica provinciale della somma degli Indici di Trasporto (2022)

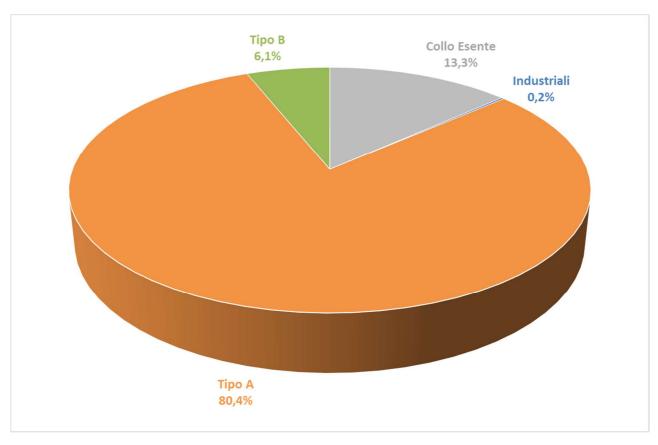


Figura 5.2 - Distribuzione dei colli trasportati in Italia in base alla tipologia (2023)

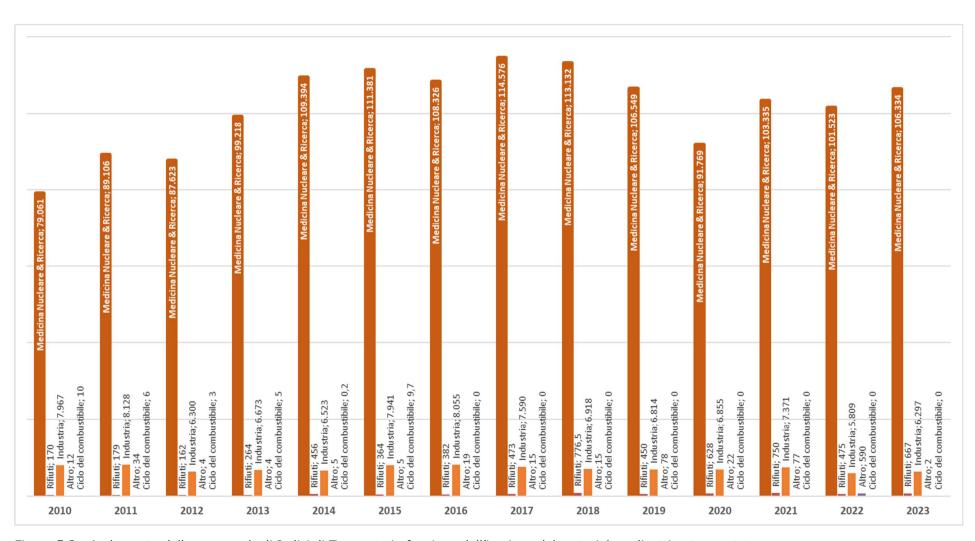


Figura 5.3 - Andamento della somma degli Indici di Trasporto in funzione dell'impiego del materiale radioattivo trasportato

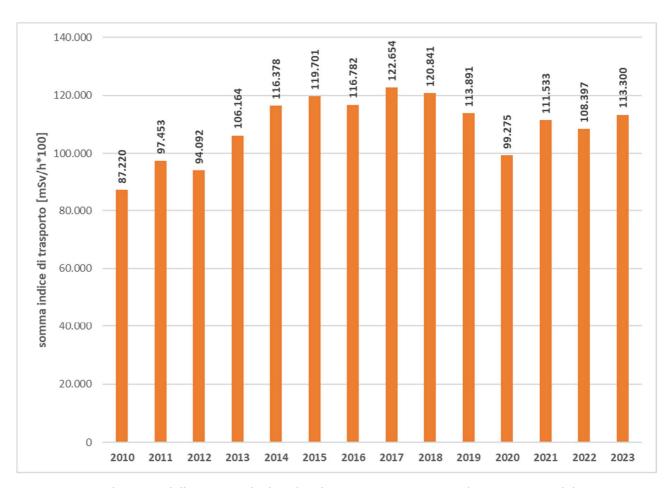


Figura 5.4 - Andamento della somma degli Indici di Trasporto registrati nel trasporto stradale

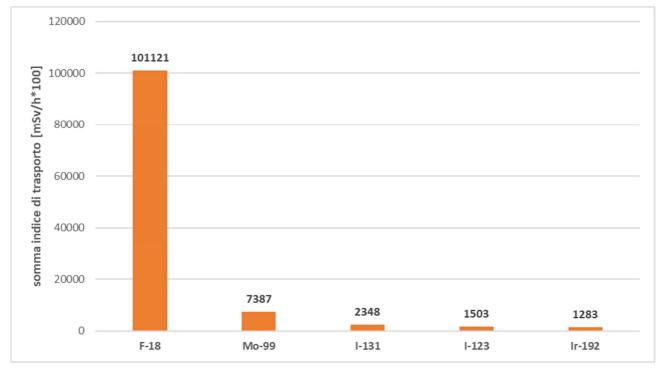


Figura 5.5 - Somma degli Indici di Trasporto per i 5 radionuclidi che maggiormente contribuiscono alla somma totale per l'anno 2022 (F-18; Mo-99; Ir-192; I-123; I-131)

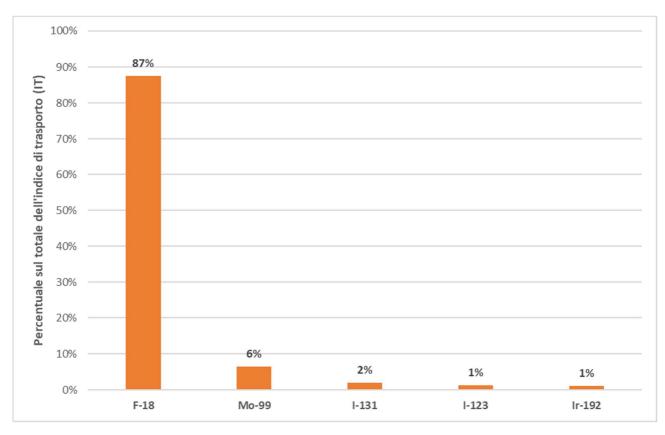


Figura 5.6 - Andamento percentuale della somma degli Indici di Trasporto per i 5 radionuclidi che maggiormente contribuiscono alla somma totale per l'anno 2022 (F-18; Mo-99; Ir-192; I-123; I-131)

Indicatore 6

CONCENTRAZIONE DI ATTIVITÀ DI RADON INDOOR

DESCRIZIONE

L'indicatore, qualificabile come indicatore di stato, fornisce la stima della concentrazione media di radon in aria negli ambienti confinati (abitazioni, scuole, luoghi di lavoro). Esso rappresenta il parametro di base per la valutazione dell'impatto sulla popolazione, in quanto l'esposizione a elevate concentrazioni di radon è causa dell'aumento del rischio di tumori al polmone. È riportata anche un'indicazione sulle attività di misura del radon svolte a livello territoriale da parte delle Agenzie regionali e delle province autonome per la protezione dell'ambiente (ARPA APPA) e dai servizi di dosimetria derivante dalle informazioni trasmesse alla Sezione Radon della banca dati della rete nazionale di sorveglianza della radioattività ambientale (SINRAD) in ottemperanza all'art.13 del D.Lgs. n. 101 del 2020 e s.m.i.

SCOPO

Monitorare la principale fonte di esposizione alla radioattività naturale per la popolazione, nell'ottica di contribuire alla protezione radiologica attraverso la prevenzione e riduzione dell'esposizione a radiazioni ionizzanti e del conseguente rischio di tumori polmonari. Informare sullo stato di avanzamento delle misurazioni di radon a livello regionale e nazionale.

QUALITÀ DELL'INFORMAZIONE

L'indicatore soddisfa la domanda d'informazione sulla problematica radon indoor a livello nazionale e regionale. I valori di concentrazione media a livello nazionale e regionale sono ritenuti costanti nel tempo anche se è possibile un miglioramento in termini di qualità dell'informazione in ragione di un affinamento del dettaglio spaziale dell'informazione stessa che può comportare variazioni dei valori medi. Tuttavia, per una rappresentazione dell'indicatore a livello sub-regionale (province, comuni o aree definite in altro modo), anche se le fonti dei dati sono affidabili e le metodologie consistenti nel tempo, non si dispone ancora di una buona comparabilità nello spazio.

STATO E TREND

L'esposizione al radon indoor è un fenomeno di origine naturale, principalmente legato al tipo di suolo sul quale gli edifici sono costruiti, ma anche ai materiali da costruzione, nonché alle modalità di costruzione e gestione degli stessi. I livelli di radon sono molto variabili nel tempo e nello spazio. In una frazione di edifici (ambienti di lavoro o abitazioni) la concentrazione media annuale è tale per cui vi è un obbligo (ambienti di lavoro) o la raccomandazione (abitazioni) di adottare interventi di risanamento. Tuttavia, attualmente non si registra un numero significativo di interventi di risanamento, pertanto lo stato si considera stabile. Il numero di abitazioni, scuole e luoghi di lavoro oggetto di misurazioni (misure di radon) da parte di ISIN, delle Agenzie regionali e delle province autonome per l'ambiente (ARPA-APPA) e dei servizi di dosimetria

aumenta invece progressivamente nel tempo in maniera variabile a seconda delle regioni e dei periodi.

OBIETTIVI FISSATI DALLA NORMATIVA

Il Decreto Legislativo 31 luglio 2020, n. 101, modificato dal Decreto Legislativo 25 novembre 2022, n.203, di attuazione della Direttiva 2013/59/Euratom del Consiglio europeo, ha introdotto importanti novità in materia di prevenzione e protezione dalle radiazioni ionizzanti, adeguando la normativa nazionale a quanto previsto in sede europea.

Il rinnovato quadro normativo include, per la prima volta nell'ambito della protezione dall'esposizione al radon, gli ambienti residenziali (abitazioni) e prevede l'adozione del Piano nazionale d'azione per il radon. Tale Piano, adottato con Decreto del Presidente del Consiglio dei ministri 11 gennaio 2024, rappresenta un importante strumento gestionale nell'ambito del quale vengono individuate le strategie, i criteri e le modalità di intervento per prevenire e ridurre i rischi di lungo termine dovuti all'esposizione al radon, monitorando l'efficacia delle azioni pianificate tramite opportuni indicatori.

L'attuale quadro regolatorio, inoltre, sostituisce il concetto di "livello di azione" della normativa nazionale previgente, con quello di "livello di riferimento", ovvero il valore di dose o di concentrazione di attività al di sopra del quale non è opportuno consentire l'esposizione e al di sotto del quale la protezione dovrebbe continuare ad essere attuata in applicazione del principio di ottimizzazione. Il livello di riferimento è uno strumento da utilizzare nel processo di ottimizzazione della protezione per garantire che le esposizioni siano mantenute al livello più basso ragionevolmente ottenibile nel rispetto del principio ALARA (as low as reasonably achievable).

I livelli massimi di riferimento, in termini di valore medio annuo della concentrazione di attività di radon in aria, sono fissati pari a 300 Bq m⁻³ per i luoghi di lavoro e per le abitazioni esistenti, e pari a 200 Bq m⁻³ per le abitazioni costruite dopo il 31 dicembre 2024. Per i luoghi di lavoro è inoltre fissato un livello di riferimento in termini di dose efficace annua pari a 6 mSv.

Le disposizioni relative all'esposizione al radon nei luoghi di lavoro, si applicano nei luoghi di lavoro sotterranei, in specifiche tipologie di luoghi di lavoro indentificate dal Piano nazionale d'azione per il radon, negli stabilimenti termali e all'interno delle aree prioritarie nei luoghi di lavoro semisotterranei o situati al piano terra. Il D.Lgs. n. 101/2020 e s.m.i. definisce aree prioritarie quelle in cui si stima che la concentrazione media annua di attività di radon in aria superi il livello di riferimento in un numero significativo di edifici, e attribuisce alle Regioni e Province autonome la responsabilità della loro individuazione sulla base delle indicazioni e dei criteri tecnici contenuti nel Piano. Al 2023, prima dell'adozione del Piano, tre Regioni hanno individuato le aree prioritarie, sulla base del criterio transitorio di cui all'art. 11 comma 3 del D.Lgs. n. 101/2020 e s.m.i..

Nei sopracitati luoghi di lavoro l'esercente è tenuto ad effettuare la misurazione del radon (e ripeterla ogni 8 anni o in caso di particolari lavori strutturali a livello dell'attacco a terra, nonché di interventi volti a migliorare l'isolamento termico) avvalendosi di servizi di dosimetria riconosciuti; nel caso si verifichi un superamento del suddetto livello di riferimento deve porre in essere delle misure correttive per ridurre la concentrazione al livello più basso ragionevolmente ottenibile (ripetendo le misurazioni del radon ogni 4 anni per verificarne il mantenimento nel tempo dell'efficacia). In tale ambito, il D.Lgs. n. 101/2020 e s.m.i. introduce per la prima volta la figura professionale dell'esperto in interventi di risanamento radon, il quale deve essere in possesso dell'abilitazione professionale per lo svolgimento di attività di progettazione di opere edili, nonché di una formazione attestata attraverso corsi specifici di almeno 60 ore su progettazione, attuazione, gestione e controllo degli interventi correttivi per la riduzione del radon negli edifici. Qualora nonostante l'applicazione delle misure correttive la concentrazione di radon rimanga superiore al livello di riferimento, l'esercente deve effettuare la valutazione delle dosi efficaci annue avvalendosi dell'esperto di radioprotezione. Nel caso in cui i risultati delle valutazioni risultino superiori al livello di riferimento in termini di dose efficace pari a 6 mSv/anno l'esercente è tenuto ad applicare gli opportuni provvedimenti previsti dal Titolo XI Esposizione dei lavoratori.

