

CAPITOLO 9

Autori:

Marina AMORI¹, Tiziano BACCI¹, Maria Teresa BERDUCCI¹, Serena BERNABEI¹, Andrea BIANCO¹, Patrizia BORRELLO¹, Marco CORDELLA¹, Gaetano CORRADINI¹, Franco CROSATO¹, Marco D'ANTONA¹, Filippo D'ASCOLA¹, Roberta DE ANGELIS¹, Tiziana DE SANTIS¹, Bianca DI LORENZO¹, Paola GENNARO¹, Giordano¹ GIORGI, Franco GIOVANARDI¹, Silvia IACCARINO¹, Marilena INSOLVIBILE¹, Barbara LASTORIA¹, Serena LOMIRI¹, Erika MAGALETTI¹, Chiara MAGGI¹, Marco MARCACCIO², Stefano MARIANI,¹ Sara MORUCCI,¹ Gabriele NARDONE¹, Arianna ORASI¹, Marina PENNA¹, Marco PICONE¹, Francesco RENDE¹, Silvana SALVATI¹, Massimo SCOPELLITI³, Emanuela SPADA¹, Benedetta TRABUCCO¹, Saverio VENTURELLI¹

Coordinatore statistico:

Silvia IACCARINO1

Coordinatore tematico:

Angela BARBANO¹, Martina BUSSETTINI,¹ Marco CORDELLA¹, Marilena INSOLVIBILE¹, Gabriele NARDONE¹, Marina PENNA¹

¹ ISPRA; ² ARPA Emilia-Romagna; ³ Ministero dell'ambiente e della tutela del territorio e del mare

L'idrosfera occupa due terzi della superficie della Terra e permette lo scambio di sostanze ed energia tra tutti gli ecosistemi, attraverso il ciclo dell'acqua che si sviluppa tra la terra e gli strati bassi dell'atmosfera.

Attraverso gli apporti meteorici l'acqua si distribuisce in una varietà di corpi idrici che, nel complesso, possono essere raggruppati in: acque sotterranee, fiumi e torrenti; laghi e invasi, acque di transizione rappresentate dalle zone di foce dei fiumi, dai laghi, dalle lagune e dagli stagni costieri in cui avviene un'interazione tra acque dolci e salate e acque marine.

I corpi idrici sostengono la vita di specie animali e vegetali e sono un sistema complesso la cui funzionalità intrinseca gli consente di tollerare, entro una certa misura, alterazioni causate da apporti di sostanze chimiche naturali e/o sintetiche e modificazioni delle condizioni fisiche e morfologiche senza gravi conseguenze. Il superamento di certe soglie di alterazione, tuttavia, determina uno scadente stato di qualità ambientale del corpo idrico, che si traduce in minore capacità di autodepurazione, diminuzione o alterazione della biodiversità locale e generale, minore disponibilità della risorsa per la vita degli ecosistemi associati e per il consumo umano, e talvolta pericolosità per la salute dell'uomo e delle specie viventi, a causa della presenza di molecole e microrganismi con effetti tossici (nei confronti dell'uomo e degli animali) ed ecotossici (nei confronti degli ecosistemi in generale).

L'obiettivo principale della politica idrica nazionale ed europea è garantire una sufficiente quantità di acqua di "buona qualità" per i bisogni delle persone e per l'ambiente.

La presenza di inquinanti nelle acque nazionali ed europee oltre a essere una minaccia per gli ecosistemi acquatici solleva preoccupazioni per la salute pubblica, mentre la scarsità d'acqua e la siccità hanno gravi conseguenze per molti settori economici.

II D.Lgs.172/2015 "Attuazione della direttiva 2013/39/UE, che modifica la Direttiva 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque" aggiorna l'elenco delle sostanze di priorità, e riporta nella tabella 1A gli *Standard* di Qualità Ambientale (SQA) da appli-

care alla colonna d'acqua e al biota, con l'obiettivo di conseguire per le sostanze neo inserite il"buono" stato chimico entro il 22 dicembre 2021.

Ai fini del raggiungimento degli obiettivi definiti dalla Direttiva Quadro sulle acque (Direttiva 2000/60/CE) e dai Decreti attuativi, risultano fondamentali le scelte politiche di tutela delle acque e la definizione degli strumenti organizzativi, gestionali e normativi, tenendo conto della complessità dei corpi idrici e degli impatti a cui sono soggetti, al fine di ripristinare uno stato qualitativo e quantitativo tale da garantire una buona capacità di autodepurazione e di sostegno ai relativi ecosistemi.

In tale contesto si inserisce il Decreto 39/2015 nel quale si presentano i criteri di valutazione del costo ambientale e del costo della risorsa per i vari settori di impiego dell'acqua. In particolare, il "costo ambientale" è inteso come qualsiasi spesa, intervento o obbligo (vincoli e limiti nell'uso) per il ripristino, la riduzione o il contenimento del danno prodotto che allontana il raggiungimento degli obiettivi di qualità delle acque, danno riconducibile alla perdita quantitativa o qualitativa della stessa risorsa (deterioramento/depauperamento). Pertanto l'analisi delle pressioni e degli impatti diventa necessaria per la caratterizzazione fisica delle situazioni descriventi il danno ambientale e per determinare se il corpo idrico, in consequenza degli utilizzi, sia a rischio di non raggiungere l'obiettivo ambientale.

Le risorse idriche, rappresentate da acque interne superficiali e sotterranee, acque marino costiere e di transizione, sono descritte all'interno del capitolo mediante un selezionato gruppo di indicatori relativi a sei temi ambientali:

- qualità dei corpi idrici;
- risorse idriche e usi sostenibili;
- inquinamento delle risorse idriche;
- stato fisico del mare:
- laguna di Venezia;
- coste.

Il tema *Qualità dei corpi idrici* è rappresentato da indicatori di stato riferibili alle acque marino costiere e di transizione, alle acque dolci superficiali (fiumi e laghi) e sotterranee, che tengono conto delle Direttive 2000/60/CE, 2006/07/CE e 2006/118/CE, recepite dalla normativa nazionale (D.Lgs.152/2006, D.Lgs.116/2008, D.Lgs.30/2009, DM 260/2010, D.Lgs 172/2015).

Per quanto riguarda il tema Qualità dei corpi idrici, per le acque interne, sono stati inseriti i seguenti indicatori: Acque superficiali: Indice di qualità stato chimico delle acque superficiali - SQA, Indice di qualità stato ecologico delle acque superficiali.

I dati sono stati estrapolati dall'aggiornamento dei Piani di Gestione dei Distretti idrografici e fanno riferimento al primo sessennio di monitoraggio (2010-2015). A scala regionale sussiste ancora una discordanza temporale nella classificazione, ciò è dovuto alle diverse tempistiche di aggiornamento dei piani di monitoraggio regionali, nonché una non completa classificazione della rete di monitoraggio individuata

Per quanto riguarda le acque sotterranee, oltre all'Indice di qualità stato chimico delle acque sotterranee (SCAS), è stato inserito un nuovo indicatore: Indice stato quantitativo delle acque sotterranee" (SQUAS) che si basa sulle misure di livello/portata in relazione alle caratteristiche dell'acquifero (tipologia complesso idrogeologico, caratteristiche idrauliche) e del relativo sfruttamento (pressioni antropiche); tale indice interpreta lo stato quantitativo della risorsa in termini di equilibrio di bilancio idrogeologico dell'acquifero ovvero della capacità di sostenere sul lungo periodo gli emungimenti (pressioni antropiche) che su di esso insistono in rapporto ai fattori di ricarica.

Per le acque marino costiere e di transizione, sono stati inseriti gli indicatori relativi allo stato chimico e allo stato ecologico dei corpi idrici in base a quanto presente nel primo aggiornamento dei Piani di Gestione dei Bacini idrografici per gli otto distretti individuati sul territorio nazionale, approvati lo scorso marzo, con l'eccezione del Distretto idrografico della regione Sicilia. Per il Distretto idrografico dell'Appennino meridionale le informazioni sono disponibili per le sole regioni Puglia e Campania.

Lo stato ecologico è calcolato misurando lo scostamento dai valori di naturalità, ovvero "di riferimento", degli Elementi di Qualità Biologica (EQB). Lo scostamento dal valore di riferimento è la risposta dell'EQB a delle specifiche pressioni che insistono sull'ambiente e che ne compromettono lo stato. L'approccio richiamato utilizza, ai fini della classificazione, degli indici sintetici, opportunamente definiti, validati e intercalibrati nell'Eco-regione mediterranea.

Lo stato chimico si basa sulla valutazione della presenza di sostanze inquinanti, da rilevare nelle acque, nei sedimenti o nel biota, indicate come "prioritarie" e "pericolose prioritarie" con i relativi *Standard* di Qualità Ambientale (SQA), che non devono essere superati nei corpi idrici ai fini della classificazione del "buono stato chimico".

Il fenomeno che causa l'aumento della produzione primaria e della biomassa algale nelle acque, è chiamato eutrofizzazione. Esso causa, inoltre, un conseguente accumulo di sostanza organica che può provocare ipossia/anossia delle acque di fondo, stati di sofferenza delle comunità bentoniche e morie di pesci. Il fenomeno può esercitare seri impatti negativi sulla salute degli ecosistemi marini e sull'uso sostenibile di beni e servizi. È uno degli 11 Descrittori della Strategia Marina dell'UE (Direttiva 2008/56/CE), per il quale l'Italia ha condotto una valutazione iniziale nel 2012 ai sensi dell'art. 8 della direttiva stessa.

Le cause dell'eutrofizzazione sono soprattutto da riferirsi agli apporti di nutrienti, in particolare azoto e fosforo, veicolati a mare dai fiumi o dagli insediamenti costieri; le principali fonti di nutrienti sono riconducibili al settore agro-zootecnico e a quello civile (insediamenti urbani). Questo indicatore combina informazioni relative ai livelli di nutrienti (concentrazione di nutrienti nella colonna d'acqua) e quelle relative agli effetti, diretti e indiretti, dovuti all'arricchimento dei nutrienti, quali la concentrazione di clorofilla "a" nella colonna d'acqua, la trasparenza e le condizioni di ipossia o anossia nelle acque di fondo.