COMMENTI

Prima dell'entrata in vigore del D.Lgs n. 101/2020 sono state portate a termine numerose attività di misurazione del radon che hanno fornito le basi di gran parte delle conoscenze attuali in materia di radon in Italia. Tra queste, l'indagine nazionale sull'esposizione al radon nelle abitazioni (1989-1998) realizzata da ISIN (allora ANPA), dall'Istituto Superiore di Sanità (ISS) e dalle ARPA APPA (allora Centri Regionali di Riferimento della Radioattività Ambientale) che, sulla base di circa 5000 misurazioni di radon, ha permesso di stimare la concentrazione media nazionale di radon e le concentrazioni medie regionali (Fig. 6.1), permettendo di estrapolare un quadro generale sulla distribuzione dei livelli di radon in Italia e sugli aspetti di esposizione della popolazione (Tab. 6.1).

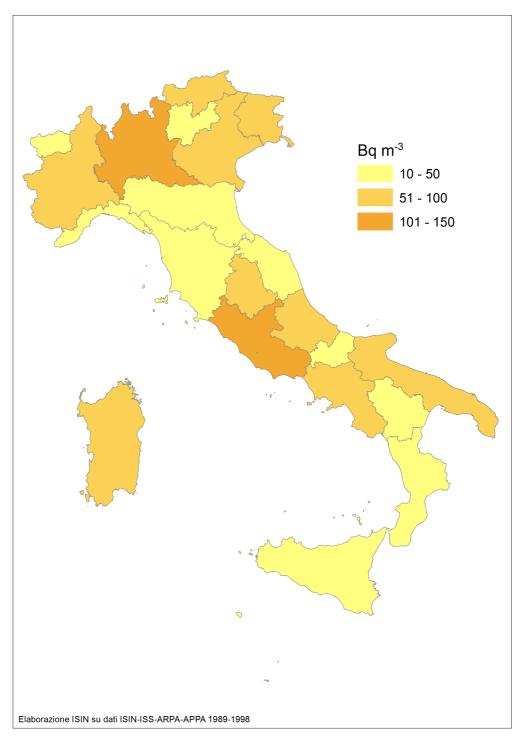


Figura 6.1 - Concentrazioni medie annuali di attività di radon indoor nelle abitazioni per regione e provincia autonoma rilevate dall'indagine nazionale (1989-1998).

Tabella 6.1 - Concentrazione media di radon nelle abitazioni per regione e provincia autonoma rilevata dall'indagine nazionale (1989-1998) e rispettiva percentuale di abitazioni in cui la concentrazione media annuale di radon supera il livello di riferimento massimo indicato dal DLgs. n. 101/2020 e s.m.i. per le abitazioni esistenti.

Regione	Media (Bq m ⁻³)	% di abitazioni > 300 Bq m ⁻³
Abruzzo	60 ± 6	2,9%
Basilicata	30 ± 2	0,0%*
Bolzano	70 ± 8	0,0%*
Calabria	25 ± 2	0,0%*
Campania	95 ± 3	1,4%
Emilia Romagna	44 ± 1	0,3%
Friuli Venezia Giulia	99 ± 8	5,7%
Lazio	119 ± 6	6,3%
Liguria	38 ± 2	0,0%*
Lombardia	111 ± 3	4,1%
Marche	29 ± 2	0,0%*
Molise	43 ± 6	0,0%*
Piemonte	69 ± 3	1,2%
Puglia	52 ± 2	0,3%
Sardegna	64 ± 4	0,0%*
Sicilia	35 ± 1	0,0%*
Toscana	48 ± 2	0,3%
Trento	49 ± 4	0,0%*
Umbria	58 ± 5	0,0%*
Valle d'Aosta	44 ± 4	0,0%*
Veneto	58 ± 2	0,8%
Italia (media pesata per la popolazione regionale)	70 ± 1	1,7%
Fonte: Elaborazione ISIN su dati ISIN	I, ISS, ARPA-APPA 1989-199	98

^{*} Le percentuali sono stimate sulla base di un campione di abitazioni, pertanto è possibile che all'interno della regione siano presenti casi di superamento del valore di 300 Bq m⁻³ anche quando la percentuale stimata di abitazioni oltre tale livello è nulla.

Le successive indagini regionali, spesso effettuate con un grado di approfondimento maggiore in alcune regioni o parti di esse, hanno permesso di ottenere alcune decine di migliaia di dati e informazioni utili sui livelli di radon presenti non solo nelle abitazioni ma anche nelle scuole e nei luoghi di lavoro. Tale bagaglio di informazioni, derivante dalle misurazioni effettuate prevalentemente dalle ARPA APPA e da ISIN, è stato acquisito attraverso indagini pianificate ed eseguite con modalità e obiettivi talvolta diversi tra regione e regione, rendendo i risultati, pur se affidabili come singole misurazioni, non sempre confrontabili in maniera aggregata a livello nazionale. L'insieme di tali dati è stato raccolto dalle Amministrazioni centrali con modalità eterogenee e non è stato possibile effettuare una raccolta sistematica delle misurazioni effettuate nei luoghi di lavoro derivanti dagli obblighi degli esercenti.

Il D.Lgs. n. 101/2020 e s.m.i. ha disciplinato anche le modalità per la registrazione dei dati radon, pertanto la raccolta dei dati a livello nazionale risulta ora sistematizzata centralmente. L'art.13 del decreto prevede che le ARPA APPA, le ASL e i servizi di dosimetria trasmettano i dati

e le informazioni in loro possesso sulla concentrazione media annua di attività di radon in aria nelle abitazioni e nei luoghi di lavoro all'apposita sezione radon della banca dati della rete nazionale di sorveglianza della radioattività ambientale, denominata SINRAD - Sistema Informativo Nazionale sulla Radioattività.

I dati radon rilevati dalle ARPA APPA prima dell'entrata in vigore del D.Lgs. n. 101/2020 e s.m.i. sono stati acquisiti in SINRAD ed è stata resa operativa la registrazione dei dati rilevati in applicazione della normativa vigente, incluse le misurazioni effettuate dai servizi di dosimetria e dalle ASL all'interno dei luoghi di lavoro rilevate nell'ambito degli adempimenti obbligatori da parte degli esercenti. La tabella 6.2 mostra un quadro generale, per Regione e Provincia autonoma, delle misurazioni annuali di radon trasmesse a SINRAD dalle ARPA APPA, da ISIN e dai servizi di dosimetria aggiornata al 31 dicembre 2023, nonché un'aggregazione dei dati in termini di unità immobiliari. Per unità immobiliare si intende la singola abitazione o il singolo luogo di lavoro dove sono state effettuate una o più misurazioni annuali di radon. Sono riportati il numero delle misurazioni annuali della concentrazione di radon effettuate nelle abitazioni e nei luoghi di lavoro, con uno specifico riferimento alle scuole, e la relativa percentuale di misurazioni annuali che superano il livello massimo di riferimento di 300 Bg m⁻³ fissato dall'Art. 12 del D.Lqs. n. 101/2020 e s.m.i., in termini di concentrazione media annua di attività di radon in aria, per i luoghi di lavoro e per le abitazioni esistenti. Per queste ultime, è anche riportata la percentuale di misurazioni annuali che superano il livello massimo di riferimento di 200 Bq m⁻³, fissato dallo stesso Art.12 per le abitazioni costruite dopo il 31 dicembre 2024, ma applicato alle abitazioni esistenti (Art. 19, comma 3) quale valore al di sopra del quale le Regioni e le Province autonome promuovono e monitorano l'adozione di misure correttive in attuazione del principio di ottimizzazione, comunicando a ISIN le misure di risanamento rilevate. Nel caso specifico delle abitazioni, la tabella riporta le medesime informazioni anche in forma aggregata a livello di unità immobiliare, intesa nell'accezione di abitazione nel suo complesso, ovvero riferite al numero di abitazioni in cui è nota la concentrazione media annuale di radon e alle rispettive percentuali di superamento dei sopracitati valori. Tale scelta è determinata dalla duplice esigenza di conoscere sia le informazioni relative alle singole misurazioni annuali di radon sia, nei casi in cui siano state effettuate misurazioni annuali di radon in più locali della stessa abitazione, le informazioni relative alla concentrazione media annuale dell'abitazione nel suo complesso. Per i luoghi di lavoro e le scuole è riportato esclusivamente il numero di unità immobiliari oggetto di misura, in quanto la concentrazione media di radon dell'unità immobiliare non è un indicatore significativo. Le percentuali di superamento dei livelli di riferimento nelle Regioni e Province autonome non sono sempre direttamente confrontabili tra loro perché le informazioni non provengono da un ristretto insieme di dati omogenei, come nel caso dell'indagine nazionale riportata in tabella 6.1, ma dal complesso e articolato sistema di monitoraggi e controlli a livello nazionale nella sua interezza. A livello locale, pertanto, possono essere state intraprese scelte diverse, quale quella di concentrare le indagini di misurazione del radon esclusivamente o prevalentemente ai piani terra degli edifici, dove i livelli di radon sono mediamente più elevati. Risulta evidente la percentuale totale di abitazioni con concentrazioni medie annuali di radon oltre il livello di riferimento di 300 Bq m⁻³ riportata in tabella 6.2, superiore rispetto alla percentuale stimata dai dati dell'indagine nazionale riportata in tabella 6.1.

Si rilevano oltre 64000 misurazioni annuali di radon effettuate a livello nazionale in oltre 30000 unità immobiliari, con una prevalenza di misurazione nelle abitazioni (72%) poiché i dati riportati includono prevalentemente le misurazioni effettuate da soggetti istituzionali, quali ARPA APPA e ISIN, in quanto la trasmissione dei dati misurati nei luoghi di lavoro, da parte dei servizi di dosimetria, è stata sistematizzata solo con l'entrata in vigore del D.Lgs. n. 101 del 2020 e con l'operatività del SINRAD. Si rileva, tuttavia, un incremento annuale pari a circa il 50% di luoghi di lavoro monitorati, dovuto all'entrata a regime del processo di trasmissione delle misure da parte dei servizi di dosimetria. Alcuni soggetti istituzionali non hanno ancora provveduto a trasmettere a SINRAD il quadro completo delle misurazioni in loro possesso, pertanto, essendo l'aggiornamento delle informazioni tuttora in corso d'opera, il numero totale di misurazioni annuali disponibili in Italia è da considerarsi maggiore. Tuttavia, come si evince dalla Tab. 6.2, il quadro nazionale è ancora piuttosto eterogeneo: in alcune regioni, infatti, è ancora esiguo il numero di abitazioni monitorate.

Tabella 6.2 – Quadro generale, per Regione e Provincia autonoma, del numero di misurazioni annuali di concentrazione di radon nelle abitazioni e nei luoghi di lavoro, con specifico riferimento alle scuole, e relative percentuali di misurazioni annuali superiori ai livelli di riferimento. È riportato il dato aggregato del numero di unità immobiliari oggetto di misurazione e, esclusivamente per le abitazioni, il dato aggregato della percentuale di unità immobiliari in cui la concentrazione media annuale di radon supera i livelli di riferimento. I dati sono aggiornati al 31/12/2023.