L'indicatore Classificazione delle acque di balneazione riporta il numero di acque ricadenti in una classe di qualità (eccellente, buona, sufficiente e scarsa), a livello nazionale e regionale. Elaborato sulla base delle "informazioni stagionali" offre una descrizione orientativa dello stato qualitativo delle acque di balneazione a livello microbiologico, non fornendo, tuttavia, alcuna indicazione circa possibili impatti derivanti da fonti di inquinamento di altra natura. Inoltre, valuta lo stato di qualità delle acque di balneazione, in relazione ai fattori di contaminazione fecale e, quindi, igienico-sanitari. Consente anche di stimare, in maniera indiretta, l'efficacia dei sistemi di trattamento delle acque reflue e di valutare nel tempo l'efficacia di eventuali misure di risanamento adottate. L'indicatore Ostreopsis cf. ovata misura l'andamento della concentrazione e distribuzione della microalga lungo le aree marino-costiere italiane e contribuisce alla valutazione ambientale delle acque di balneazione effettuata mediante la redazione dei "Profili delle acque di balneazione" (DM 30/3/2010, All. E). È altresì associabile al potenziale rischio tossico e nocivo sulle biocenosi marine bentoniche e sull'uomo. L'indicatore mira a valutare la presenza della microalga, l'andamento delle fioriture e il possibile danno all'ambiente marino bentonico e alle acque di balneazione.

Il tema *Risorse idriche e usi sostenibili* comprende indicatori destinati a valutare a livello nazionale la capacità di risposta dei bacini agli eventi meteorici, la conoscenza degli apporti meteorici, la determinazione dell'andamento delle temperature dell'aria necessario per la valutazione del volume di acqua restituito per evapotraspirazione, nonché a quantificare statisticamente, a scala nazionale, la siccità idrologica. A partire da quest'edizione, è stato inserito l'indicatore *Pressione sui corpi idrici* che fornisce un primo quadro, in attesa dei dati definitivi provenienti dal *reporting* previsto dalla Direttiva Quadro Acque 2000/60/CE, delle principali pressioni significative agenti sui corpi idrici, con copertura pressoché nazionale.

Il tema Inquinamento delle risorse idriche include indicatori di stato e di risposta. In particolare, sono stati aggiornati: Depuratori: conformità del sistema di fognatura delle acque reflue urbane; Percentuale di acque reflue depurate, che esprime la quantità di carico organico biodegradabile che raggiunge gli impianti di trattamento delle acque reflue urbane. Inoltre, sono stati popolati gli indicatori riguardanti l'inquinamento da nitrati sia per le acque superficiali sia per le sotterranee.

Nel tema *Stato fisico del mare*, oltre alla valutazione dell'energia del moto ondoso al largo delle nostre coste, sono stati popolati anche: *Mareggiate* e *Upwelling*.

Per il tema Laguna di Venezia sono stati popolati cinque indicatori. Crescita del livello medio del mare a Venezia (ICLMM) che permette di monitorare il rischio di allagamenti del centro storico nel tempo. Infatti, la perdita relativa di altezza sul livello medio del mare nel tempo fa aumentare la frequenza di allagamento a parità di quota raggiunta. Numero dei casi di alte maree, che classifica le frequenze assolute dei casi di ac-

qua alta per diverse altezze di marea. Le classi di altezza rispondono al diverso approccio di difesa dalle acque alte all'interno della laguna. Gli indicatori: Altezza della marea astronomica in Laguna di Venezia e Ritardo di propagazione della marea nella Laguna di Venezia, sono stati completamente rinnovati, con serie storiche ventennali che permettono il monitoraggio continuo dei cambiamenti degli assetti idraulici in atto all'interno della Laguna di Venezia. Inoltre, è stato inserito un nuovo indicatore Climatologia lagunare, che analizza le variazioni osservate nelle principali variabili meteorologiche (regime delle precipitazioni, pressione atmosferica e temperatura dell'aria) riferite all'area lagunare, a partire dal 1986.

Il tema Coste è descritto da indicatori che consentono di valutare l'azione congiunta di fenomeni naturali e attività antropiche, nonché modalità inappropriate di uso e gestione del territorio, che sono all'origine di un'amplificazione dei dissesti idrogeologici e dei processi erosivi in area costiera. Gli indicatori descrittivi più significativi sono: Dinamica litoranea, Costa protetta, Costa artificializzata con opere marittime e di difesa, Urbanizzazione costiera nei 300 m dalla riva (ADA edizione 2009, 2013), Sabbie relitte dragate ai fini del ripascimento (ADA edizione 2011, 2012, 2013). Questi indicatori sintetizzano sia gli effetti sulla costa dell'azione del mare, quale principale responsabile della dinamica dei litorali, sia delle pressioni determinate da fattori demografici e di sviluppo, che determinano una progressiva artificializzazione del territorio in prossimità della riva. sia delle strategie di protezione messe in atto per contenere i dissesti geomorfologici in zona costiera. Gli indicatori sono calcolati sulla base di dati territoriali a scala nazionale. La revisione e l'aggiornamento degli indicatori è guinguennale o decennale, che è un intervallo di tempo sufficiente per monitorare nuovi assestamenti della linea di riva, eludendo tipiche modificazioni stagionali; l'intervallo di tempo di valutazione è invece determinato dalla disponibilità di nuovi rilievi aerofotogrammetrici del territorio nazionale e dalla successiva elaborazione cartografica delle informazioni di base.

			Q9: QUAD	RO SINO	TTICO II	NDICATORI			
Tema SINA <i>net</i>	Nome Indicatore	DPSIR	Periodicità di aggiornamento	Qualità Informazione	C	opertura	Stato e trend	Rapprese	ntazione
			00		S	Т		Tabelle	Figure
	Classificazione delle acque di balneazione	S	Annuale	***	I R	2011 -2014	-	-	9.1 - 9.2
	Concentrazione Ostreopsis Cf. ovata	S/I	Annuale	***	R.c. ¹ 13/15	2015		9.1	9.3
	Acque marino co- stiere - Elemento di qualità biologica Macroinvertebrati bentonici M-AMBI-CW ^a	S	Annuale	***	R.c. ¹ 3/15	2011 - 2013	-	-	-
	Acque marino co- stiere - Elemento di qualità biologica Macroalghe CARLIT ^a	S	Annuale	***	R.c. ¹ 3/15	2009	-	-	-
Qualità dei corpi idrici	Acque marino costiere - Elemento di qualità biologica Angiosperme Posidonia oceanica Indice PREI ^a	S	Annuale/ Esennale	***	R.c. ¹ 3/15	2011 - 2013	-	-	-
ਰੱ	Acque marino co- stiere - Elemento di qualità biologica Clorofilla "a"	S	Non definibile	***	R.c. ¹ 9/15	2012 - 2013	-	9.2 - 9.3	9.4
	Stato chimico delle acque marino-co-stiere	S	Annuale/ Esennale	***	D.i. ⁷ 7/8	2010 - 2016	-	-	9.5
	Stato ecologico delle acque marino - costiere	S	Triennale/ Esennale	***	D.i. ⁷ 6/8	2010 - 2016	-	-	9.6
	Acque di transizio- ne - Elemento di qualità biologica - Macroinvertebrati bentonici M-AMBI-TW ^a	S	Annuale	**		2011 - 2013	-	-	-
	Macroinvertebrati bentonici BITS-TW ^a	S	Triennale/ Esennale	**	R.c. ¹ 5/15	2000, 2003 2008 - 2010	-	-	-

			Q9: QUAD	RO SINC	TTICO II	NDICATORI			
Tema SINA <i>net</i>	Nome Indicatore	DPSIR	Periodicità di aggiornamento	Qualità Informazione	С	opertura	Stato e trend	Rappreso	entazione
					S	Т		Tabelle	Figure
	Acque di transizio- ne - Elemento di qualità biologica - macrofite indice MAQI ^a						-	-	-
	Stato chimico delle acque di transizione	S	Triennale/ Esennale	***	D.i. ⁷ 6/8	2010 - 2016	-	-	9.7
	Stato ecologico delle acque di transizione	S	Annuale/ Esennale	***	D.i. ⁷ 5/8	2010 - 2016	-	-	9.8
	Eutrofizzazione	S/I	Annuale	**		2001 - 2009	-	-	9.9 - 9.30
	Concentrazione di contaminanti e loro effetti	P/S/I	Triennale/ Esennale	**	Sub - Regionale ⁸	2006 - 2012	-	-	9.31 - 9.45
orpi idrici	Indice di qualità stato chimico delle acque superficiali (SQA)	S	Triennale/ Esennale	***	D.i. ⁷	2010 - 2015	-	9.4 - 9.5	9.46 - 9.47
Qualità dei corpi idrici	Indice di qualità stato ecologico delle acque super- ficiali	S	Triennale/ Esennale	***	D.i. ⁷	2010 - 2015	-	9.6 - 9.7	9.48 - 9.49
	Indice di qualità componenti bio- logiche dei fiumi - macrobenthos ^a	S	Triennale/ Esennale	***	R 14/20	2011	-	-	-
	Indice di qualità componenti bio- logiche dei fiumi- diatomee ^a	S	Triennale/ Esennale	***	R 14/20	2011	-	-	-
	Indice di qualità componenti bio- logiche dei fiumi - macrofite ^a	S	Triennale/ Esennale	***	R 14/20	2011	-	-	-
	Indice di qualità componenti biolo- giche dei laghi - fitoplancton ^a	S	Triennale/ Esennale	***	R 7/20	2011	-	-	-

			Q9: QUAD	RO SINO	TTICO I	NDICATORI			
Tema SINA <i>net</i>	Nome Indicatore	DPSIR	Periodicità di aggiornamento	Qualità Informazione	C	Copertura	Stato e trend	Rapprese	entazione
					S	Т		Tabelle	Figure
	Indice di qualità componenti chimico-fisiche dei fiumi - LIMeco ^a	S	Triennale/ Esennale	***	R 17/20	2010 - 2012	-	-	-
Qualità dei corpi idrici	Indice di qualità componenti chimico – fisiche dei laghi - LTLeco ^a	S	Triennale/ Esennale	***	R 11/20	2010 - 2012	-	-	-
Qualità dei	Indice di qualità stato chimico delle acque sotterranee (SCAS)	S	Triennale	***	R 15/20	2010 - 2015	-	9.8 - 9.12	9.50 - 9.52
	Indice stato quantitativo delle acque sotterranee (SQUAS)	S	Triennale	**	R 13/20	2010 - 2015	-	9.13 - 9.16	9.53 - 9.55
	Prelievo di acqua per i diversi usi ^a	Р	Triennale	**	R 11/20	2002 - 2004 2005 - 2007	-	-	-
Risorse idriche e usi sostenibili	Pressioni sui corpi idrici	Р	Triennale/ Esennale	**	D.i. ⁷ 7/8	2015	-	9.17	9.56 - 9.57
e usi so	Portate	Р	Triennale/ Esennale	***	D.i. ⁷ 7/8	2005 - 2014	-	9.18	9.58- 9.61
idriche	Temperatura dell'aria	S	Annuale	***	I	1961 - 1990 2014	-	-	9.62 - 9.63
Risorse	Precipitazioni	S	Annuale	***	I	1961 - 1990 2014	-	-	9.64- 9.66
	Siccità idrologica	S	Annuale	***	I	Ottobre 2014 - Dicembre 2015	<u>•••</u>	-	9.67- 9.81
driche	Medie dei nutrienti in chiusura di bacino ^a	S	Annuale	**	B⁴	2000 - 2013	-	-	-
Inquinamento delle risorse idriche	Depuratori: con- formità del siste- ma di fognatura delle acque reflue urbane	R	Biennale	***	I R	2014	\odot	9.19 - 9.20	9.82 - 9.84
Inquinam	Depuratori: con- formità dei sistemi di depurazione delle acque reflue urbane ^a	R	Biennale	***	I R 19/20	2012	-	-	-

			Q9: QUAD	RO SINO	TTICO II	NDICATORI			
Tema SINA <i>net</i>	Nome Indicatore	DPSIR	Periodicità di aggiornamento	Qualità Informazione	C	opertura	Stato e trend	Rappres	entazione
					S	Т		Tabelle	Figure
iche	Percentuale di acque reflue depurate	R	Biennale	***	I R	2014	<u></u>	9.21	9.85 - 9.86
Inquinamento delle risorse idriche	Indice sintetico inquinamento da nitrati delle acque: superficiali (NO ₃ status)	S	Quadriennale	***	I R 19/20	2008 - 2015		9.22 - 9.23	-
Inquinamer	Indice sintetico inquinamento da nitrati delle acque: sotterranee (NO ₃ status)	S	Quadriennale	***	I R 19/20	2008 - 2015	\odot	9.24 - 9.25	-
leb	Temperatura acque marine	S	Annuale	***	M ⁵	2002 - 2015		-	9.87
Stato fisico del mare	Ondosità	S	Annuale	***	M ⁵	2002 - 2015	-	-	9.88 - 9.89
tato	Mareggiate	S	Annuale	***	M ⁵	2002 - 2015	-	9.26	9.90
ဟ	Upwelling	S	Annuale	***	M ⁵	2009 - 2015	-	-	9.91- 9.115
	Crescita del livello medio del mare a Venezia (ICLMM)	S/I	Annuale	***	-	1872 - 2015		9.27	9.116
	Numero dei casi di alte maree	Р	Annuale	***	-	1924 - 2015		9.28	9.117
/enezia	Altezza della ma- rea astronomica in laguna di Venezia	R	Annuale	***	-	1989 - 2014		9.29	9.118 - 9.120
Laguna di Venezia	Ritardo di propagazione della marea nella laguna di Venezia	S/I	Annuale	***	-	1989 - 2014		9.30	9.121 - 9.122
	MAQI Laguna di Venezia (Macrophyte Quality Index) ^a	S	Non definibile	***	-	2010	-	-	-
	Climatologia lagunare			***	-		(3)	-	9.123 - 9.126
Coste	Dinamica litoraneaª	P S I	Quinquennale	***	I R.c. ¹	1950 - 1999 2000 - 2007	-	-	-
S	Urbanizzazione costiera nei 300 m dalla riva ^a	P S I	Quinquennale	**	R.c. ¹ P.c. ⁶	2001 - 2011	-	-	-

	Q9: QUADRO SINOTTICO INDICATORI								
Tema SINA <i>net</i>	Nome Indicatore			Qualità Copertura Informazione		pertura Stato e trend		Rappresentazione	
					S	Т		Tabelle	Figure
	Costa artificializ- zata con opere marittime e di difesa ^a	P S R	Quinquennale	***	I R.c. ¹	2001 - 2011	-	-	-
Coste	Costa protetta ^a	P S R	Quinquennale	***	I R.c. ¹	2000 - 2007	-	-	-
Ö	Rischio costieroª	D S I	Decennale	***	C.c. ²	1990 - 2000	-	-	-
	Sabbie relitte dragate ai fini di ripascimento ^a	Р	Annuale	***	R.c. ¹	1994 - 2013	-	-	-

¹ R.c.= Regioni costiere, anche se i dati sono raccolti a livello di particolari punti di campionamento

² C.c.= Comuni costieri

³ B.n.= Bacini nazionali

⁴ B = Bacini idrografici (12 bacini e 5 laghi)

⁵ M = Mari

⁶ P.c. = Province costiere

⁷ D.i. = Distretti idrografici

⁸ Sub-Regionale = Mar Adriatico, Mediterraneo occidentale, Ionio e Mediterraneo centrale

^a Nella presente edizione, l'indicatore non è stato aggiornato. La relativa scheda è consultabile nel DB http://annuario.isprambiente.it

	QUADRO RIASSUNTIVO DELLE VALUTAZIONI						
Trend	Nome indicatore	Descrizione					
<u></u>	Depuratori: conformità del sistema di fognatura delle acque reflue urbane	Nel 2014 il grado di conformità nazionale è pari al 99,1%, di poco superiore al valore registrato nel 2012. La percentuale di carico organico convogliato in fognatura è pari al 94,3%, mentre quello convogliato in sistemi individuali è pari a 4,5%.					
<u></u>	Indice sintetico inquinamento da nitrati nelle acque superficiali (NO ₃ Status)	Il numero delle stazioni di monitoraggio è passato da 3.944 del 2008-2011 a 3.741 per il quadriennio successivo. Effettuando un confronto tra i due periodi, la situazione nazionale risulta sostanzialmente invariata rispetto al quadriennio 2008-2011. L'indice passa, infatti, da 0,985 a 0,984. In dieci regioni/province autonome (Abruzzo, Basilicata, Campania, Emilia-Romagna, Lombardia, Puglia, Sardegna, Sicilia, Toscana, Molise) l'indice è migliorato. In cinque regioni/province autonome (Friuli-Venezia Giulia, Lazio, Liguria, Marche, Valle d'Aosta) l'indice ha subito dei peggioramenti; e cinque regioni (Bolzano, Piemonte, Trento, Umbria, Veneto) l'indice è rimasto stazionario nei due quadrienni. La Calabria non ha inviato dati nel quadriennio 2012-2015.					
8	Concentrazione Ostreopsis ovata	Nel 2015, il <i>trend</i> di concentrazione rispetto all'anno precedente è negativo, in quanto si assiste a un aumento dei siti positivi e delle abbondanze che superano le 10.000 cell/l, anche considerando il valore percentuale. Sono presenti due <i>hot spot</i> nelle regioni Marche e Puglia in cui la concentrazione di <i>Ostreopsis cf. ovata</i> è elevata soprattutto nei mesi di luglio-agosto (Puglia) e settembre (Marche). Nel 2015 sono stati osservati episodi di sofferenza a carico di macroalghe, gasteropodi, mitili, patelle e solo nelle aree più impattate e durante il picco della fioritura.					

9.1 QUALITÀ DEI CORPI IDRICI

Qualità delle acque marino costiere e di transizione

La qualità ecologica viene definita misurando lo scostamento dai valori di naturalità, ovvero di riferimento, degli Elementi di Qualità Biologica (EQB) fitoplancton, macroinvertebrati bentonici. macroalghe e angiosperme che caratterizzano l'ambiente medesimo. Il traquardo ambientale è rappresentato dal raggiungimento dello stato ecologico "buono" entro il 2015 per tutti i corpi idrici superficiali. Gli indici di classificazione adottati dall'Italia attraverso il DM 260/2010 sono: la biomassa fitoplanctonica, espressa come concentrazione di clorofilla "a", per l'EQB fitoplancton; l'indice **CARLIT** (Cartografia Litoranea) per l'EQB macroalghe; l'indice PREI (Posidonia oceanica Rapid Easy Index) per l'EQB angiosperme "Posidonia oceanica" e, infine, l'indice M-AMBI (Multivariate AZTI Marine Biotic Index) per l'EQB macroinvertebrati bentonici.

La gestione della qualità delle acque di balneazione risponde ai requisiti del Decreto del Ministero della salute del 30 marzo 2010, e prevede che a ogni acqua sia assegnata una classe di qualità (eccellente, buona, sufficiente e scarsa). Pertanto, a partire dalla stagione balneare 2010, le acque di balneazione sono monitorate e valutate secondo nuovi criteri.

Per ciò che attiene la qualità chimica, essa si basa sulla valutazione della presenza di sostanze inquinanti "prioritarie" e "pericolose prioritarie", da rilevare nelle acque, nei sedimenti o nel biota, con i relativi *Standard* di Qualità Ambientale (SQA), che non devono essere superati nei corpi idrici ai fini della classificazione del "buono stato chimico".

L'eutrofizzazione determina un aumento della produzione primaria e della biomassa algale nelle acque, con conseguente accumulo di sostanza organica che può provocare ipossia/anossia delle acque di fondo, stati di sofferenza delle comunità bentoniche e morie di pesci. Il fenomeno può esercitare seri impatti negativi sulla salute degli ecosistemi marini e sull'uso sostenibile di beni e servizi. Questo indicatore combina informazioni relative ai livelli di nutrienti (concentrazione di nutrienti nella colonna d'acqua) e quelle relative

agli effetti, diretti e indiretti, dovuti all'arricchimento dei nutrienti, quali la concentrazione di clorofilla "a" nella colonna d'acqua, la trasparenza e le condizioni di ipossia o anossia nelle acque di fondo. È uno degli 11 Descrittori della Strategia Marina dell'UE (Direttiva 2008/56/CE), per il quale l'Italia ha condotto una valutazione iniziale nel 2012 ai sensi dell'art. 8 della Direttiva stessa.

Nel quadro Q9.1a sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Qualità delle acque superficiali interne

La Direttiva Quadro sulle Acque 2000/60/CE (Water Framework Directive, WFD), recepita con il D.Lgs. 152/06, ha introdotto un approccio innovativo nella valutazione dello stato di qualità dei corpi idrici: lo stato ecologico viene valutato attraverso lo studio degli elementi biologici (composizione e abbondanza), supportati da quelli idromorfologici, chimici e chimico fisici.

A partire dal 2008, data di emanazione del primo DM attuativo del D.Lgs. 152/06, gli enti preposti hanno iniziato ad adeguare i piani di monitoraggio alle nuove richieste normative. Con il D.Lgs. 152/06 i piani di monitoraggio sono legati alla durata sessennale dei Piani di Gestione. All'interno di questo periodo si svolgono i monitoraggi operativi e di sorveglianza. Il primo ciclo, definito dal DM 260/10. è 2010-2015.