	ABITAZIONI						LUO	GHI D	I LAVORO		SCU	DLE	TOTALE			
	Misurazioni Annuali		Unità Immobiliari			Misurazioni Annuali		Unità Immobiliari	Misurazior Annuali				zioni Iali	Unità Immobiliari		
Regione o Provincia autonoma	N	%>200	%>300	N	%>200	%>300	N	008<%	Z	N	%>300	N	N	%>300	N	
Piemonte	2680	11%	7%	2275	8%	5%	1301	17%	476	1337	3%	732	5318	8%	3483	
Valle d'Aosta	702	8%	5%	689	7%	5%	117	15%	84	1	0%	1	820	7%	774	
Lombardia	3450	15%	8%	3376	15%	8%	5365	11%	1978	1029	10%	632	9844	10%	5986	
Bolzano	1369	28%	20%	1287	28%	19%	1764	21%	957	3203	23%	1356	6336	22%	3600	
Trento	-	-	-	-	-	-	203	10%	38	-	-	-	203	10%	38	
Veneto	2243	13%	6%	2144	12%	6%	1104	9%	138	-	-	-	3347	7%	2282	
Friuli Venezia Giulia	6792	22%	12%	4168	23%	12%	282	6%	74	-	-	-	7074	12%	4242	
Liguria	-	-	-	-	-	-	133	2%	26	-	-	-	133	2%	26	
Emilia Romagna	3	0%	0%	3	0%	0%	843	5%	133	289	6%	48	1135	6%	184	
Toscana	4044	8%	4%	2026	8%	4%	726	4%	130	-	-	-	4770	4%	2156	
Umbria	4	0%	0%	1	0%	0%	170	5%	27	-	-	-	174	5%	28	
Marche	-	-	-	-	-	-	293	2%	20	-	-	-	293	2%	20	
Lazio	10669	14%	6%	5337	14%	6%	2612	15%	260	327	20%	51	13608	8%	5648	
Abruzzo	-	-	-	-	-	-	242	5%	46	-	-	-	242	5%	46	
Molise	-	-	-	-	-	-	396	1%	29	-	-	-	396	1%	29	
Puglia	769	12%	6%	605	15%	7%	2842	3%	625	2609	4%	96	6220	4%	1326	

Totale	34327	15%	8%	23475	15%	8%	20797	11%	5591	9578	12%	3477	64702	9%	32543
Campania	-	-	-	1	-	-	829	18%	82	-	-	-	829	18%	82
Sardegna	1447	13%	7%	1447	13%	7%	703	5%	227	390	9%	390	2540	7%	2064
Sicilia	_	1	1	-	-	_	367	4%	61	60	2%	15	427	4%	76
Calabria	140	4%	2%	102	5%	2%	456	7%	170	73	7%	53	669	6%	325
Basilicata	15	40%	27%	15	40%	27%	49	12%	10	260	14%	103	324	14%	128

Elaborazione ISIN su dati (1989-2023) trasmessi a SINRAD

RIFERIMENTI BIBLIOGRAFICI

D.Lgs. 31 luglio 2020, n. 101. Attuazione della direttiva 2013/59/Euratom, che stabilisce norme fondamentali di sicurezza relative alla protezione contro i pericoli derivanti dall'esposizione alle radiazioni ionizzanti, e che abroga le direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom e 2003/122/Euratom e riordino della normativa di settore in attuazione dell'articolo 20, comma 1, lettera a), della legge 4 ottobre 2019, n. 117.

D.Lgs. 25 novembre 2022, n. 203. Disposizioni integrative e correttive al decreto legislativo 31 luglio 2020, n. 101, di attuazione della direttiva 2013/59/Euratom, che stabilisce norme fondamentali di sicurezza relative alla protezione contro i pericoli derivanti dall'esposizione alle radiazioni ionizzanti, e che abroga le direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom e 2003/122/Euratom e riordino della normativa di settore in attuazione dell'articolo 20, comma 1, lettera a), della legge 4 ottobre 2019, n. 117.

DIRETTIVA 2013/59/EURATOM DEL CONSIGLIO del 5 dicembre 2013 che stabilisce norme fondamentali di sicurezza relative alla protezione contro i pericoli derivanti dall'esposizione alle radiazioni ionizzanti, e che abroga le direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom e 2003/122/Euratom.

World Health Organization, 2009. WHO handbook on indoor radon: a public health perspective.

F. Bochicchio, G. Campos-Venuti, S. Piermattei, C. Nuccetelli, S. Risica, L. Tommasino, G. Torri, M. Magnoni, G. Agnesod, G. Sgorbati, M. Bonomi, L. Minach, F. Trotti, M.R. Malisan, S. Maggiolo, L. Gaidolfi, C. Giannardi, A. Rongoni, M. Lombardi, G. Cherubini, S. D'Ostilio, C. Cristofaro, M. Pugliese, V. Martucci, A. Crispino, P. Cuzzocrea, A. Sansone Santamaria, M. Cappai. 2005. Annual average and seasonal variations of residential radon concentration for all the Italian Regions. Radiation Measurements 40, 686–694.

Indicatore 7

DOSE GAMMA ASSORBITA IN ARIA PER ESPOSIZIONI A RADIAZIONI COSMICA E TERRESTRE

DESCRIZIONE

L'indicatore, qualificabile come indicatore di stato, è ricavato dalla misura delle radiazioni gamma in aria. La dose gamma assorbita in aria è dovuta a due contributi principali: la radiazione cosmica e quella terrestre. La componente terrestre varia in funzione del luogo in cui avviene l'esposizione: all'esterno (outdoor) o all'interno (indoor) degli edifici. In quest'ultimo caso vi è una componente aggiuntiva dovuta alla radioattività naturale contenuta nei materiali da costruzione.

SCOPO

Documentare l'entità e la distribuzione della dose per esposizione a radiazione gamma di origine cosmica e terrestre, nonché eventi o situazioni incidentali che possano comportare un aumento dell'esposizione della popolazione alle radiazioni ionizzanti.

QUALITÀ DELL'INFORMAZIONE

L'indicatore risponde bene alla domanda di informazione. La Rete Gamma è una rete automatica di monitoraggio della radioattività ambientale con finalità di pronto-allarme, predisposta per la segnalazione di eventuali anomalie conseguenti a rilasci di radioattività in atmosfera, come ad esempio nel caso di incidenti nucleari, e in grado, quindi, di seguire l'evoluzione dell'eventuale nube radioattiva e il conseguente fall-out. I dati della rete sono confrontabili con i dati dell'indagine svolta nel 1972.

STATO E TREND

Lo stato e il *trend* attribuiti all'indicatore evidenziano una situazione stazionaria, in accordo con la natura stessa dell'indicatore. L'eventuale variazione del valore della dose gamma assorbita in aria, infatti, potrebbe essere conseguenza, essenzialmente, di eventi incidentali. La natura e la portata di tali eventi, inoltre, escluderebbero il coinvolgimento degli impianti nucleari italiani e le attività di smantellamento a essi associate.

OBIETTIVI FISSATI DALLA NORMATIVA

Il monitoraggio dell'intensità di dose gamma in aria è condotto nell'ambito delle attività previste dal D.Lgs. n. 101/2020 e s.m.i., sia per scopi di controllo della radioattività ambientale (art. 152), sia a supporto della gestione delle emergenze radiologiche (art. 185).

In riferimento alla gestione delle emergenze nucleari e radiologiche, il monitoraggio effettuato risponde a quanto previsto dal DPCM 14 marzo 2022 "Piano nazionale delle misure protettive contro le emergenze radiologiche", nonché alla necessità di scambiare rapidamente le informazioni sulle misure ambientali come richiesto in ambito comunitario dalla Decisione del

Consiglio 87/600/EURATOM e in ambito internazionale dalla Convenzione internazionale sulla pronta notifica di un incidente nucleare.

COMMENTI

Nella Tabella 7.1 sono riportate le stime dei contributi medi dei diversi componenti della dose gamma assorbita in aria. I dati dei contributi di origine cosmica e terrestre *outdoor* sono stati elaborati dai risultati di un'indagine effettuata tra gli anni 1970-1971 su un reticolo di oltre 1.000 punti di misura. I dati della dose gamma di origine terrestre *indoor* derivano dall'elaborazione ISPRA dei dati relativi all'indagine nazionale sulla radioattività naturale nelle abitazioni, su campioni rappresentativi a livello regionale. La media della componente di origine terrestre *indoor*, pesata per la popolazione, è stata ottenuta attribuendo alla regione, per la quale i dati non sono disponibili, un valore ottenuto dividendo la componente terrestre *outdoor* della regione stessa per il rapporto medio tra componente *outdoor* e *indoor* di tutte le regioni di cui si dispongono dati.

I dati in evidenziano le sostanziali uniformità del contributo della radiazione cosmica, mentre il contributo della radiazione terrestre è fortemente dipendente dalla geologia del sito. La dose gamma annuale dipende dai tempi di permanenza *indoor* e *outdoor*, che in questa elaborazione sono stati assunti rispettivamente pari al 79% e al 21%.

Nella figura 7.1 è illustrata la rete GAMMA dell'ISIN, costituita da 44 centraline di monitoraggio automatico, distribuite sul territorio nazionale, che forniscono in tempo reale una misura del rateo di dose gamma assorbita in aria. La rete, realizzata con compiti di pronto allarme radiologico, non è stata predisposta per la valutazione della dose alla popolazione.

Nella Tabella 7.2 sono forniti i dati statistici di base del rateo di dose gamma assorbita in aria (periodo 2000-2023), aggregati per macroregioni ricavate dalla banca dati della rete GAMMA. Tali valori sono stati ottenuti dalle medie annuali delle misure giornaliere delle singole stazioni. I valori delle deviazioni *standard* (Dev. ST.), espressi in percentuale, si riferiscono alla distribuzione spaziale dei dati delle rispettive macroregioni. Il lieve aumento del valore medio annuale registrato per le stazioni del Nord a partire dal 2014 è conseguente alle attività di aggiornamento condotte sulla strumentazione di misura. Infatti, nella maggior parte delle stazioni del Nord, tra il 2014 e il 2015, si è proceduto alla sostituzione delle sonde con strumentazione in linea con i più recenti standard tecnici. Quest'ultima, infatti, fornisce una misura dell'intensità dell'equivalente di dose ambiente (espressa in nSv/h), a differenza delle precedenti sonde che restituivano la misura dell'intensità di dose gamma in aria (espressa in nGy/h). Per tali stazioni si è ritenuto significativo, comunque, applicare la metodologia prima descritta sull'insieme dei dati raccolti, sia dalle stazioni dotate di nuova strumentazione, sia da quelle con le sonde non aggiornate.

Il numero dei punti di misura ha subito una diminuzione negli ultimi anni a causa dell'impossibilità di trovare sul mercato la componentistica di ricambio della strumentazione ormai uscita di produzione. Per ovviare al problema è in atto un programma di ammodernamento

della Rete, che ha visto nel 2023 l'installazione delle prime 17 centraline, delle quali 9 di tipo dosimetrico ed 8 di tipo spettrometrico; le nuove centraline misurano l'H*(10). Gli effetti di questa fase transitoria si riscontrano nelle lievi variazioni del valore pesato per le 3 macroregioni della dose.

Il valore medio pesato per la popolazione (Valori Istat 2023) delle tre macroregioni è pari a circa 117 nGy/h il quale, se confrontato con il valore di 112 nGy/h, ottenuto dalla Tabella 7.1, sommando i contributi cosmico e terrestre *outdoor* (38+74 nGy/h), mostra una sostanziale stazionarietà.

Nella Figura 7.2 sono forniti gli andamenti delle medie mensili, nel 2023, dei ratei di dose gamma assorbita in aria delle tre macroregioni italiane. I valori sono ottenuti a partire dalle medie giornaliere delle singole stazioni, le cui variazioni temporali si caratterizzano con una deviazione standard delle medie giornaliere di ciascuna stazione di monitoraggio, su base annua, dell'ordine del 6% per il Nord, del 4% per il Centro e del 4% per il Sud d'Italia. Rispetto agli anni precedenti per il valor medio misurato nelle macroregioni del Nord e del Centro Italia si riscontrano delle variazioni maggiori rispetto alle normali deviazioni standard annuali a causa del programma di sostituzione con centraline e, nel Sud Italia, a causa della rottura di alcune centraline. Si evidenzia inoltre che, per le stazioni che hanno visto lunghi periodi di innevamento, la variazione temporale su base annua delle medie giornaliere oscilla intorno all'8-10%.

Tabella 7.1: Dose gamma assorbita in aria per esposizione a radiazione cosmica e terrestre

la 7.1: Dose gamma assorbita in aria per	Origine	Origine terrestre		
Regione	cosmica	Outdoor	Indoor	
		nGy/h		
Piemonte	40	57	95	
Valle d'Aosta*	46	70	-	
Lombardia	35	57	82	
Trentino-Alto Adige	49	49	88	
Veneto	38	53	46	
Friuli-Venezia Giulia	40	51	69	
Liguria	39	49	116	
Emilia-Romagna	38	54	50	
Toscana	40	53	44	
Umbria	45	59	128	
Marche	39	58	58	
Lazio	39	136	-	
Abruzzo	42	51	63	
Molise	35	43	64	
Campania	37	162	298	
Puglia	38	61	46	
Basilicata	41	89	-	
Calabria	40	65	-	
Sicilia	39	68	-	
Sardegna	37	31	98	
MEDIA (pesata per la popolazione)	38	74	104ª	

Fonte: Elaborazione ISPRA su dati A.Cardinale, et al., *Absorbed Dose Distribution in the Italian Population Due to the Natural Background Radiation, Proceedings of the Second International Symposium on the Natural Radiation Environment*, J.A.S. Adams, W.M. Lowd

Legenda:

^a La media pesata per la componente di origine terrestre indoor è stata ottenuta attribuendo alle regioni per le quali i dati non sono disponibili, un valore ottenuto dividendo la componente terrestre outdoor della regione per il rapporto medio tra componente *outdoor* e *indoor* di tutte le regioni con i dati

^{*} Esposizione gamma indoor: Elaborazione ISPRA su dati relativi all'indagine nazionale sulla radioattività naturale nelle abitazioni

⁻ Rapporto finale presentato nell'ambito del seminario tenuto presso la Terza Università di Roma, a Roma 8/6/1994

Tabella 7.2: Dose assorbita in aria outdoor (cosmica e terrestre) da rete GAMMA

rabena	Nord			707 (003)	Centro			Sud				
Anno	Media	Dev. ST	Val. min	Val. max	Media	Dev. ST	Val. min	Val. max	Media	Dev. ST	Val. min	Val. max
	nGy/h	%	nGy/h	nGy/h	nGy/h	%	nGy/h	nGy/h	nGy/h	%	nGy/h	nGy/h
2000	103	14	78	130	109	53	61	309	93	27	59	131
2001	101	15	77	128	109	50	61	302	103	32	63	173
2002	105	15	71	143	106	58	58	322	112	36	66	179
2003	103	15	72	150	112	64	57	329	98	33	56	184
2004	104	15	64	144	114	57	58	324	94	34	58	286
2005	101	15	53	143	103	58	52	329	102	28	66	257
2006	105	17	65	202	110	53	55	393	107	27	40	243
2007	103	15	66	210	114	52	53	458	105	26	63	203
2008	102	15	71	414	116	57	69	314	104	26	66	185
2009	98	16	55	164	106	36	63	234	106	24	67	185
2010	98	17	56	159	105	35	63	227	106	24	66	184
2011	99	17	60	159	106	34	63	234	108	24	66	184
2012	98	16	66	164	104	35	59	224	109	27	58	185
2013	97	18	57	150	107	33	57	222	107	32	55	193
2014	103	17	49	164	109	34	58	219	104	34	55	194
2015	112	25	60	179	108	33	57	215	104	30	57	193
2016	111	23	67	193	109	35	61	226	101	31	58	189
2017	109	22		193	111	38	58	228	103	31	57	194
2018	106	21	61	201	109	35	59	222	107	30	57	206
2019	106	22	61	181	107	47	61	319	106	34	57	194
2020	107	22	67	183	93	20	60	153	105	34	57	210
2021	107	23	66	185	91	20	59	156	105	35	57	197
2022	110	25	62	263	100	32	56	272	113	20	53	338
2023	118	27	59	404	109	23	58	204	126	29	75	259
Fonte	: ISIN (3anca	dati rete	GAMMA)								

Legenda:

Dev.ST: I valori si riferiscono alla variazione spaziale. Le variazioni temporali delle medie giornaliere sono circa il 6% per il Nord, il 4% per il Centro e il 4% per il Sud

Figura 7.1 - Stazioni di misura della rete GAMMA dell'ISIN (2023)

Fonte: ISIN (Banca dati rete GAMMA)

Nota:

Il colore di fondo raggruppa le centraline nelle tre macroregioni. Valori medi della radiazione gamma: pallino giallo < 100nGy/h, pallino arancione > 100nGy/h e < 150nGy/h, pallino rosso > 150nGy/h

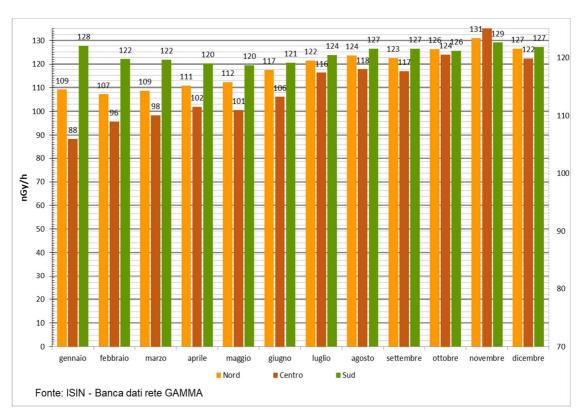


Figura 7.2 - Valori medi mensili di dose gamma delle 3 macroregioni italiane (2023)

Indicatore 8

CONCENTRAZIONE DI ATTIVITÀ DI RADIONUCLIDI ARTIFICIALI IN MATRICI AMBIENTALI E ALIMENTARI (PARTICOLATO ATMOSFERICO, DEPOSIZIONI UMIDE E SECCHE, LATTE)

DESCRIZIONE

L'indicatore, qualificabile come indicatore di stato, fornisce la concentrazione di attività del Cesio 137 (Cs-137) nel particolato atmosferico, nella deposizione umida e secca al suolo e nel latte vaccino ai fini del controllo e della valutazione dell'eventuale presenza di contaminazione radiologica ambientale.

In genere la presenza di contaminanti aeriformi è il primo segnale della dispersione, su larga scala, di radionuclidi artificiali nell'ambiente a causa di incidenti rilevanti, cui segue la deposizione al suolo di materiale radioattivo e conseguente trasferimento nella catena alimentare. Pertanto, il rilevamento di radionuclidi artificiali in campioni di particolato atmosferico, di deposizione al suolo e di latte, fornisce un quadro sullo stato della contaminazione radioattiva nell'ambiente e negli alimenti.

La scelta di riportare i dati relativi al Cs-137, con emivita di circa trenta anni, è dettata dalla natura di questo radionuclide di origine artificiale, che permane per centinaia di anni dopo la sua formazione.

STATO E TREND

L'obiettivo principale dell'indicatore è il rilevamento dell'andamento della radioattività in matrici ambientali e alimentari. La concentrazione di attività del Cs-137 nel particolato atmosferico e nella deposizione umida e secca al suolo è finalizzata alla sorveglianza della contaminazione radioattiva ambientale, mentre la concentrazione di attività del Cs-137 nel latte vaccino, è volta ad evidenziare una possibile contaminazione in seguito a fenomeni di accumulo nella catena alimentare.

SCOPO

Riportare la concentrazione media mensile di attività di Cs-137 nel particolato atmosferico e nella deposizione al suolo finalizzata al controllo e alla valutazione della contaminazione radioattiva ambientale.

Fornire la concentrazione media annuale di attività di Cs-137 nel latte vaccino al fine di evidenziare una possibile contaminazione rilevante sia per l'aspetto dietetico-sanitario, in relazione all'importanza di tale alimento quale componente della dieta, sia per quello ambientale in seguito al trasferimento dai foraggi al latte attraverso la catena alimentare.

Le informazioni sono presentate sia su scala macroregionale (Nord, Centro e Sud) sia su scala nazionale per dare un'indicazione e un rapido confronto tra fenomeni locali/regionali e nazionali. Sono riportati anche gli andamenti temporali sulla base dei dati disponibili.

QUALITÀ DELL'INFORMAZIONE

Per l'elaborazione dell'indicatore sono utilizzati i dati raccolti annualmente nel Sistema Informativo Nazionale sulla Radioattività - SINRAD di ISIN, accessibile via web, tramite credenziali di accesso, a tutti i soggetti che forniscono i dati e ai ministeri competenti ed enti interessati. La sistematicità di raccolta e di produzione dei dati assicura una buona comparabilità e copertura temporale e spaziale, consentendo di effettuare stime a livello regionale, macroregionale e nazionale. Da migliorare, in alcuni casi, le frequenze di campionamento e misura, la sensibilità delle misure effettuate e la copertura territoriale.

Il sistema italiano di sorveglianza della radioattività è stato oggetto di diverse verifiche da parte della Commissione Europea ai sensi degli artt. 35 e 36 del Trattato Euratom. Tutte le verifiche hanno avuto un esito positivo anche se sono state formulate alcune raccomandazioni e osservazioni.

OBIETTIVI FISSATI DALLA NORMATIVA

Ai sensi degli artt.35 e 36 del Trattato Euratom, ciascuno Stato membro deve provvedere ad effettuare il controllo della contaminazione radioattiva eventualmente presente in aria, nelle acque e nel suolo ed inviare le risultanze alla Commissione Europea, per renderla edotta riguardo il livello di esposizione a cui la popolazione potrebbe essere esposta. La Raccomandazione europea 2000/473/Euratom dell'8 giugno 2000, fornisce indicazioni agli Stati membri sulla realizzazione del monitoraggio della radioattività ambientale ed individua per alcune specifiche matrici dei "reporting level" ovvero dei livelli di notifica. Tali livelli, pari a una concentrazione corrispondente a una dose efficace di 1 μ Sv/anno, ovvero 1000 volte inferiore al limite di dose efficace di 1 mSv/anno, stabilito dalla normativa vigente per la popolazione, hanno uno scopo puramente redazionale e sono 10 volte inferiori al criterio di non rilevanza radiologica, pari a 10 μ Sv/anno.

Nella legislazione italiana l'art. 152 del D.Lgs. n. 101/2020 e s.m.i., definisce il controllo della radioattività ambientale sul territorio nazionale ed individua reti regionali e nazionali. In tale contesto si inserisce la REte nazionale di SOrveglianza della RADioattività ambientale – RESORAD, il cui coordinamento tecnico è affidato all'ISIN. La RESORAD è costituita dai laboratori delle Agenzie Regionali e delle Province Autonome per la protezione dell'ambiente (ARPA/APPA) e dagli Istituti Zooprofilattici Sperimentali (II.ZZ.SS.), che rendono operativi piani annuali di monitoraggio della radioattività, il cui obiettivo principale è il rilevamento dell'andamento della radioattività nell'ambiente e negli alimenti. L'indicatore prescelto, focalizzandosi su alcune delle principali matrici ambientali e alimentari, consente di monitorare gli obiettivi previsti dalla normativa.

COMMENTI

Le medie macroregionali e nazionali delle concentrazioni di attività di Cs-137 nel particolato atmosferico, nella deposizione al suolo e nel latte vaccino sono riportate nelle Tabelle 8.1, 8.2 e 8.3.

Pur non essendo appropriato e confacente, a titolo puramente rappresentativo, per il calcolo delle medie sono state utilizzate anche le misure inferiori alla MCR (Minima Concentrazione Rilevabile), che ne rappresentano la maggior parte, ed è stato posto il simbolo minore "<" davanti al valore della media.

Nella Tabella 8.1 sono indicate le medie mensili di Cs-137 nel particolato atmosferico per le tre macroregioni (Nord, Centro e Sud), le medie annuali per macroregione e la media annuale nazionale pesata per il numero di punti di prelievo (N). Si evidenzia una discreta copertura territoriale al Nord (N=14) e al Centro (N=6), da incrementare al Sud (N=2). Tutte le misure radiometriche riportate in tabella sono inferiori di tre ordini di grandezza rispetto alla concentrazione di radioattività in aria, 30 mBq m⁻³, corrispondente al *reporting level* o livello notificabile, fissato dalla Raccomandazione 2000/473/Euratom.

In Figura 8.1 è visualizzato l'andamento nazionale della concentrazione di Cs-137 nel particolato atmosferico dal 1986 ad oggi; in essa si osservano i picchi di contaminazione relativi all'arrivo in Italia della "nube di Chernobyl" (aprile 1986), nonché quello dovuto a un incidente avvenuto nel giugno 1998 in una fonderia spagnola presso Algeciras in Spagna, rilevato in modo più evidente nel Nord Italia. Permane, negli ultimi anni, una sostanziale stazionarietà dei livelli misurati che sono ben al di sotto del succitato *reporting level*.

In Tabella 8.2 sono riportate le medie mensili della concentrazione di Cs-137 nella deposizione totale al suolo nelle tre macroregioni, le medie annuali per macroregione e la media annuale nazionale pesata per il numero di punti di prelievo. Non si evidenziano variazioni di rilievo rispetto all'anno precedente ed eventuali anomalie radiometriche. La media annuale nazionale è inferiore a 0.53 Bq m⁻² di concentrazione di radioattività depositata al suolo. La Figura 8.2 mostra l'andamento nazionale della concentrazione di attività di Cs-137 nella deposizione totale al suolo dagli anni '60 ad oggi. Si rilevano gli eventi di ricaduta associati ai test in atmosfera condotti negli anni '60 e l'incidente alla centrale nucleare di Chernobyl, a partire dal quale i valori di contaminazione presentano prima una sistematica diminuzione e successivamente una ridotta variabilità.

La Tabella 8.3 riporta la media annuale macroregionale e nazionale di concentrazione di attività di Cs-137 nel latte vaccino. La copertura territoriale è buona e i valori medi nelle tre macroaree sono confrontabili, inoltre la media annuale nazionale è inferiore a 0.15 Bq l⁻¹. La Figura 8.3 riporta l'andamento temporale del valor medio nazionale. Si evidenzia una drastica diminuzione dei livelli di contaminazione a partire dagli anni immediatamente successivi all'incidente di Chernobyl, in seguito una ridotta variabilità dei valori che si mantengono ben al di sotto del *reporting level* fissato dalla Raccomandazione 2000/473/Euratom (0.5 Bq l⁻¹).

In Tabella 8.4 è riportato il numero delle misure, eseguite dai laboratori della rete RESORAD nel 2023 e caricate nel portale SINRAD, suddivise sulla base delle matrici e dei diversi radionuclidi analizzati. L'esame della tabella offre un quadro sintetico e immediato sullo stato del monitoraggio nazionale della radioattività ambientale. Si evidenzia l'elevato numero di matrici analizzate e di misure effettuate; persistono, tuttavia, differenze tra Nord, Centro e Sud soprattutto per la misura di alcuni radionuclidi (quali lo Sr-90) che richiedono analisi radiometriche complesse e strumentazioni non presenti in tutte le regioni.

In conclusione si rileva che il sistema nazionale di sorveglianza della radioattività risulta adeguato e sono rispettate le indicazioni della Commissione Europea relative alle matrici da campionare e alle misure da effettuare, anche se permangono delle differenze tra le tre macroaree in termini di densità e frequenze di campionamento e di misura.