La qualità delle acque superficiali interne è rappresentata dai seguenti indicatori: Indice di qualità stato chimico delle acque superficiali, Indice di qualità stato ecologico delle acque superficiali. Nel quadro Q9.1b sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Qualità delle acque sotterranee

La Direttiva 2000/60/CE ha come obiettivi quelli di promuovere e attuare politiche sostenibili per l'uso e la salvaguardia delle acque superficiali e sotterranee, al fine di contribuire al perseguimento della loro tutela e miglioramento della qualità ambientale, nonchè all'utilizzo razionale delle risorse naturali.

Tutti i corpi idrici di ciascuno Stato membro dovranno raggiungere, entro il 2015, il "buono stato" ambientale. Lo stato dei corpi idrici sotterranei viene definito in due classi, "buono" e "scarso", in funzione delle condizioni peggiori che il corpo idrico assume tra stato chimico e stato quantitativo. Ne consegue che l'obiettivo per i corpi idrici sotterranei, entro il 2015, è il raggiungimento dello stato di "buono" sia per lo stato quantitativo sia per lo stato chimico.

Per le acque sotterranee è stata emanata anche cosiddetta Direttiva figlia (2006/118/CE) inerente la "Protezione delle acque sotterranee dall'inquinamento e dal deterioramento", recepita in Italia dal D.Lgs. 30/09, che a sua volta integra e modifica il D.Lgs. 152/06. In esso sono riportati: criteri di identificazione e caratterizzazione dei corpi idrici sotterranei; standard di qualità per alcuni parametri chimici e valori soglia per altri parametri necessari alla valutazione del buono stato chimico delle acque sotterranee; criteri per individuare e per invertire le tendenze significative e durature all'aumento dell'inquinamento e per determinare i punti di partenza per dette inversioni di tendenza: criteri per la classificazione dello stato quantitativo: modalità per la definizione dei programmi di monitoraggio.

La qualità delle acque sotterranee è rappresentata dai seguenti indicatori: *Indice di qualità Stato Chimico delle Acque Sotterranee (SCAS)*, *Indice Stato Quantitativo delle Acque Sotterranee (SQUAS)*.

Nel quadro Q9.1c sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Q9.1a: QUADRO DELLE CARATTERISTICHE INDICATORI QUALITÀ DELLE ACQUE MARINO COSTIERE E DI TRANSIZIONE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Classificazione delle acque di balneazione	Valutare lo stato di qualità delle acque di balneazione, in relazione ai fattori di contaminazione fecale e, quindi, igienico-sanitari. Oltre a consentire una stima indiretta dell'efficacia dei sistemi di trattamento delle acque reflue, valutando nel tempo l'efficacia di eventuali misure di risanamento adottate	S	Direttiva 2006/7/CE D.Lgs. 116/2008
Concentrazione Ostreopsis ovata	Valutare la presenza della microalga e l'andamento della sua proliferazio- ne e del possibile danno all'ambiente marino bentonico e alle acque di bal- neazione	SI	Direttiva 2000/60/CE Direttiva 2008/56/EC D.Lgs. 152/2006 D.Lgs. 116/2008 DM 30 marzo 2010 D.Lgs. 190/2010
Acque marino costiere – Elemento di qualità biologica Macroinvertebrati bentonici M-AMBI-CW ^a	Classificare lo stato di qualità dei cor- pi idrici marini e di transizione, utiliz- zando l'elemento di qualità biologica "macroinvertebrati bentonici"	S	D.Lgs. 152/2006 e smi
Acque marino costiere – Elemento di qualità biologica Macroalghe CARLIT ^a	Quantificare, mediante l'elemento di qualità biologica Macroalghe, lo stato ecologico del corpo idrico marino - costiero tramite semplici calcoli	S	D.Lgs. 152/2006; DM 56/2009
Acque marino costiere – Elemento di qualità biologica Angiosperme Posidonia oceanica – Indice PREI ^a	Formulare un giudizio di qualità ecologica per gli ambienti marino costieri attraverso l'utilizzo dell'Elemento di Qualità Biologica (EQB) Posidonia oceanica, integrando nel tempo gli effetti di differenti cause di alterazioni fisiche, chimiche e biologiche, indotte da agenti inquinanti nelle acque e nei sedimenti, o da significative alterazioni fisico-morfologiche del tratto costiero	S	D.Lgs. 152/2006
Acque marino costiere – Elemento di qualità biologica Clorofilla "a"	Fissare gli obiettivi di qualità da man- tenere e/o raggiungere. Stabilire rela- zioni tra i carichi di nutrienti gravanti sui sistemi costieri e la risposta di quest'ultimi in termini di produzione di biomassa fitoplanctonica	S/I	D.Lgs. 152/2006

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Stato chimico delle acque marino - costiere	Classificare lo stato di qualità chi- mica dei corpi idrici marino costieri valutando la presenza di sostanze inquinanti "prioritarie" e "pericolose prioritarie", ai fini della classificazione del "buono stato chimico"	S	D.Lgs. 152/2006 DM 260/2010 76/464/EEC Direttiva 2000/60/CE
Stato ecologico delle acque marino costiere	Classificare lo stato di qualità dei corpi idrici marino costieri utilizzando degli Elementi di Qualità Biologica (EQB) macroinvertebrati bentonici (indice M-AMBI), angiosperme (PREI), macroalghe (indice CARLIT) e fitoplancton (Chla)	S	D.Lgs. 152/2006 DM 260/2010 Direttiva 2000/60/CE
Acque di transizione – Elemento di qualità biologica Macroinvertebrati bentonici M-AMBI-TW ^a	Classificare lo stato di qualità dei corpi idrici di transizione utilizzando l'elemento di qualità biologica "ma- croinvertebrati bentonici"	S	D.Lgs. 152/2006
Macroinvertebrati bentonici - BITS-TW ^a	Classificare lo stato di qualità dei corpi idrici di transizione utilizzando l'elemento di qualità biologica "ma- croinvertebrati bentonici"	S	D.Lgs. 152/2006
Stato chimico delle acque di transizione	Classificare lo stato di qualità chimica dei corpi idrici di transizione valutan- do la presenza di sostanze inquinanti "prioritarie" e "pericolose prioritarie", ai fini della classificazione del "buono stato chimico"	S	D.Lgs. 152/2006 DM 260/2010 76/464/EEC Direttiva 2000/60/CE
Stato ecologico delle acque di transizione	Classificare lo stato di qualità dei corpi idrici di transizione utilizzando gli Elementi di Qualità Biologica (EQB) macroinvertebrati bentonici (indice M-AMBI) e macrofite (macroalghe + angiosperme – indice MAQI)	S	D.Lgs. 152/2006; Direttiva 2000/60/CE
Eutrofizzazione	Sintetizzare le informazioni relative ai livelli di nutrienti nella colonna d'acqua e collegarle agli effetti dovuti all'arricchimento dei nutrienti, quali la concentrazione di clorofilla "a" nella colonna d'acqua, la trasparenza e le condizioni di ipossia o anossia nelle acque di fondo	SI	D.Lgs. 190/2010 Direttiva 2008/56/CE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Concentrazione di contami- nanti e loro effetti	Valutare lo stato di qualità dell'ambiente marino ed eventuali superamenti degli standard di qualità ambientali (EQS) individuati dalla Direttiva 2000/60/CE e dalle direttive figlie, Direttiva 2008/105/EC e Direttiva 2013/39/UE. Valutare l'impatto sulla salute umana compatibilmente alla concentrazione di contaminanti nei prodotti ittici destinati al consumo umano	I P S	Direttiva 2008/56/CE
^a Nella presente edizione, l'indica	atore non è stato aggiornato. La relativa sc	heda è coi	nsultabile nel DB http://annuario.isprambiente.it

Q9.1b: QUADRO DELLE CARATTERISTICHE INDICATORI QUALITÀ DELLE ACQUE SUPERFICIALI INTERNE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Indice di qualità stato chimico delle acque superficiali - SQA	Consente di derivare una classe di qualità per gli inquinanti specifici per la definizione dello stato chimico, per le diverse tipologie di corpo idrico	S	D.Lgs. 152/2006 DM 260/2010 D.Lgs. 172/2015
Indice di qualità stato ecologi- co delle acque superficiali	Consente di derivare una classe di qualità per gli inquinanti specifici per la definizione dello stato ecologico per le diverse tipologie di corpi idrici	S	D.Lgs. 152/2006 DM 260/2010 DM 169/2016
Indice di qualità componenti biologiche dei fiumi - macrobenthos ^a	Consente di derivare una classe di qualità per gli organismi macroben- tonici per la definizione dello stato ecologico, per le diverse tipologie di corpo idrico fluviale	S	D.Lgs. 152/2006 DM 260/2010
Indice di qualità componenti biologiche dei fiumi - diatomee ^a	Consente di derivare una classe di qualità ecologica utilizzando gli orga- nismi fitobentonici per la definizione dello stato ecologico, per le diverse tipologie di corpo idrico fluviale	S	D.Lgs. 152/2006 DM 260/2010
Indice di qualità componenti biologiche dei fiumi - macrofite ^a	Consente la valutazione dello stato trofico dei corsi d'acqua	S	D.Lgs. 152/2006 DM 260/2010
Indice di qualità compo- nenti biologiche dei laghi - fitoplancton ^a	Consente di derivare una classe di qualità per il fitoplancton per la definizione dello stato ecologico, per le diverse tipologie di corpo idrico lacustre	S	D.Lgs. 152/2006 DM 260/2010

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Indice di qualità componenti chimico fisiche dei fiumi – LIMeco ^a	Consente di derivare una classe di qualità per i parametri chimico-fisici per la definizione dello stato ecologico per le diverse tipologie di corpo idrico fluviale	S	D.Lgs. 152/2006 DM 260/2010
Indice di qualità componenti chimico fisiche dei laghi – LTLeco ^a	Consente di derivare una classe di qualità per il livello trofico dei laghi per la definizione dello stato ecologico per le diverse tipologie di corpo idrico lacustre	S	D.Lgs. 152/2006 DM 260/2010
^a Nella presente edizione, l'indica	atore non è stato aggiornato. La relativa sc	heda è coi	nsultabile nel DB http://annuario.isprambiente.it

Q9.1c: QUADRO DELLE CARATTERISTICHE INDICATORI QUALITÀ DELLE ACQUE SOTTERRANEE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Indice di qualità Stato Chimico delle Acque Sotterranee (SCAS)	Definire, dal punto di vista chimico, il grado di compromissione degli acquiferi per cause antropiche rispetto alle condizioni naturali. È utile per individuare gli impatti antropici e le criticità ambientali nei corpi idrici sotterranei al fine di indirizzare le azioni di risanamento, attraverso gli strumenti di pianificazione, in modo da rimuovere le cause e/o prevenire il peggioramento dello stato chimico e di conseguenza permettere il raggiungimento degli obiettivi di qualità fissati dalla normativa	S	D.Lgs. 152/06 D.Lgs. 30/09 Decreto Ambiente 6 luglio 2016
Indice Stato Quantitativo delle Acque Sotterranee (SQUAS)	Evidenziare in modo sintetico le zone sulle quali insiste una criticità ambientale dal punto di vista quantitativo della risorsa idrica sotterranea, in termini di equilibrio di bilancio idrogeologico dell'acquifero ovvero della capacità di sostenere sul lungo periodo gli emungimenti (pressioni antropiche) che su di esso insistono in rapporto ai fattori di ricarica	S	D.Lgs. 152/06 D.Lgs. 30/09

BIBLIOGRAFIA

ANPA, Verso l'Annuario dei dati ambientali: Primo popolamento degli indicatori SINAnet, 5/2001, Roma 2001

APAT, 2007, Metodi Biologici per le acque. Parte I. Manuali e linee guida

Avancini, M., Cicero, A.M., Di Girolamo I., Innamorati M., Magaletti, E., Sertorio Zunini, T. (eds.), 2006. *Guida al riconoscimento del plancton nei mari italiani*. Vol. I – Fitoplancton, 503 pp. Ministero dell'Ambiente e della Tutela del Territorio e del Mare – ICRAM

Ballesteros E., Torras X., Pinedo S, García M., Mangialajo L., Torres de M., 2007. *A new methodology based on littoral community cartography for the implementation of the European Water Framework Directive*. Marine Pollution Bulletin. 55: 172-180

Borja, A., Franco, J., Perez, V., 2000. A marine biotic index to establish the ecological quality of soft bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40 (12), 1100–1114.

Cataudella S., Tancioni L., Cannas A., 2001. *L'acquacoltura estensiva. In Acquacoltura Responsabile – Verso le produzioni acquatiche del terzo millennio* (a cura di S. Cataudella e P. Bronzi), Unimar-Uniprom: 283-308

CNR ISE, 2011, Indici per la valutazione della qualità ecologica dei laghi. Report CNR ISE, 03/11, pp.154 CNR IRSA, 2007, Macroinvertebrati acquatici e direttiva 2000/60/EC (WFD), Notiziario IRSA 1/2007, pp.114

Franco A., Torricelli P., Franzoi P., 2009. A habitat-specific fish-based approach to assess the ecological status of Mediterranean coastal lagoons. Mar Poll. Bull 58: 1704-1717

Franzoi P., Franco A., Torricelli P., 2010, *Fish assemblage diversity and dynamics in the Venice Lagoon.* Rendiconti Lincei, in press

Gobert, S., Sartoretto S., Rico-Raimondino, V., Andral, B., Chery, A., Lejeune, P., Boissery, P., 2009. Assessment of the ecological status of Mediterranean French costal waters as required by the Water Framework Directive using the Posidonia oceanica Rapid Easy Index: PREI. Marine Pollution Bulletin 58, 1727 – 1733

Harrison, T.D., Whitfield, A.K., 2004. A multi-metric fish index to assess the environmental condition of estuaries. Journal of Fish Biology 65, 683–710

ISPRA, Annuario dei dati ambientali, vari anni

ISPRA, Quaderno Metodologico sull'elemento biologico Macroalghe e sul calcolo dello stato ecologico secondo la metodologia CARLIT, Roma, 2008

ISS, 2009, Metodo per la valutazione dello stato ecologico delle acque correnti: comunità diatomiche, Rapporti ISTISAN 09/19

Magaletti, E., Ghetti, A., Cabrini, M. e M. Pompei, 2001. *Fitoplancton. In: Metodologie analitiche di rifer-imento. Programma di monitoraggio per il controllo dell'ambiente marino costiero (triennio 2001-2003).* Ministero dell'Ambiente e della Tutela del Territorio, Servizio Difesa Mare – ICRAM

Magaletti, E., Pompei, M, Giovanardi, F., 2005. *Phytoplankton Determinations*. In: UNEP/MAP/MED POL: Samplingand Analysis Techniques for the Eutrophication Monitoring Strategy of MED POL. MAP Technical Reports Series n. 163. UNEP/MAP, Athens

Mistri M. e Munari C., 2008. *BITS: a SMART indicator for soft-bottom, non-tidal lagoons*. Marine Pollution Bulletin 56: 587-599

Muxika I., Borja A., Bald J., 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55 (2007) 16–29

Shannon, C.E., & Weaver, W., 1949. *The mathematical theory of communication*. Urbana: University of Illinois Press; www.azti.es

Soto-Galera, E., Diaz-Pardo, E., Lopez-Lopez, E., Lyons, J., 1998. Fish as indicators of environmental quality in the Rio Lerma Basin, Mexico. Aquatic Ecosystem Health and Management 1, 267–276

UNEP/MAP/MED POL, 2005, Sampling and Analysis Techniques for the Eutrophication Monitoring Strategy of MED POL. MAP Technical Reports Series n.163 UNEP/MAP. Athens

Utermöhl, H., 1958. Zur vervolkommung der qualitativen Phytoplankton metodik. Mitt. Int. Verein. Limnol. 9: 1-38

Whitfield, A.K., 1996. Fishes and the environmental status of South African estuaries. Fisheries Management and Ecology 3, 45-57

Whitfield, A.K., Elliott, M., 2002. Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. Journal of Fish Biology 61 (Suppl. A), 229-250

CLASSIFICAZIONE DELLE ACQUE DI BALNEAZIONE

DESCRIZIONE

La Direttiva 2006/7/CE relativa alla gestione della qualità delle acque di balneazione, recepita in Italia con il Decreto Legislativo 30 maggio 2008. n.116 e attuata con il Decreto del Ministero della salute 30 marzo 2010, prevede che a ogni acqua venga assegnata una classe di qualità (eccellente. buona, sufficiente e scarsa) L'indicatore riporta il numero di acque ricadenti in ciascuna classe. a livello nazionale e regionale, ed è elaborato sulla base delle "informazioni stagionali" (Tabella 2, Allegato F, DM 30 marzo 2010) che annualmente il Ministero della salute trasmette al SINTAI ai sensi dell'art. 6 del DM 30 marzo 2010. Nel calcolo dello status qualitativo, le acque sono considerate singolarmente senza tenere conto, cioè, di eventuali raggruppamenti effettuati da alcune regioni nei casi di acque contigue con caratteristiche uniformi (art. 7, comma 6, D.Lgs. 116/2008). Offre una descrizione orientativa dello stato qualitativo delle acque di balneazione a livello microbiologico, non fornendo, tuttavia, alcuna indicazione circa possibili impatti derivanti da fonti di inquinamento di altra natura.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'informazione risulta completa e rappresentativa per tutte le acque di balneazione nazionali.

OBIETTIVI FISSATI DALLA NORMATIVA

Il Decreto Legislativo 30 maggio 2008, n.116, che ha recepito la Direttiva 2006/7/CE, prevede che entro la fine della stagione balneare 2015, tutte le acque di balneazione siano classificate almeno "sufficienti". Le regioni, inoltre, sono tenute ad adottare misure appropriate per aumentare il numero delle acque di balneazione classificate di qualità "eccellente" o "buona".

STATO E TREND

Per quanto concerne lo stato, per la stagione balneare 2014 sono state identificate dalle regioni 5.507 acque di balneazione, di cui 4.864 acque costiere (marine e di transizione) e 643 interne (fluviali e lacustri) e a ciascuna acqua è stata attribuita una classe di qualità. A livello nazionale, le acque classificate come almeno sufficienti sono pari al 94,4%, con una netta prevalenza delle acque di classe eccellente (88% del totale). Il restante è rappresentato da acque "non classificabili" (4%), per le quali non è possibile esprime un giudizio di qualità, e scarse (2%). Non è possibile stabilire un trend poiché i dati sono ancora insufficienti, essendo stato il 2013 il primo anno di classificazione ai sensi della Direttiva 2006/7/CE. Infatti, con la stagione balneare 2013 si è concluso l'ultimo dei quattro anni di monitoraggio necessari, secondo la regolamentazione della nuova direttiva, per effettuare una prima classificazione.

COMMENTI A TABELLE E FIGURE

Come si evince dalla Figura 9.1, il dato che emerge è positivo, infatti l'88% delle acque sono state classificate come eccellenti. Tuttavia sono ancora presenti acque di classe scarsa e acque non classificabili, per le quali non è possibile esprimere un giudizio di qualità. Si tratta di acque in cui, nella maggior parte dei casi, sono state riscontrate anomalie nella frequenza del campionamento e, pertanto, non offrono un numero utile di campioni idonei per la classificazione. Complessivamente prevale il numero delle acque di classe eccellente (Figura 9.2), anche se sono solo 4 le regioni/province autonome (Molise, Umbria, Veneto, Bolzano) con tutte le acque in classe eccellente o buona, mentre nelle restanti si registrano anche acque in classe sufficiente e scarsa.