Tabella 8.1 - Concentrazione di attività di Cs-137 nel particolato atmosferico (2023)

Mese	Nord	Centro	Sud		
Mese	μBq m ⁻³				
Gennaio	< 17	< 23	< 2		
Febbraio	< 15	< 68	< 3		
Marzo	< 7	< 87	< 12		
Aprile	< 9	< 51	n.d.		
Maggio	< 7	< 39	< 3		
Giugno	< 9	< 54	< 3		
Luglio	< 10	< 52	< 8		
Agosto	< 10	< 27	< 3		
Settembre	< 14	< 57	< 3		
Ottobre	< 7	< 17	< 3		
Novembre	< 63	< 41	n.d.		
Dicembre	< 13	< 60	< 20		
Media annuale	< 14	< 49	< 6		
N. punti di prelievo	14	6	2		
Media annuale	< 23				
nazionale	< 23				
Fonte: Elaborazione ISIN su	dati ISIN/ARPA/APPA/I	I.ZZ.SS.			

Tabella 8.2 - Concentrazione di attività di Cs-137 nelle deposizioni umide e secche (2023)

	Nord	Centro	Sud			
Mese	μBq m ⁻²					
Gennaio	< 0.023	< 0.029	< 0.031			
Febbraio	< 0.028	< 0.029	< 0.046			
Marzo	< 0.040	< 0.028	< 0.060			
Aprile	< 0.035	< 0.034	< 0.060			
Maggio	< 0.047	< 0.029	< 0.045			
Giugno	< 0.088	< 0.034	< 0.065			
Luglio	< 0.072	< 0.045	n.d.			
Agosto	< 0.046	< 0.031	< 0.060			
Settembre	< 0.021	< 0.044	< 0.046			
Ottobre	< 0.046	< 0.039	< 0.046			
Novembre	< 0.046	< 0.031	< 0.060			
Dicembre	< 0.062	< 0.039	< 0.074			
Media annuale	< 0.48	< 0.34	< 0.56			
N. punti di prelievo	9	4	2			
Media annuale nazionale	< 0.53					
Fonte: Elaborazione ISIN su	dati ISIN/ARPA/APPA/I	I.ZZ.SS.				

Tabella 8.3 - Concentrazione di attività di Cs-137 nel latte vaccino: media annua e numero di regioni/province autonome che hanno effettuato misure (2023)

Macroregione	Cs-137	Regioni Province autonome				
	Bq I⁻¹	n.				
Nord	< 0.16	8				
Centro	< 0.16	5				
Sud	< 0.08	3				
Media Italia	< 0.15	16				
Fonte: Elaborazione ISIN su dati ISIN/ARPA/APPA/II.ZZ.SS.						

Tabella 8.4 - Numero delle misure effettuate dalla rete RESORAD (2023)

Matrice	Dadie woodid.	Numero misure					
Matrice	Radionuclide	Nord	Centro	Sud	TOTALI		
	Am-241	849		19	868		
	Be-7	1053	712	455	2220		
	Bi-214	1			1		
	Co-60	904	35	19	958		
Darticolato	Cs-134	914	215	409	1538		
Particolato atmosferico	Cs-137	1270	757	458	2485		
itiliosierico	I-131	1128	708	455	2291		
	K-40	564	35	19	618		
	Ru-106	789			789		
	α-totale	1857	32	983	2872		
	β-totale	2203	492	983	3678		
Dose gamma n aria	γ-totale	195	681	1424	2300		
	Am-241	13		8	21		
	Be-7			8	8		
	Bi-214			8	8		
	Co-60	13	28	8	49		
	Cs-134	13	28	8	49		
	Cs-137	34	30	28	92		
	H-3	13			13		
	I-131	13		25	38		
Acque	K-40	13	28	27	68		
uperficiali	Pb-214			7	7		
	Ra-226			8	8		
	Pu(239+240)	4			4		
	Pu-238	4			4		
	Sr-90	4			4		
	α-totale	20	22	59	101		
	β-totale	13	22	55	90		
	β-residuo*	7	24	4	35		
	Am-241	21	3	11	35		
	Be-7			2	2		
	Co-60	21	3	2	26		
	Cs-134	42	7	6	55		
	Cs-137	60	19	50	129		
	H-3	38	3	116	157		
	I-131	28	19	5	53		
cque potabili	K-40	30	20	18	68		
	Pu(239+240)	8		9	17		
	Pu-238	8		9	17		
	Ra-226	9	1	6	16		
	Rn-222	478	250	93	821		
	Sr-90	25		1	26		
	α-totale	860	298	139	1297		

		Numero misure				
Matrice	Radionuclide -	Nord	Centro	Sud	TOTALI	
	β-totale	860	298	139	1297	
	U-234	41	12	9	62	
	U-235	4		9	13	
	U-238	41	15	9	65	
	U-totale			9	9	
	Ba-140	91			91	
	Be-7	91			91	
	Ce-141	91			91	
	Ce-144	91			91	
	Co-60	91			91	
	Cs-134	91			91	
	Cs-137	161		13	174	
Acque	Ga-67	91		1	92	
d'impianto di	I-131	161	108	13	282	
depurazione	In-111	103	108	13	224	
depurazione	K-40	111		12	123	
	Mn-54	91			91	
	Mo-99	91			91	
	Ru-103	91			91	
	Ru-106	91			91	
	Tc-99m	122	108	1	231	
	TI-201	91			91	
	Lu-177	223	108		331	
	Am-241	102		24	126	
	Be-7	4		24	28	
	Co-60	113	23	24	160	
Latte vaccino	Cs-134	143	71	29	243	
Latte Vaccino	Cs-137	322	117	62	501	
	I-131	136	39	24	199	
	K-40	294	94	62	450	
	Sr-90			3	3	
	Cs-134	358	179	67	604	
	Cs-137	1013	270	74	1357	
Alimenti	I-131	283	89	44	416	
	K-40	579	143	39	761	
	Sr-90	18	5	8	31	
Vegetazione	Cs-137	2		2	4	
acquatica	I-131			2	2	
	Am-241			8	8	
	Ba-140	10			10	
	Be-7	69	47	21	137	
Deposizione	Ce-141	10			10	
- op ::::::::	Ce-144	10			10	
	Co-60	22	12	8	42	
	Cs-134	22	12	9	43	
	Cs-137	101	47	21	169	

		Numero misure					
Matrice	Radionuclide -	Nord	Centro	Sud	TOTALI		
	I-131	23		9	32		
	K-40	23	12	9	44		
	La-140	10			10		
	Mn-54	10			10		
	Na-22	12			12		
	Nb-95	10			10		
	Pu(239+240)	3			3		
	Pu-238	3			3		
	Ru-103	10			10		
	Ru-106	10			10		
	Sb-125	10			10		
	Sr-90	3			3		
	Te-132	1			1		
	Zr-95	10			10		
	Am-241	40		45	85		
	Be-7			45	45		
	Co-60	40	6	55	101		
	Cs-134	40	6	45	91		
Cuele	Cs-137	41	6	74	121		
Suolo	I-131	40		45	85		
	K-40	40	6	74	120		
	U-234	8			8		
	U-235	8		17	25		
	U-238	8			8		
	Am-241	15		51	66		
	Co-60	15	27	51	93		
	Cs-134	15	35	51	101		
	Cs-137	47	36	72	155		
Sedimenti	I-131	27	9	51	87		
	K-40	15	27	66	108		
	Pu(239+240)	15			15		
	Pu-238	15			15		
	Sr-90	15			15		
	Am-241	4			4		
	Co-60	4	8		12		
Docto	Cs-134	4	11		15		
Pasto	Cs-137	50	11		61		
completo	I-131	4	3		7		
	K-40	46	11		57		
	Sr-90	6			6		
TOTALI		20749	6591	7487	34828		
Fonte: Elaborazion	ne ISIN su dati ISIN,	/ARPA/APPA/II.	ZZ.SS.				

^{*} β -residuo: attività β -totale al netto dell'attività del K-40

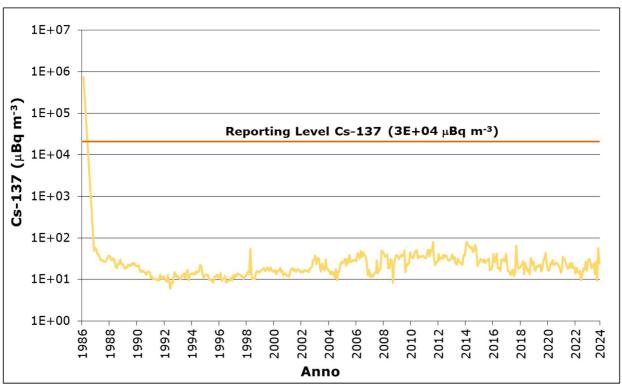


Figura 8.1 - Andamento della concentrazione di Cs-137 nel particolato atmosferico in Italia

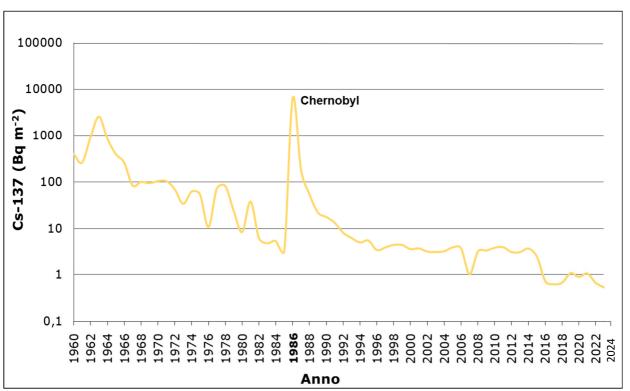


Figura 8.2 - Andamento della concentrazione di Cs-137 (Bq m⁻²) nelle deposizioni umide e secche in Italia

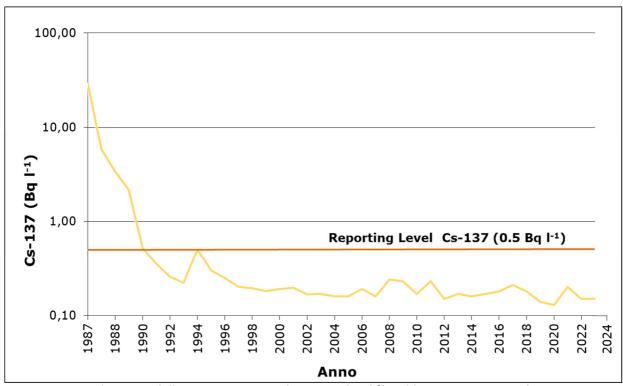


Figura 8.3 - Andamento della concentrazione di Cs-137 (Bq l⁻¹) nel latte vaccino in Italia

Indicatore 9

STATO DI ATTUAZIONE DELLE RETI DI SORVEGLIANZA SULLA RADIOATTIVITÀ AMBIENTALE

DESCRIZIONE

Il presente indicatore di risposta riporta lo stato di attuazione delle reti locali/regionali/nazionale di sorveglianza della radioattività ambientale. In ottemperanza alle disposizioni normative vigenti, l'organizzazione del monitoraggio ambientale, in condizioni ordinarie, prevede tre livelli: le reti locali attraverso le quali si esercita il controllo dell'ambiente attorno alle centrali nucleari e altri impianti di particolare rilevanza; le reti regionali delegate al monitoraggio e controllo dei livelli di radioattività sul territorio regionale; la rete nazionale con il compito di fornire il quadro di riferimento della situazione italiana ai fini della valutazione della dose alla popolazione, prescindendo da particolari situazioni locali.

STATO E TREND

L'obiettivo è quello di fornire un quadro sintetico sullo stato delle reti di sorveglianza della radioattività ambientale a livello locale, regionale e nazionale. La valutazione finale è buona sulla base dei seguenti parametri: matrici, tipologia di misure, frequenze, sensibilità, densità e intervalli temporali del monitoraggio.

SCOPO

Fornire un quadro sintetico sull'operatività delle reti sia locali sia regionali e sullo stato di attuazione della REte nazionale di SOrveglianza della RADioattività ambientale (RESORAD). Valutare la bontà del monitoraggio rispetto all'adeguamento a standard qualitativi definiti in termini di: matrici sottoposte a monitoraggio, tipologia di misure effettuate, frequenze di campionamento e di misura, sensibilità di misura, densità spaziale e regolarità del monitoraggio.

QUALITÀ DELL'INFORMAZIONE

L'indicatore risponde alla domanda di informazione, è semplice e di facile interpretazione. Le informazioni utilizzate per la costruzione dell'indicatore provengono dai rapporti prodotti a intervalli regolari dagli esercenti per le reti locali e dai dati raccolti nel Sistema Informativo Nazionale sulla Radioattività – SINRAD di ISIN. La sistematicità di raccolta e di produzione dei dati assicura una buona comparabilità e copertura sia temporale sia spaziale. L'attribuzione del punteggio sullo stato di attuazione della rete nazionale è stato realizzato secondo standard qualitativi definiti sulla base di informazioni oggettive, affidabili e comparabili nel tempo.