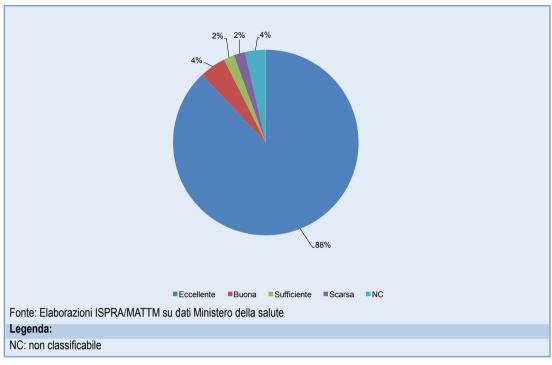


Figura 9.1: Classificazione delle acque di balneazione (2011-2014)

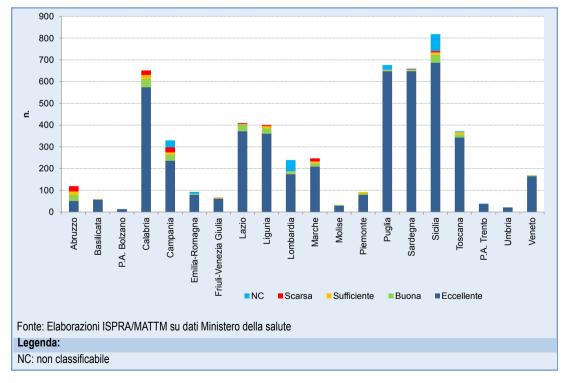


Figura 9.2: Classificazione regionale delle acque di balneazione (2011-2014)

CONCENTRAZIONE OSTREOPSIS OVATA

DESCRIZIONE

L'indicatore misura l'andamento della concentrazione e distribuzione di Ostreopsis cf. ovata lungo le aree marino-costiere italiane e contribuisce alla valutazione ambientale delle acque di balneazione effettuata mediante la redazione dei "Profili delle acque di balneazione" (DM 30/3/2010, All. E). È altresì associabile al potenziale rischio tossico e nocivo sulle biocenosi marine bentoniche e sull'uomo: l'Allegato C del DM 30/3/2010 riporta, infatti, una soglia di allerta, corrispondente a una concentrazione nella colonna d'acqua pari a 10.000 cellule per litro, oltre la quale è prevista l'adozione di misure di tutela. Ostreopsis ovata è un dinoflagellato potenzialmente tossico rilevato in Italia a partire dal 1989, con abbondanze molto elevate (fioriture), soprattutto nel comparto bentonico. Le fioriture possono comportare casi di sofferenza o mortalità di organismi marini bentonici con conseguente peggioramento qualitativo dell'acqua. Esse si manifestano durante la stagione estiva e autunnale, spesso con la concomitante presenza di pellicole mucillaginose di colore bruno-rossastro a ricoprire diffusamente fondi e substrati duri e presenza di flocculi sospesi nella colonna d'acqua. Le condizioni che sembrano favorire l'aumento della concentrazione sono: bassa profondità dell'acqua, presenza di substrati rocciosi e/o macroalghe, scarso idrodinamismo dovuto alla morfologia naturale della costa o alla presenza di pennelli e barriere artificiali per il contenimento dell'erosione costiera, condizioni meteo-marine di grande stabilità, temperature delle acque superiori a 25 °C nel Mar Tirreno e tra 20 °C e 23 °C nel Mar Adriatico.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'informazione è accurata, completa e confrontabile per tutte le regioni costiere che hanno effettuato il monitoraggio nel 2015.

OBIETTIVI FISSATI DALLA NORMATIVA

A partire dal 2006, a seguito della Direttiva Tossiche Programma Alahe del Ministro dell'ambiente (GAB/2006/6741/B01), ISPRA ha attivato con le ARPA costiere la linea di lavoro "Fioriture algali di Ostreopsis ovata lungo le coste italiane" al fine di individuare elementi per una strategia comune nazionale di campionamento. analisi, monitoraggio, sorveglianza, informazione. comunicazione e gestione del fenomeno "alghe tossiche". Parallelamente il Ministero della salute ha predisposto le linee guida per la "Gestione del rischio associato alle fioriture di Ostreopsis ovata nelle coste italiane" (maggio 2007). Poiché uno degli scopi della Direttiva 2006/7/CE è di preservare. proteggere e migliorare la qualità dell'ambiente e di proteggere la salute umana integrando la Direttiva 2000/60/CE, come pure nel suo recepimento italiano (D.Lgs. 152/2006), le attività su Ostreopsis sono risultate utili per le valutazioni ambientali. A questo scopo le linee guida e i protocolli operativi sono contenuti, rispettivamente, nell'Allegato C e nell'Allegato E "Profili delle acque di balneazione" del decreto attuativo del recepimento italiano della direttiva (D.Lgs. 116/2008 e decreto attuativo DM 30 marzo 2010). L'indicatore inoltre, è stato utilizzato per la Valutazione Iniziale ai sensi della Direttiva 2008/56/EC (Marine Strategy Framework Directive) recepita con il D.Lgs. 190/2010.

STATO E TREND

Il monitoraggio 2015, effettuato in 13 regioni costiere su 15, ha permesso di valutare l'andamento spazio temporale dell'indicatore. Il trend di concentrazione rispetto al 2014 è negativo in quanto si assiste a un aumento dei siti positivi e delle abbondanze che superano le 10.000 cell/l, anche considerando il valore percentuale. Sono presenti due hot spot nelle regioni Marche e Puglia in cui la concentrazione di Ostreopsis cf. ovata è elevata soprattutto nei mesi di luglio-agosto (Puglia) e settembre (Marche). Nel 2015 sono stati osservati episodi di sofferenza a carico di macroalghe, gasteropodi, mitili, patelle e solo nelle aree più impattate e durante il picco della fioritura.

COMMENTI A TABELLE E FIGURE

Nel 2015, le attività di monitoraggio volte a valutare la presenza della microalga bentonica potenzialmente tossica Ostreopsis cf. ovata, sono state effettuate lungo i litorali di 13 regioni, ad eccezione della Basilicata e del Molise (Tabella 9.1). Le indagini sono state condotte dalle ARPA sia ai fini delle attività di controllo delle acque destinate alla balneazione in adempimento alla normativa vigente (D.Lgs. 116/08 e DM 30/3/2010), sia nell'ambito di progetti ARPA/regione, oppure come attività rientranti nel monitoraggio delle specie potenzialmente tossiche nelle acque destinate alla molluschicoltura (coste del Friuli-Venezia Giulia). Sono state individuate e monitorate 217 stazioni di campionamento che presentano caratteristiche idromorfologiche idonee allo sviluppo della microalga (presenza di macroalghe, substrati rocciosi, acque poco profonde, scogliere naturali e barriere frangiflutto o pennelli dal moderato idrodinamismo) o che hanno fatto registrare negli anni precedenti presenza e/o fioriture della microalga. Il monitoraggio è stato eseguito generalmente nel periodo giugno - settembre 2015, anticipato ad aprile nel Lazio a maggio in Emilia-Romagna e Friuli-Venezia Giulia, in pochi casi concluso a ottobre, e in un caso a novembre (Veneto). La freguenza del campionamento quindicinale e mensile è stata intensificata nei casi di superamento del valore di riferimento (10.000 cell/l). Sono stati prelevati campioni di acqua e macroalghe secondo metodologie condivise (ISPRA, Quaderni Ricerca Marina n. 5, 2012), e di organismi marini eduli (ricci e mitili) in Campania, per le analisi quali-quantitative della tossina e per le analisi tossicologiche. Sono stati, inoltre, rilevati i parametri chimico-fisici dell'acqua e registrati eventuali stati di sofferenza a carico di organismi marini (ricci, mitili, stelle marine, pesci, macroalghe). Nel 2015 l'Ostreopsis cf. ovata è stata riscontrata in 10 regioni costiere, mentre risulta assente in tutti i campioni prelevati lungo le coste dell'Abruzzo, Emilia-Romagna e Veneto (Tabella 9.1 e Figura 9.3). Ostreopsis cf. ovata è presente almeno una volta in 124/217 stazioni (57,15%), considerando tutte le tipologie di matrici campionate (Tabella 9.1). Questo vuol dire che i siti in cui si rileva la presenza della microalga essendo "a potenziale rischio di proliferazione algale tossica" sono da segnalare nel profilo ambientale delle acque di balneazione da sorvegliare attraverso

il monitoraggio (DM 30/3/2010). Inoltre, il valore di riferimento sanitario pari a 10.000 cell/l è stato superato almeno una volta in 41 siti di monitoraggio (38,32%). In generale, nelle aree tirreniche e ioniche le prime rilevazioni (a basse concentrazioni) si riscontrano a giugno mentre le densità più elevate si sono distribuite tra giugno e settembre. Nel Sud Adriatico, le prime rilevazioni si presentano a giugno in Puglia e ad agosto in Friuli-Venezia Giulia e Marche, mentre le massime concentrazioni tra luglio e agosto (Puglia 6.585.252 cell/l con il metodo della siringa) e a settembre (Marche con 2.424.000 cell/l e Friuli-Venezia Giulia 518.788 cell/g). Episodi di fioriture intense e ricorrenti si sono verificati in aree già individuate negli anni precedenti come hot spot (Marche - stazione Passetto ascensore). Queste condizioni hanno innescato la fase di allarme seguita da un'ordinanza di chiusura alla balneazione e da azioni di informazione mediante segnaletica collocata nella zona non idonea e la pubblicazione dei bollettini con gli esiti analitici sul sito ARPAM. Le fioriture si sono manifestate spesso con la concomitante presenza di pellicole mucillaginose di colore bruno-rossastro a ricoprire diffusamente fondi e substrati duri, presenza di flocculi sospesi nella colonna d'acqua e schiume superficiali. Sulla base dei dati rilevati, la durata della fioritura varia da pochi giorni fino 7-10 giorni ma dipende comunque dalle condizioni ambientali che la favoriscono e la mantengono. In tutto il periodo di monitoraggio non sono stati segnalati casi sintomatici di intossicazione riconducibili alle fioriture di Ostreopsis cf. ovata. Nel database Annuario sono disponibili i risultati dei monitoraggi effettuati nelle diverse regioni costiere.

Tabella 9.1: Presenza di Ostreopsis cf. ovata lungo le coste italiane (2015)

Siti di Siti con presenza di monitoraggio Ostreopsis cf. ovata		Siti con presenza di Ostreopsis cf. ovata	Siti con abbodanza ≥10.000 cell/l	
	n.	%	n.	
20	0	0	0	
24	12	50	1	
62	17	27,4	0	
4	0	0	0	
10	9	90	0	
9	9	100	5	
13	13	100	7	
3	1	33,3	1	
20	18	90	11	
4	4	100	3	
31	31	100	7	
13	10	76,9	6	
4	0	0	0	
217	124	57,2	41	
	20 24 62 4 10 9 13 3 20 4 11 13 4	monitoraggio Ostreopsis cf. ovata 20 0 24 12 62 17 4 0 10 9 9 9 13 13 3 1 20 18 4 4 31 31 13 10 4 0	monitoraggio Ostreopsis cf. ovata Ostreopsis cf. ovata 20 0 0 24 12 50 62 17 27,4 4 0 0 10 9 90 9 9 100 13 13 100 3 1 33,3 20 18 90 4 4 100 31 31 100 13 10 76,9 4 0 0	

Fonte: Elaborazione ISPRA su dati delle ARPA costiere

Legenda:

/ monitoraggio non effettuato

Figura 9.3: Distribuzione dei punti di campionamento, presenza e fioriture di *Ostreopsis cf. ovata* nel monitoraggio 2015

ACQUE MARINO COSTIERE ELEMENTO DI QUALITÀ BIOLOGICA CLOROFILLA "a"

DESCRIZIONE

La clorofilla è un indicatore primario di biomassa fitoplanctonica. Come tale risulta sensibile alle variazioni dei livelli trofici determinati dagli apporti dei carichi di nutrienti (N e P), provenienti dai bacini afferenti alla fascia costiera in esame.

Il parametro clorofilla viene comunemente misurato per fluorimetria, mediante uso di sonda multiparametrica. In questo modo, i risultati delle misure possono essere presentati graficamente come profili verticali lungo la colonna d'acqua.

La disponibilità di nutrienti, nella loro forma minerale disciolta, produce una risposta da parte del sistema costiero in termini di incremento della produzione primaria. Il ruolo fondamentale del parametro clorofilla consiste nel documentare questo incremento. In questo senso la clorofilla cessa di essere semplicemente il pigmento fotosintetico contenuto nei cloroplasti, gli organelli presenti in ogni cellula fitoplanctonica, e diventa il più importante tra gli indicatori trofici. Sebbene le relazioni funzionali tra clorofilla e biomassa fitoplanctonica autotrofa (in termini di n. di cellule/L, peso, ecc.), siano di tipo complesso, questo parametro è tuttavia l'unico indicatore diretto di biomassa fitoplanctonica, facilmente misurabile e largamente monitorato nei programmi di controllo delle acque costiere.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	1	1

In generale, la qualità delle informazioni relativa a questo indicatore è buona e congruente con le altre informazioni disponibili per le aree costiere indagate (apporti fluviali, variazioni della salinità, concentrazione di nutrienti).

OBIETTIVI FISSATI DALLA NORMATIVA

In accordo al D.Lgs. 152/2006, che prevede il monitoraggio biologico ai sensi della Direttiva 2000/60/CE, e il successivo DM 260/2010 che

definisce i criteri di classificazione dello stato ecologico, ogni corpo idrico superficiale, incluse le acque costiere, deve raggiungere lo stato di qualità ambientale "buono" entro il 2015.

STATO E TREND

Dall'esame dei dati emerge che più del 70% delle stazioni costiere classificate ricade nello stato "elevato", solo il 15% ricade nello stato "sufficiente. Tuttavia, l'indicatore non è ancora completo, pertanto non si assegna l'icona di Chernoff.

COMMENTI A TABELLE E FIGURE

Nel seguito si riportano le elaborazioni di sintesi effettuate sui dati accessibili sul SINTAI. Questi dati riguardano il giudizio di stato ecologico delle acque costiere per l'EQB Fitoplancton, basato sui valori assunti dalla clorofilla. Al momento il quadro complessivo è rappresentato nelle Tabelle 9.2 e 9.3. In particolare, la Tabella 9.2 riporta per ciascuna regione, la suddivisione delle stazioni di misura e campionamento per macrotipo, a seconda della stabilità della colonna d'acqua. La Tabella 9.3 mostra invece la suddivisione delle stazioni per classe di stato ecologico, con l'anno di riferimento. Non tutte le regioni costiere sono state considerate. I dati elaborati si riferiscono, infatti. solo alle stazioni appartenenti a quelle regioni che hanno formalizzato, in maniera completa, l'invio delle informazioni sulla classificazione dello stato ecologico dell'EQB Fitoplancton acque costiere, al SINTAI. Nel complesso, il quadro emergente relativo alla classificazione di questo EQB mostra (Figura 9.4) che più del 70% delle stazioni costiere classificate ricade nello stato "elevato", solo il 15% ricade nello stato "sufficiente". Il giudizio di stato "sufficiente" si riferisce soprattutto alle stazioni costiere dell'Alto Adriatico (Veneto, Emilia-Romagna e Marche), appartenenti ai macrotipi I e II (Alta e Media Stabilità). Questo conferma il ruolo diretto del fiume Po e degli altri bacini afferenti all'Alto Adriatico nel mantenere elevati i livelli trofici. Con frequenza minore (Tabella 9.3), i casi di stato ecologico "sufficiente" si verificano tuttavia anche nelle aree costiere delle regioni tirreniche, a dimostrazione dell'importanza degli apporti di nutrienti da terra, provenienti da corsi d'acqua minori che, sia pur localmente, possono determinare un innalzamento dei livelli trofici. Infine la rilevante percentuale di casi ricadenti nello stato "elevato" è coerente con le caratteristiche generali di oligo-trofia, tipiche delle acque costiere tirreniche e del Basso Adriatico.

Tabella 9.2: EQB Fitoplancton acque costiere. Stazioni di misura e campionamento per macrotipo

Regione		Tipologia acque costiere		
	Tipo I Alta Stabilità	Tipo Ila Media Stabilità	Tipo III W Bassa Stabilità	
		n.		
Emilia-Romagna	14	0	0	
Friuli-Venezia Giulia	8	4	4	
Lazio	2	9	1	
Liguria	0	1	25	
Marche	0	22	0	
Puglia	0	14	56	
Sicilia	0	0	33	
Toscana	-	-	-	
Veneto	9	2	0	
TOTALE	33	52	119	
%	16,2	25,5	58,3	
Fonte: EIONET-SOE				

Tabella 9.3: EQB Fitoplancton acque costiere - Stazioni di misura e campionamento per classe di stato

Regione	Stato ecologico			Anno	
	Elevato	Buono	Sufficiente		
		n.			
Emilia-Romagna	4	5	5	2013	
Friuli-Venezia Giulia	16	0	0	2013	
Lazio	7	3	2	2013	
Liguria	18	7	1	2013	
Marche	4	5	13	2013	
Marche	6	4	12	2014	
Puglia	68	1	1	2013	
Sicilia	28	4	1	2013	
Toscana	17	2	1	2013	
Veneto	8	1	2	2012	
Veneto	6	4	1	2013	
TOTALE	182	36	39		
%	70,8	14	15,2		
Fonte: EIONET-SOE					

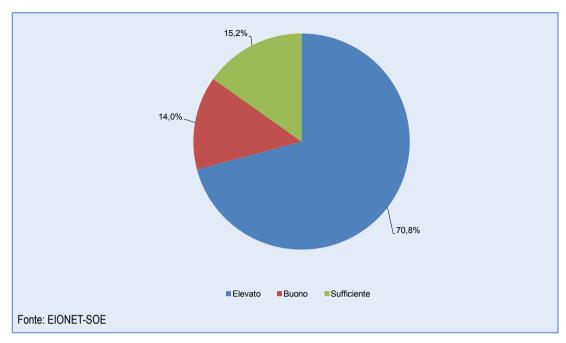


Figura 9.4: Elemento di Qualità Biologica (EQB) Fitoplancton delle acque costiere: risultati complessivi della classificazione

STATO CHIMICO DELLE ACQUE MARINO COSTIERE

DESCRIZIONE

Con l'attuazione della Direttiva Quadro sulle Acque (WFD 2000/60/CE), l'Unione Europea ha creato le basi per un concetto di protezione delle acque che fornisce una visione olistica di tutte le acque del bacino idrografico. Un importante obiettivo della Direttiva Quadro sulle Acque è di raggiungere il "buono" stato dei corpi idrici entro il 2015 (o. nel caso di una proroga entro il 2027). La classificazione chimica prevista dalla direttiva fa riferimento a quanto riportato nel primo aggiornamento dei Piani di gestione dei bacini idrografici per gli otto Distretti individuati sul territorio nazionale con l'eccezione del Distretto idrografico della regione Sicilia (Piani di gestione dei distretti II ciclo). La definizione dello "stato chimico" delle acque marino costiere (buono o non buono) si basa sulla valutazione della presenza di sostanze inquinanti, da rilevare nelle acque, nei sedimenti o nel biota, indicate come "prioritarie" e "pericolose prioritarie" con i relativi Standard di Qualità Ambientale (SQA), che non devono essere superati nei corpi idrici ai fini della classificazione del "buono stato chimico".

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	3	1

L'indicatore è rilevante perché è previsto dalla normativa nazionale e risponde in modo significativo alle pressioni di origine antropica. Relativamente all'accuratezza, a fronte dell'affidabilità della fonte (Piani di Gestione dei distretti Idrografici), essendo il primo ciclo di *reporting* in cui è presente la classificazione chimica dei corpi idrici, si dispone solo della classificazione relativa al periodo 2010-2016. Infine le metodologie di classificazione sono condivise tra tutti i Distretti italiani.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2000/60/CE prevede il raggiungimento del "buono" stato dei corpi idrici entro il 2015 (o, nel caso di una proroga entro il 2027).

STATO E TREND

In base ai dati disponibili non è ancora possibile individuare un trend, tuttavia si evidenziano situazioni di elevata criticità per i Distretti: Padano, dell'Appennino settentrionale. dell'Appennino meridionale (Bacino della Campania e Bacino della Puglia) più del 50% (esattamente il 50% per il distretto del Po) dei corpi idrici marino costieri è in stato chimico "non buono". Per i distretti Appennino meridionale, Alpi orientali e Sardegna, rispettivamente il 69%, 62% e 53% dei corpi idrici ricade nella classe "buono" stato chimico. Tuttavia per i distretti Appennino meridionale e Sardegna non si conosce lo stato chimico del 19% e del 14% dei corpi idrici rispettivamente. Le criticità per lo stato chimico sono anche amplificate dall'applicazione del criterio "one out, all out", in base al quale se un solo contaminante appartenente alla lista di priorità monitorata per la valutazione dello stato non rispetta i limiti. lo stato chimico è classificato come "non buono".

COMMENTI A TABELLE E FIGURE

Lo stato chimico delle acque marino costiere (Figura 9.5) presenta forti criticità su tutto il territorio nazionale con percentuali dei corpi idrici in stato "non buono" vicini o superiori al 40%, fatto salvo i Distretti della Sardegna e dell'Appennino centrale in cui i valori scendono al 33% e al 12% rispettivamente, ma nei quali si registrano percentuali non trascurabili di corpi idrici non classificati (14% e 19% rispettivamente).

Per il Distretto Appennino meridionale sono disponibili i dati delle sole regioni Campania e Puglia.