OBIETTIVI FISSATI DALLA NORMATIVA

Ai sensi degli artt. 35 e 36 del Trattato Euratom ciascuno Stato membro deve provvedere ad effettuare il controllo del livello di radioattività dell'atmosfera, delle acque e del suolo e inviare le informazioni relative ai controlli alla Commissione Europea, per renderla edotta riguardo l'eventuale esposizione a cui la popolazione potrebbe essere soggetta. La Raccomandazione

europea 2000/473/Euratom dell'8 giugno 2000 fornisce indicazioni agli Stati membri sulla realizzazione del monitoraggio della radioattività ambientale. Nella legislazione italiana il D.Lgs. n. 101/2020 e successive modifiche ed integrazioni, all'art. 97, prescrive che il titolare dell'autorizzazione o del nulla osta e l'esercente di un impianto nucleare provvedano alla sorveglianza locale della radioattività ambientale e, nell'art.152, definisce il controllo della radioattività ambientale sul territorio nazionale e individua le reti regionali e nazionali.

COMMENTI

Le reti regionali risultano operative, in alcuni casi sono approvate dall'Assessorato alla Sanità, in altri dall'Assessorato all'Ambiente (Tabella 9.1). Tenendo conto dei dati dei rilevamenti effettuati nel 2023 dalla REte nazionale di SOrveglianza della RADioattività ambientale (RESORAD), caricati sul SINRAD, relativamente a tre matrici (particolato atmosferico, deposizione al suolo e latte) si rileva che la copertura spaziale del monitoraggio sul territorio nazionale è pari a circa il 95% per il particolato atmosferico, il 76% per la deposizione al suolo e il 86% per il latte. Si registra una buona copertura nel numero dei campionamenti e delle misure effettuate sul territorio nazionale.

Lo stato di attuazione del monitoraggio della radioattività ambientale delle reti locali è riportato nella Tabella 9.2, in cui è indicata la presenza o meno della rete del gestore e quella dell'ente locale ARPA/APPA. I gestori provvedono alla sorveglianza locale della radioattività ambientale in tutti gli impianti in ottemperanza alla normativa vigente; inoltre sono attive alcune reti locali di monitoraggio ambientale degli enti locali, nonostante non ne sia previsto l'obbligo dalla normativa nazionale. Al fine di incrementare i controlli indipendenti nel corso degli anni sono state effettuate alcune campagne di monitoraggio straordinarie. Nel 2013 e nel 2015 sono state svolte dall'ISIN (allora ISPRA), con la partecipazione di ARPA Campania e ARPA Lazio, due indagini per il monitoraggio della radioattività ambientale connessa alle attività di "decommissioning" della centrale del Garigliano. Sempre nel 2015 è stata effettuata dall'ISIN (allora ISPRA), con la partecipazione di ARPA Lazio, una campagna di monitoraggio ambientale intorno alla centrale di Latina e nel 2018 è stata svolta un'indagine per il monitoraggio della radioattività ambientale, con la collaborazione dell'ARPA Basilicata, intorno all'impianto ITREC -C.R. Trisaia ENEA. Nel 2013 - 2014 in relazione al processo di smantellamento dell'impianto reattore RTS-1 del Centro Interforze Studi per le Applicazioni Militari (CISAM) con sede a San Piero a Grado (Pisa), è stato realizzato un piano di monitoraggio ambientale straordinario da parte di ARPA Toscana ed ENEA.

Nella Tabella 9.3 sono presentati i punteggi attribuiti per la valutazione dello stato di attuazione del monitoraggio a livello nazionale. Per l'attribuzione del punteggio annuale sono state considerate le seguenti matrici di rilevante interesse: particolato atmosferico, radiazione esterna, latte vaccino, acqua superficiale e acqua destinata al consumo umano. Per ciascuna matrice sono stati valutate le tipologie di misure effettuate, la frequenza di campionamento e misura, la sensibilità di misura (in riferimento alle "Linee guida per il monitoraggio della radioattività" -

Manuali e Linee guida SNPA n. 83/2012), la copertura territoriale (nelle macroaree Nord, Centro e Sud) e la sistematicità del monitoraggio nel tempo. Sono state individuate 3 classi di qualità per la ripartizione dei punteggi ottenuti: insufficiente (0-14), sufficiente (15-20) e buono (21-25).

Il punteggio attribuito nel 2023 è pari a 22 e indica, pertanto, che lo stato di attuazione del monitoraggio nazionale è buono. La frequenza di campionamento e di misura sulle matrici considerate, nonché la sensibilità delle misure, risultano adeguate. Può essere, tuttavia, incrementato il numero di alcune tipologie di analisi radiometriche complesse (ad es. radiochimiche), che non sono effettuate da tutti i laboratori.

Tabella 9.1 - Stato delle reti regionali, esempi di contributi alla rete nazionale (2023)

Daniana (Duaninaia	Operatività	Approvata da Regione	Esempi di dati forniti alla rete nazionale nel 2023			
Regione/Provincia autonoma	egione/Provincia della rete Regi		Particolato atmosferico	Deposizioni umide e secche	Latte	
Piemonte	Si	Si	Si	Si	Si	
Valle d'Aosta	Si	Si (Ass. Sanità)	Si	Si	No	
Lombardia	Si	Si (Ass. Sanità)	Si	Si	Si	
Bolzano	Si	Si (Ass. Sanità)	Si	Si	Si	
Trento	Si	Si	Si	Si	Si	
Veneto	Si	Si (Ass. Sanità)	Si	Si	Si	
Friuli-Venezia Giulia	Si	Si (Ass. Sanità)	Si	Si	Si	
Liguria	Si	Si (Ass. Sanità)	Si	Si	SI	
Emilia-Romagna	Si	Si	Si	Si	Si	
Toscana	Si	Si	Si	Si	Si	
Umbria	Si	Si	Si	Si	Si	
Marche	Si	Si (Ass. Sanità)	Si	Si	Si	
Lazio	Si	Si (Ass. Ambiente)	Si	Si	Si	
Abruzzo	Si	Si	Si	No	No	
Molise	Si	Si (Ass. Sanità)	No	No	No	
Campania	Si	Si	Si	Si	Si	
Puglia	Si	Si	Si	Si	No	
Basilicata	Si	Si	Si	Si	Si	
Calabria	Si	Si	Si	No	Si	
Sicilia	Si	Si (Ass. Sanità)	Si	No	Si	
Sardegna	Si	Si (Ass. Sanità)	Si	No	Si	
Fonte: Elaborazione	ISIN su dati ARP	A/APPA/II.ZZ.SS.				

Tabella 9.2 - Stato delle reti locali (2023)

Impianto	Stato Impianto	Esistenza rete locale esercente	Esistenza rete locale Ente locale/ARPA	
Centrale del Garigliano	in disattivazione, assenza combustibile, rifiuti condizionati	Si	Si*	
Centrale di Latina	in disattivazione, assenza combustibile, rifiuti parzialmente condizionati	Si	Si**	
Centrale di Trino	in disattivazione, presenza combustibile in piscina, rifiuti parzialmente condizionati	Si	Si	
Centrale di Caorso	in disattivazione, presenza di combustibile in piscina, rifiuti parzialmente condizionati	Si	Si	
Reattore AGN 201 "Costanza" - Università Palermo	in esercizio, assenza rifiuti	No	No	
Impianto ITREC - C.R. Trisaia ENEA	in "carico", rifiuti parzialmente condizionati	Si	Si****	
Centro ENEA Casaccia:				
Reattore TRIGA RC-1	in esercizio, rifiuti depositati in NUCLECO			
Reattore RSV TAPIRO	in esercizio, rifiuti depositati in NUCLECO	Si	No	
Impianto Plutonio	cessato esercizio, rifiuti sull'impianto e depositati in NUCLECO			
Reattore RTS 1 – CISAM	in disattivazione, assenza combustibile, rifiuti non condizionati	-	No***	
Impianto FN – Bosco Marengo	cessato esercizio, presenza combustibile, rifiuti parzialmente condizionati	Si	Si	
Impianto EUREX - C.R. Saluggia ENEA	cessato esercizio, presenza combustibile, rifiuti parzialmente condizionati e rifiuti liquidi non condizionati	Si	Si	
Reattore TRIGA MARK II - LENA Università Pavia	in esercizio, rifiuti non condizionati	Si	No	
Reattore ESSOR – CCR ISPRA	arresto a freddo di lunga durata, presenza combustibile, rifiuti parzialmente condizionati	Si	Si	
Deposito Avogadro – FIAT AVIO	in attività, rifiuti non condizionati	Si	Si	

Fonte: Rapporti delle attività di controllo della radioattività ambientale degli esercenti e ARPA/APPA

^{*} Nel 2013 e nel 2015, in relazione al processo di smantellamento, sono state svolte dall' ISIN (allora ISPRA) due campagne di monitoraggio della radioattività ambientale;

^{**}Nel 2015 è stata svolta dall'ISIN (allora ISPRA) una campagna di monitoraggio della radioattività ambientale;

^{***}Dal 2013 – 2014, in relazione al processo di smantellamento, è stata realizzato un piano di monitoraggio ambientale straordinario da parte di ARPA Toscana ed ENEA;

^{****}Nel 2018 è stata svolta dall'ISIN una campagna di monitoraggio della radioattività ambientale.

Tabella 9.3 - Valutazione dello stato di attuazione del monitoraggio nazionale (2023)

Anno	Punteggio	Giudizio
1997	15	sufficiente
1998	17	sufficiente
1999	13	sufficiente
2000	17	sufficiente
2001	17	sufficiente
2002	17	sufficiente
2003	17	sufficiente
2004	17	sufficiente
2005	17	sufficiente
2006	17	sufficiente
2007	17	sufficiente
2008	17	sufficiente
2009	16	sufficiente
2010	17	sufficiente
2011	20	sufficiente
2012	20	sufficiente
2013	20	sufficiente
2014	19	sufficiente
2015	18	sufficiente
2016	19	sufficiente
2017	20	sufficiente
2018	20	sufficiente
2019	20	sufficiente
2020	19	sufficiente
2021	20	sufficiente
2022	23	buono
2023	22	buono

Fonte: Elaborazione ISIN e ARPAE Emilia-Romagna

LEGENDA

Classi di qualità: insufficiente 0 – 14 sufficiente 15 – 20 buono 21 – 25

Indicatore 10

INFORMAZIONE E COMUNICAZIONE

DESCRIZIONE

L'indicatore fornisce una panoramica sulle attività di informazione e comunicazione realizzate dall'Ispettorato nel corso del 2023.

L'ISIN svolge, nei confronti della collettività, un ruolo centrale di informazione sullo stato della sicurezza nucleare e della radioprotezione; oltre che con la cittadinanza, la sua comunicazione è indirizzata ad un ampio spettro di interlocutori istituzionali, nazionali e internazionali e del mondo produttivo, accademico e della ricerca scientifica.

Obiettivo della comunicazione ISIN, quale Autorità indipendente di regolamentazione, è in primis quello di porsi come interlocutore autorevole, riconosciuto e riconoscibile, che deve mantenere una posizione di terzietà rispetto agli operatori pubblici e privati del comparto.

Nel corso del 2023, le attività di comunicazione e informazione dell'ISIN hanno saputo adattarsi ai cambiamenti interni, come la massiccia campagna di reclutamento che ha portato a regime la pianta organica prevista dalla legge istitutiva dell'Ispettorato. È stato infatti un anno in cui si è lavorato per realizzare un progetto di comunicazione istituzionale finalizzato alla valorizzazione, sia all'interno che verso l'esterno, di risorse, attività e risultati ottenuti.

In quest'ottica, si è cercato di guardare al di là dell'emergenza ucraina che, nell'anno precedente, era stato il tema cardine di buona parte di quanto fatto in termini di comunicazione e informazione, e sono state definite nuove traiettorie di programmazione e sviluppo per gli anni a venire.

Si è puntato quindi non solo alla valorizzazione del ruolo dell'Ispettorato e delle innumerevoli competenze, ma anche alla divulgazione dei contenuti dei prodotti editoriali, all'efficientamento dell'URP e della comunicazione interna, a una maggiore accuratezza nella gestione del sito web e dei profili istituzionali sui social media sites.

STATO E TREND

Le attività di informazione e comunicazione, sia interne che rivolte all'esterno, hanno permesso di consolidare ulteriormente il *brand positioning* dell'Ispettorato.

Un processo, iniziato nel 2019, per sua natura in continua costruzione, che rappresenta un obiettivo anche per gli anni a venire.

SCOPO

L'Indicatore presenta gli strumenti e i prodotti di informazione/comunicazione utilizzati dall'Ispettorato nel corso del 2023 e fornisce, quando disponibili, dettagli quantitativi.

QUALITÀ DELL'INFORMAZIONE

L'Indicatore è attendibile: il reperimento di dati e informazioni e la loro interpretazione non hanno presentato alcuna criticità.

OBIETTIVI FISSATI DALLA NORMATIVA

L'informazione al pubblico è parte integrante della risposta alle emergenze nucleari e radiologiche ed è essenziale per garantire l'efficacia delle misure protettive e per mantenere la fiducia del pubblico.

Il D.Lgs. n. 101/2020, che abroga e sostituisce, in particolare, il D.Lgs. n. 230/1995⁸, all'art. 104, comma 1 recita: "L'TSIN pone in atto tutte le misure possibili affinché le informazioni riguardanti la regolamentazione sulla sicurezza nucleare e sulla gestione del combustibile esaurito e dei rifiuti radioattivi, siano rese accessibili ai lavoratori e al pubblico, prestando particolare attenzione alle autorità locali, alla popolazione e ai soggetti interessati nelle vicinanze di un impianto nucleare".

L'informazione alla popolazione è oggetto anche degli articoli 191-197 del medesimo provvedimento (Titolo XIV – Preparazione e risposta alle emergenze), nei quali viene ribadito che le informazioni devono essere accessibili al pubblico, sia in condizioni normali, sia in fase di preallarme o di emergenza radiologica. La popolazione che rischia di essere interessata dall'emergenza va regolarmente informata e aggiornata sulle misure di protezione sanitaria ad essa applicabili nei vari casi di emergenza prevedibili nonché sul comportamento da adottare in caso di emergenza.

L'ISIN ha competenze - ex art. 26, comma 1, lettera E del D.Lgs. n. 31/2010⁹ - in materia di vigilanza delle "diffuse e capillari campagne di informazione e comunicazione alla popolazione in ordine alle attività" svolte da SOGIN S.p.A. e, segnatamente "degli impianti a fine vita, del mantenimento in sicurezza degli stessi, nonché della realizzazione e dell'esercizio del Deposito nazionale e del Parco Tecnologico".

Volgendo lo sguardo ai provvedimenti più lontani nel tempo, va inoltre menzionato il D.Lgs. n. 195/2005, che recepisce la direttiva CEE 2003/4/CE: il decreto, nell'ottica di rendere effettiva la fruibilità dell'accesso all'informazione ambientale, configura quest'ultimo quale vero e proprio diritto e non più semplice "libertà" e ne definisce le relative modalità di esercizio¹⁰.

Il D.Lgs. n. 152/2006 è conforme all'obbligo, previsto dall'articolo 6 della Convenzione di Aarhus¹¹, di coinvolgere il pubblico nelle decisioni relative all'autorizzazione di attività che possono avere effetti significativi sull'ambiente. All'art. 3-sexies fornisce importanti indicazioni: "...chiunque, senza essere tenuto a dimostrare la sussistenza di un interesse giuridicamente

⁹ Art. 15, comma 2 (Responsabilità del titolare dell'autorizzazione unica in materia di controlli di sicurezza e di radioprotezione): "Gli oneri relativi ai controlli di sicurezza e di radioprotezione effettuati dall'Agenzia, che devono comunque assicurare la massima trasparenza nei confronti dei cittadini e delle amministrazioni locali interessate e devono essere svolti in tempi certi e compatibili con la programmazione complessiva delle attività, sono a carico del titolare dell'autorizzazione unica".

⁸ Il D.Lgs. n. 230/1995 "Attuazione delle direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom e 2006/117/Euratom in materia di radiazioni ionizzanti", all'art. 58 quater sottolineava la necessità di garantire la "trasparenza" e l'accesso alle informazioni da parte di lavoratori e pubblico.

¹⁰ Abroga la precedente normativa vigente in materia (Decreto Legislativo 39/97, attuativo della Direttiva 90/313/CEE) e mira ad agevolare la diffusione al pubblico delle informazioni ambientali detenute o prodotte da autorità pubbliche anche mediante l'utilizzo delle tecnologie informatiche e dei mezzi di telecomunicazione (Art.1).

¹¹ La "Convenzione sull'accesso alle informazioni, la partecipazione dei cittadini e l'accesso alla giustizia in materia ambientale" è stata firmata nella cittadina di Aarhus, in Danimarca, nel 1998 ed è stata ratificata dall'Italia con la Legge 16 marzo 2001, n. 108.

rilevante, può accedere alle informazioni relative allo stato dell'ambiente e del paesaggio nel territorio nazionale".

È opportuno, inoltre, chiarire che, anche in ambito comunitario e internazionale, sono state fornite indicazioni in merito alla necessità di coinvolgere e informare il pubblico, sia esso direttamente interessato o meno. Si tratta, nel caso delle Direttive EURATOM, di provvedimenti poi recepiti dalla Legislazione nazionale¹².

In generale, vale per tutte le pubbliche amministrazioni quanto indicato nella legge n. 150/2000, che rappresenta un passaggio fondamentale in quanto disciplina le "attività di informazione e comunicazione delle pubbliche amministrazioni" come attività finalizzate all'attuazione dei principi di trasparenza ed efficacia dell'azione amministrativa.

In particolare, l'art. 1 comma 5 della legge 150 evidenzia gli obiettivi delle attività di comunicazione e informazione delle Pubbliche Amministrazioni¹³.

COMMENTI

1 - SITO WEB ISTITUZIONALE

Il sito web dell'ISIN (<u>www.isinucleare.it</u>) è online dal 19 febbraio 2019 e i suoi contenuti sono disponibili sia in italiano che in lingua inglese.

Il sito web rappresenta il principale strumento di comunicazione attraverso cui le informazioni vengono veicolate all'esterno ed è il luogo in cui confluiscono prodotti di comunicazione e informazione realizzati ad hoc per differenti destinatari.

Le informazioni su accessi e visualizzazioni del sito si riferiscono al periodo febbraio - dicembre 2023¹⁴:

Visite	Visite rimbalzate (%)	Azioni per visita	Pagine viste	Pagine viste uniche	Downloads
55.479	33%	4,8	243.539	104.621	13.729

Le attività di informazione e di comunicazione sono, in particolare, finalizzate a:

c) favorire l'accesso ai servizi pubblici, promuovendone la conoscenza;

¹² Si menzionano, in particolare, la Direttiva 2009/71/EURATOM (Articolo 8 "Informazione del pubblico"), la Direttiva 2014/87EURATOM (Articolo 8 "Trasparenza"), la Direttiva 2011/70/EURATOM (Articolo 10 "*Transparency*"). Si segnala, inoltre, il documento "*Fundamental Safety Principles*" della IAEA (*Principle 2 "Role of government*").

¹³ Legge n. 150/2000, art. 1, comma 5.

a) illustrare e favorire la conoscenza delle disposizioni normative, al fine di facilitarne l'applicazione;

b) illustrare le attività delle istituzioni e il loro funzionamento;

d) promuovere conoscenze allargate e approfondite su temi di rilevante interesse pubblico e sociale;

e) favorire processi interni di semplificazione delle procedure e di modernizzazione degli apparati nonché la conoscenza dell'avvio e del percorso dei procedimenti amministrativi;

f) promuovere l'immagine delle amministrazioni, nonché quella dell'Italia, in Europa e nel mondo, conferendo conoscenza e visibilità ad eventi d'importanza locale, regionale, nazionale ed internazionale.

¹⁴ Nel 2022, il Garante della privacy ha evidenziato l'inadeguatezza di Google Analytics, fino a quel momento utilizzato per analizzare dettagliatamente le statistiche sui visitatori del sito web, rispetto al livello di protezione assicurato dal GDPR. L'ISIN ha pertanto provveduto, come suggerito dall'AgID, ad avviare la procedura per il rilevamento attraverso una piattaforma alternativa sicura (Web Analytics Italia) che ha iniziato a rilevare i dati da febbraio 2023 (https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9782874).

Una piccola parte dei dati non è pertanto disponibile, così come non è possibile un confronto con quelli relativi al 2022 poiché le due piattaforme (Google Analytics e Web Analytics Italia) utilizzano criteri di monitoraggio differenti.

Sono stati pubblicati sul sito web istituzionale dell'ISIN 46 notizie che, dopo aver guadagnato visibilità in home page, popolano oggi l'archivio online consultabile.

2 - SOCIAL NETWORK

Per quanto riguarda il profilo istituzionale di ISIN sul social X (Twitter) (@ISIN_Nucleare), attivato nell'aprile 2020, i contenuti pubblicati sono stati 68; sul profilo Youtube (ISIN PRESS), invece, sono stati inseriti 4 video; su LinkedIn, attivo dal 15 aprile 2022, sono stati pubblicati 67 post.

Nel 2023 l'Ispettorato si è dotato di una social media policy interna¹⁵, con la quale sono state definite le principali norme di comportamento che il personale è tenuto ad osservare nell'utilizzo dei social media, sia che ciò avvenga tramite gli account ufficiali sia quando, con l'account personale, si parli direttamente o indirettamente dell'attività dell'ISIN o del ruolo svolto all'interno di esso.

Sul sito web istituzionale è invece disponibile la social media policy esterna¹⁶, in cui sono definite le regole di comportamento a cui gli utenti devono attenersi negli spazi social dell'Ispettorato.

FOCUS

SOCIAL MEDIA ANALYSIS 2023

Per quanto riguarda il profilo X/Twitter, il contenuto che ha ottenuto il numero maggiore di *impression*¹⁷ (706) risale al 24 aprile 2023 e riguarda il portale STRIMS e le procedure di registrazione.

ISIN @ISIN_Nucleare · Apr 24

Obblighi di registrazione e comunicazione a **#STRIMS** da parte di medici odontoiatri, **#ISIN** risponde all'Associazione Nazionale Dentisti Italiani **#ANDI**. Aggiornato documento con risposte a domande emerse durante i 4 Webinar per strutture medico sanitarie

isinucleare.it/it/notizie/obb... pic.twitter.com/cz6dnbifdb

View post activity

Il secondo di maggior interesse è stato pubblicato il 25 aprile 2023 ed ha ottenuto 677 *impression*. L'argomento è l'esito della riunione ENSREG dedicata alla sicurezza nucleare in Ucraina.

¹⁵ In "Codice di comportamento del personale ISIN - II edizione – 2023", pag. 14, disponibile al link: https://www.isinucleare.it/sites/default/files/contenuto_redazione_isin/codice_comportamento_personale_isin_2023.p

¹⁶ Disponibile al link: https://www.isinucleare.it/it/footer

¹⁷ Sui social media le *impression* contano il numero di volte che un contenuto ha avuto la possibilità di essere visto da un certo pubblico ma non conteggiano gli utenti unici, bensì il numero stimato di visualizzazioni.

ISIN @ISIN_Nucleare · Apr 25

Sicurezza #nucleare, #decommissioning e forniture a #Ucraina, queste alcune delle tematiche affrontate ieri nel corso della 52a riunione #ENSREG, il Gruppo delle Autorità di Sicurezza Nucleare degli Stati #UE. #ISIN tra i partecipanti. I dettagli al link: isinucleare.it/it/notizie/sic... pic.twitter.com/PyBiyKqeEU

View post activity

Il terzo tweet con più *impression* (628) riguarda ancora l'Ucraina ed è stato pubblicato il 19 maggio 2023.

ISIN @ISIN_Nucleare · May 19

Nessuna emergenza per la presunta #nube tossica all'#uranio impoverito dall'#Ucraina: #radioattività nella norma. La notizia diffusa dalla #Russia è stata ripresa dagli organi di stampa e sui social sites. Leggi la notizia isinucleare.it/it/notizie/nes...
pic.twitter.com/cPIVmbLBsA

View post activity

Per quanto riguarda LinkedIn, il post che ha attirato il numero maggiore di visualizzazioni risale al 16 gennaio 2023 (4502), nel quale si annuncia l'assunzione di nuovi dipendenti.

Neoassunti all'ISIN, il saluto del Direttore

Entrano oggi a far parte dell'Ispettorato 22 nuovi assunti. Si tratta di risorse qualificate che, con i colleghi e le colleghe che hanno fatto il loro ingresso nel mese di dicembre, arricchiscono l'organico ISIN, in fase di completamento. Il nuovo personale svolgerà mansioni sia giuridico-amministrative che tecnico-scientifiche. Ad augurare buon lavoro ai nuovi dipendenti, il Direttore, Maurizio Pernice, e i dirigenti dell'Ispettorato.

"Il vostro ingresso era atteso e necessario", ha commentato Pernice. "C'è molto lavoro da fare. Le competenze dell'Ispettorato sono molteplici e richiedono l'impegno di tutti. Ma il lungo cammino che vi attende, se pur impegnativo, sarà senz'altro ricco di soddisfazioni e gratificazioni. I miei migliori auguri di benvenuto".

CO 69

3 commenti · 7 diffusioni post

Al secondo posto, con 2827 visualizzazioni, il post del 27 ottobre 2023 dedicato alla riunione ENSREG sulla gestione dei rifiuti radioattivi, tenutasi presso la sede romana dell'ISIN.

Programmi nazionali sulla gestione dei rifiuti radioattivi, il confronto internazionale alla 45a riunione del WG2 dell'ENSREG

Si è riunito ieri, a Roma, presso la sede ISIN, il Gruppo di Lavoro sulla gestione dei #rifiutiradioattivi e sul #decommissioning, istituito nell'ambito dell' #ENSREG (European Nuclear Safety Regulators Group), il Gruppo delle Autorità di Sicurezza Nucleare degli Stati Membri UE, creato dalla European Commission. L'incontro è stato condotto dal presidente del Gruppo di Lavoro e coordinatore della Consulta ISIN, Stefano Laporta, e da Mario Dionisi, responsabile tecnico del Servizio per la gestione dei rifiuti radioattivi e per il trasporto dei materiali radioattivi.

I partecipanti si sono confrontati su diverse tematiche di comune interesse in relazione allo stato di attuazione dei programmi nazionali sulla gestione dei rifiuti radioattivi predisposti in attuazione della Direttiva 2011/70/Euratom. Questo, al fine di sviluppare specifiche posizioni tecniche e linee guida dell'ENSREG utili sia alla Commissione, per promuovere iniziative comunitarie nel campo della gestione dei rifiuti radioattivi, che agli Stati membri per ottemperare agli obblighi sanciti dalla Direttiva.

In particolare, si è discusso di:

- ✓ Ottimizzazione e semplificazione dei processi di Peer Review, IRRS e ARTEMIS, che ogni Paese Membro deve effettuare ogni 10 anni come richiesto dalle due Direttive sulla sicurezza #nucleare e sulla sicurezza di gestione dei rifiuti radioattivi;
- ✔ Organizzazione di un Workshop ENSREG nel 2024, con il supporto della Commissione, per discutere le esperienze dei Paesi Membri dopo 10 anni di applicazione della Direttiva Euratom 2011/70 sulla gestione dei rifiuti radioattivi. Nel 2024 tutti i Paesi avranno completato il primo ciclo di missioni di Peer Reviews (ARTEMIS) e si potranno valutare gli effetti della Direttiva sui Programmi di gestione dei rifiuti radioattivi nei Paesi europei;
- ✓ Iniziativa dell'European Parliament su uno studio degli apparati normativi necessari per una potenziale realizzazione di un deposito regionale europeo in formazione geologica profonda per lo smaltimento dei rifiuti radioattivi ad alta attività.

ISPRA SNPA - Sistema Nazionale per la Protezione dell'Ambiente

Il terzo post più seguito (con 2559 visualizzazioni) è del 25 maggio 2023 e riguarda la visita presso l'ISIN di una delegazione dell'Autorità per la sicurezza nucleare statunitense.

Confronto Italia-USA sulla sicurezza nucleare

Presso la sede dell'ISIN - Ispettorato Nazionale per la Sicurezza Nucleare incontro con una delegazione della National Nuclear Security Administration (NNSA) statunitense.

Maurizio Pernice (ISIN): "Importante scambio di informazioni sui sistemi legislativi e regolatori dei due paesi".

Collaborare per lo scambio di informazioni sulle normative nazionali e internazionali e sulle buone pratiche in materia di #nuclear security per assicurare la protezione fisica dei materiali e degli impianti: questo il tema del confronto che si è svolto stamattina fra l'Ispettorato Nazionale per la Sicurezza Nucleare e la Radioprotezione (ISIN) e una delegazione della National Nuclear Security Administration (NNSA) del Dipartimento dell'Energia degli Stati Uniti d'America. È stato il direttore dell'Ispettorato Maurizio Pernice ad aprire l'incontro, che si è svolto presso la sede dell'ISIN a Roma. Nel suo indirizzo di benvenuto Pernice ha sottolineato che la riunione rappresenta il primo evento nell'ambito delle attività previste dal protocollo d'intesa siglato nel luglio scorso tra NNSA e ISIN. Il direttore ha inoltre affermato che la conoscenza dei sistemi legislativi e regolatori dei due paesi consente di approfondire l'evoluzione dei rischi legati al progresso scientifico e tecnologico ed aiutare a prevenirii e a contrastarii.

Nel corso dell'incontro sono stati in particolare approfonditi i temi della sicurezza legata alle nuove tecnologie con riferimento, ad esempio, alle problematiche connesse all'uso dei #droni. Si è discusso anche dell'importante tema della sicurezza informatica, dell'integrazione dei piani di #emergenza con quelli di risposta ad eventi di #security e dei più moderni sistemi di protezione fisica. All'incontro con la delegazione americana hanno partecipato anche rappresentanti del Ministero dell'Ambiente e della Sicurezza Energetica, Ministero dell'Interno, del Ministero degli Affari Esteri e della Cooperazione Internazionale, dell'Agenzia per la #Cybersicurezza Nazionale e della Sogin.

Guarda la gallery sul sito istituzionale dell'Ispettorato nazionale per la sicurezza nucleare e la radioprotezione: https://lnkd.in/dgVyB3fJ read the news and look at the gallery at the link: https://lnkd.in/dgN93SaN

Gli utenti di X/Twitter si sono mostrati particolarmente interessati alla sicurezza nucleare in Ucraina. Per la stampa, al contrario, l'interesse è calato vertiginosamente: se nel 2022 gli articoli e i servizi radiotv sul conflitto (con riferimento a ISIN) erano stati 192, nel 2023 appena 14.

Sono invece le relazioni istituzionali ad interessare in misura maggiore l'utente di LinkedIn.

3 - RELAZIONI ISTITUZIONALI

L'Ispettorato, in considerazione delle funzioni e dei compiti ad esso attribuiti, intrattiene rapporti con altre realtà istituzionali, sia nazionali che internazionali. Queste relazioni si traducono anche nella partecipazione a riunioni, convegni, conferenze, meeting e workshop presso sedi ospitanti e nell'organizzazione di eventi nelle sale della sede centrale o, quando necessario, presso locali resi disponibili da enti terzi.

Nell'ultimo anno, ISIN ha voluto dare un impulso maggiore a queste attività, riprese dopo un lungo periodo in cui gran parte degli incontri sono avvenuti in videoconferenza, a causa dell'emergenza sanitaria.

Si è pertanto provveduto a destinare maggiori risorse interne ed energie all'organizzazione degli eventi, frutto della collaborazione tra diverse Sezioni, ognuna con competenze differenti ma complementari tra loro, in funzione della buona riuscita degli eventi sotto ogni punto di vista.

Alcuni eventi organizzati da ISIN:

- WENRA Working Group Research Reactors 10-12 maggio 2023
- 10th Meeting of the "Commissione Italo Svizzera CIS" for cooperation in nuclear safety matters 15-16 maggio 2023
- Meeting NNSA ISIN for cooperation in nuclear safety matters 25 maggio 2023
- Meeting Inspectorate for Nuclear Safety and Radiation Protection (ISIN, Italy) and
- Kosovo Agency for Radiation Protection and Nuclear Safety (KARPNS, Kosovo) 29-30 maggio 2023

4 - PRODOTTI DI REPORTING

Le pubblicazioni, al momento solo in formato digitale, rappresentano un altro importante elemento della comunicazione ISIN verso l'esterno. Nella maggior parte dei casi, questi lavori sono stati curati anche dal punto di vista grafico e si tratta di:

- Relazione annuale del Direttore dell'ISIN al Governo e al Parlamento sulle attività svolte dall'ISIN e sullo stato della sicurezza nucleare nel territorio nazionale
- Sintesi attività ISIN Il resoconto 2022 tradotto in grafici e cifre
- Inventario nazionale dei rifiuti radioattivi aggiornato al 31 dicembre 2022
- Guida Tecnica n. 33 "Criteri di sicurezza nucleare e radioprotezione per la gestione dei rifiuti radioattivi"
- Confronto InterLaboratorio NORM-2021 per la REte nazionale di SOrveglianza della RADioattività Ambientale (RESORAD)
- Reti nazionali di monitoraggio della radioattività ambientale Dati 2021

- Attività nucleari e radioattività ambientale Edizione 2023
- Attività nucleari e radioattività ambientale Sintesi in grafici e dati
- Il diario del conflitto in Ucraina dal 7 settembre 2022 al 30 marzo 2023
- Regolamentazione IAEA per il Trasporto in Sicurezza del Materiale Radioattivo -Edizione 2018
- Topical Peer Review II Fire Protection National Assessment Report 2023

5 - UFFICIO RELAZIONI CON IL PUBBLICO

L'URP è l'avamposto strategico del rapporto tra servizi pubblici e utenti, che legittima gli addetti all'attività di comunicazione e di ascolto alle relazioni con il cittadino.

L'URP dell'ISIN non dispone di uno sportello fisico e fornisce, attraverso internet ed e-mail, molte risposte alle richieste di informazioni. Nel 2023, l'URP è stato interpellato 53 volte; nel 70% dei casi si è trattato di comunicazioni finalizzate ad ottenere chiarimenti in merito al funzionamento della piattaforma STRIMS. Per questo motivo, lo spazio dell'URP sul sito istituzionale è stato popolato di contenuti utili alla risoluzione delle problematiche più frequentemente riscontrate: con la pubblicazione di FAQ e tutorial, si è cercato di fornire agli utenti gli strumenti utili per ottenere delle risposte ancora prima di dover richiedere il supporto dell'URP.

6 - INFORMAZIONE AI MEDIA E MEDIA ANALYSIS

Nel corso del 2023 sono stati inviati ai media 4 comunicati stampa.

Al 31 dicembre, gli articoli che si sono occupati di ISIN sono stati, in totale, 564. Come evidenziato nella Figura 10.1, il picco è stato raggiunto nel mese di dicembre (277 articoli, a fronte di una media mensile di 23,7) a seguito della pubblicazione della CNAI e dello smantellamento del vessel della centrale del Garigliano.

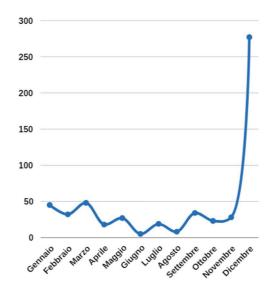


Figura 10.1 – Andamento generale delle uscite sulla stampa nazionale riguardanti l'Ispettorato – anno 2023

Rispetto agli anni precedenti, nel 2023 assistiamo ad una lieve crescita del numero totale di articoli e servizi che si sono occupati dell'Ispettorato (Figura 10.2).

Dai 187 del 2019, passando ad una lievissima flessione nel 2020 (165) dovuta alla pandemia e alle conseguenze sulle attività dell'ISIN, si è registrato un numero decisamente più alto nel 2021 (508) in occasione della pubblicazione della CNAPI e del conseguente dibattito nazionale e soprattutto locale. Nel 2022 sono stati invece pubblicati 550 articoli e 14 interviste andate in onda su testate televisive e radiofoniche, sino ad arrivare ai 564 del 2023.

Il Deposito nazionale è stato quindi finora il tema che ha maggiormente condizionato la presenza dell'Ispettorato sui media, anche indirettamente (il report dell'Ispettorato di cui la stampa riferisce più spesso è, infatti, l'Inventario nazionale dei rifiuti radioattivi).

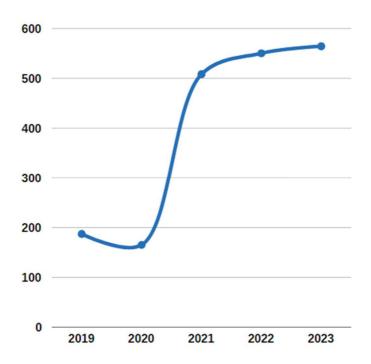


Figura 10.2 - Numero di articoli in cui compare ISIN: confronto tra anni 2019, 2020, 2021, 2022 e 2023.

Nel dettaglio (Figura 10.3), i temi a cui la stampa ha dedicato maggior attenzione (in relazione a ISIN) sono stati il Deposito nazionale (308 articoli, pari al 73,68% del totale) e lo smantellamento del vessel presso la Centrale del Garigliano (62 articoli, pari al 14,8% del totale). Seguono, con un netto distacco, il dibattito nazionale su luci e ombre del possibile ritorno al nucleare come fonte di approvvigionamento energetico (22 articoli, 5,26%) e le preoccupazioni in merito alla sicurezza nucleare presso l'impianto di Zaporizhzya in Ucraina (14 articoli, 3,35%).

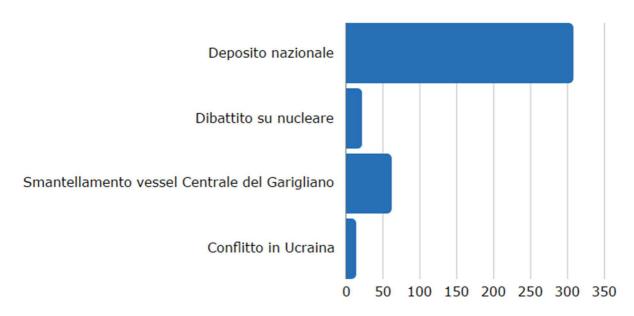


Figura 10.3 – Gli argomenti che, in relazione all'ISIN, sono stati maggiormente affrontati dalla stampa nazionale nel corso del 2023.

7 - COMUNICAZIONE INTERNA

La comunicazione interna è strumento indispensabile per accelerare lo sviluppo dei processi, accompagnare e sostenere i cambiamenti organizzativi e le strategie, sviluppare una cultura comune, orientare gli sforzi verso il raggiungimento degli obiettivi, che divengono condivisi e perseguibili attraverso il contributo di ciascuno.

Nel 2023 la comunicazione interna, complementare e funzionale alla comunicazione esterna, ha avuto in ISIN un ruolo importante.

A seguito del proseguimento dello smart working, introdotto durante la pandemia, si era reso necessario agevolare l'accesso alle informazioni anche attraverso la intranet.

Nel corso del 2022 il personale era stato invitato a compilare un questionario costruito con lo scopo di far emergere punti di forza, criticità e proposte in merito allo strumento intranet. I risultati dell'indagine, che sono stati condivisi, hanno rappresentato un utile tracciato lungo il quale articolare gli interventi migliorativi realizzati nel 2023 quali la creazione di nuove pagine, l'aggiornamento e la riorganizzazione dei contenuti già pubblicati.