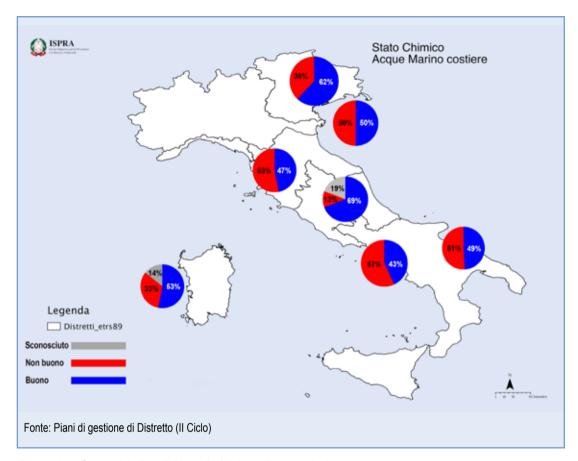


Figura 9.5: Stato chimico dei corpi idrici marino costieri

STATO ECOLOGICO DELLE ACQUE MARINO COSTIERE

DESCRIZIONE

Lo stato ecologico finale di un corpo idrico è assegnato in base al più basso dei valori riscontrati tra quelli ottenuti dalle componenti monitorate, secondo il principio del "one out - all out", sintetizzato, poi, attraverso un giudizio basato su cinque classi di qualità: "elevato", "buono", "sufficiente", "scarso" e " cattivo".

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	3	1

L'indicatore è rilevante perché è previsto dalla normativa nazionale e risponde in modo significativo alle pressioni di origine antropica. Relativamente all'accuratezza, a fronte dell'affidabilità della fonte (Piani di Gestione dei Distretti Idrografici), essendo il primo ciclo di *reporting* in cui è presente la classificazione ecologica dei corpi idrici, si dispone solo della classificazione relativa al periodo 2010-2016. Infine, le metodologie di classificazione sono condivise tra tutti i distretti italiani.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2000/60/CE prevede il raggiungimento del "buono" stato ecologico dei corpi idrici entro il 2015 (o, nel caso di una proroga entro il 2027).

STATO E TREND

In base ai dati disponibili non è ancora possibile individuare un *trend*, tuttavia si evidenziano criticità nell'ambito del Distretto dell'Appennino settentrionale, del Distretto Padano e della regione Puglia (Distretto Appennino meridionale).

COMMENTI A TABELLE E FIGURE

La classificazione ecologica fa riferimento a quanto riportato nel primo aggiornamento dei Piani di gestione dei bacini idrografici per gli otto distretti individuati sul territorio nazionale con l'eccezione

del Distretto idrografico della regione Sicilia (Piani di gestione dei Distretti II ciclo). Per il Distretto idrografico dell'Appennino meridionale disponibili i dati delle sole regioni Puglia e Campania. Dall'esame della Figura 9.6, si evidenziano delle potenziali criticità per il Distretto Padano, ove il 100% dei corpi idrici è in stato "sufficiente", e per i distretti dell'Appennino settentrionale e per la Puglia ove circa la metà dei corpi idrici marini è in stato "sufficiente". Al contrario, nel Distretto delle Alpi orientali oltre il 90% dei corpi idrici costieri si trova in stato "buono", così come in Campania (82%) e nel Distretto Appennino centrale (79%). Il Distretto idrografico della Sardegna si distingue con il 64% di corpi idrici in stato "buono" e, unico fra tutti, presenta il 5% di corpi idrici in stato "elevato".

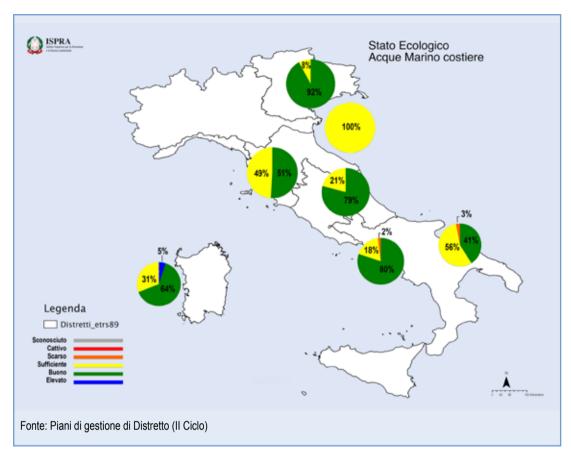


Figura 9.6: Stato ecologico dei corpi idrici marino costieri - Percentuale dei corpi idrici marino costieri nelle diverse classi di qualità ecologica nei Distretti idrografici

STATO CHIMICO DELLE ACQUE DI TRANSIZIONE

DESCRIZIONE

La definizione dello "stato chimico" delle acque di transizione (buono o non buono) si basa sulla valutazione della presenza di sostanze inquinanti, da rilevare nelle acque, nei sedimenti o nel biota, indicate come "prioritarie" e "pericolose prioritarie" con i relativi *Standard* di Qualità Ambientale (SQA), che non devono essere superati nei corpi idrici ai fini della classificazione del "buono stato chimico".

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	3	1

L'indicatore è rilevante perché è previsto dalla normativa nazionale e risponde in modo significativo alle pressioni di origine antropica. Relativamente all'accuratezza, a fronte dell'affidabilità della fonte (Piani di Gestione dei Distretti Idrografici), essendo il primo ciclo di *reporting* in cui è presente la classificazione chimica dei corpi idrici si dispone solo della classificazione relativa al periodo 2010-2016. Infine le metodologie di classificazione sono condivise tra tutti i Distretti italiani.

OBIETTIVI FISSATI DALLA NORMATIVA

Con l'attuazione della Direttiva Quadro sulle Acque (WFD 2000/60/CE), l'UE ha creato le basi per un concetto di protezione delle acque che fornisce una visione olistica di tutte le acque del bacino idrografico. Un importante obiettivo della Direttiva Quadro sulle Acque è di raggiungere il "buono stato" delle acque superficiali» entro il 2015 (o, nel caso di una proroga entro il 2027). Lo stato delle acque superficiali (tra cui le acque di transizione) è espressione complessiva dello stato di un corpo idrico, determinato dal valore più basso del suo stato ecologico e chimico.

STATO E TREND

Per il Distretto Appennino meridionale sono disponibili i dati delle sole regioni Campania e Puglia.

In base ai dati disponibili non è ancora possibile individuare un trend, tuttavia si evidenziano situazioni di elevata criticità: in particolare, per il 75% dei corpi idrici della Puglia (Distretto Appennino meridionale), per l'80% del Distretto Appennino settentrionale, per il 100% dei corpi idrici della Campania (Distretto Appennino meridionale) e il 55% dei corpi idrici della Sardegna, lo stato chimico ricade nella classe "non buono". Non si conosce. invece, lo stato per oltre il 20% dei corpi idrici delle acque di transizione del Distretto Sardegna e del Distretto delle Alpi orientali. Le criticità per lo stato chimico sono anche amplificate dall'applicazione del criterio "one out, all out", in base al quale se un solo contaminante appartenente alla lista di priorità monitorata per la valutazione dello stato non rispetta i limiti, lo stato chimico è classificato come "non buono"

COMMENTI A TABELLE E FIGURE

Per il Distretto delle Alpi orientali il 53% dei corpi idrici risulta in stato chimico "buono" a fronte del 25% in stato "non buono", tuttavia per il 22% dei corpi idrici non è stato dichiarato lo stato chimico. Il 75% delle lagune del Delta de Po, invece, è in stato chimico "buono". Per gli altri Distretti è stato definito "non buono" lo stato chimico dell'80% dei corpi idrici dell'Appennino settentrionale, del 75% di quelli della Puglia (Distretto Appennino meridionale), del 100% di quelli della Campania (Distretto Appennino meridionale) e del 55% del Distretto della Sardegna. Per quest'ultimo non è noto lo stato chimico per oltre il 20% dei corpi idrici (Figura 9.7).

Per il Distretto delle Alpi orientali il 53% dei corpi idrici risulta in stato chimico "buono" a fronte del 25% degli stessi in stato "non buono", tuttavia per questo Distretto per il 22% dei corpi idrici non è stato dichiarato lo stato chimico. Mentre il 75% delle lagune del Delta de Po sono in stato chimico "buono". Per gli altri Distretti è stato definito "non buono" lo stato chimico dell'80% dei corpi idrici dell'Appennino settentrionale, del 75% di quelli della Puglia, del 100% di quelli della Campania e del 55% di quelli del Distretto della Sardegna. Per quest'ultimo tuttavia non è noto lo stato chimico del 20% dei corpi idrici.

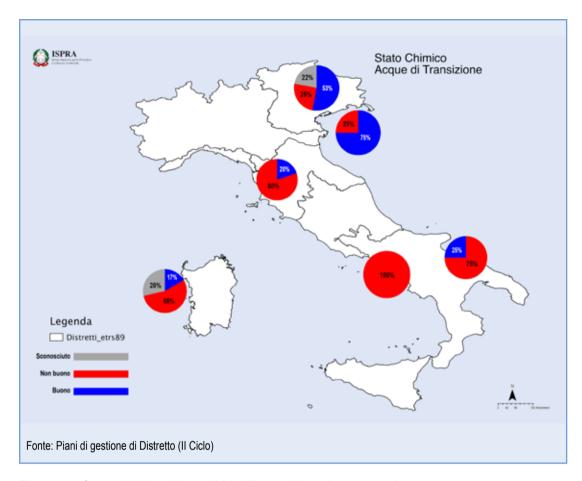


Figura 9.7: Stato chimico dei corpi idrici di transizione (lagune costiere)

STATO ECOLOGICO DELLE ACQUE DI TRANSIZIONE

DESCRIZIONE

Lo stato ecologico finale di un corpo idrico è assegnato in base al più basso dei valori riscontrati tra quelli ottenuti dalle componenti monitorate, secondo il principio del "one out - all out", sintetizzato, poi, attraverso un giudizio basato su cinque classi di qualità: "elevato", "buono", "sufficiente", "scarso" e " cattivo".

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	3	1

L'indicatore è rilevante perché è previsto dalla normativa nazionale e risponde in modo significativo alle pressioni di origine antropica. Relativamente all'accuratezza, a fronte dell'affidabilità della fonte (Piani di Gestione dei Distretti Idrografici), essendo il primo ciclo di in cui è presente la classificazione ecologica dei corpi idrici si dispone della classificazione relativa al periodo 2010-2016. Infine, le metodologie di classificazione sono condivise tra tutti i distretti italiani.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2000/60/CE prevede il raggiungimento del "buono" stato ecologico dei corpi idrici entro il 2015 (o, nel caso di una proroga entro il 2027).

STATO E TREND

In base ai dati disponibili non è ancora possibile individuare un *trend*, tuttavia si evidenziano situazioni critiche per le lagune del Delta del Po, per le lagune pugliesi e per quelle delle Alpi orientali.

COMMENTI A TABELLE E FIGURE

La classificazione ecologica fa riferimento a quanto riportato nel primo aggiornamento dei Piani di Gestione dei Bacini idrografici per gli otto distretti individuati sul territorio nazionale (Piani di gestione dei Distretti II ciclo), con l'eccezione del distretto

idrografico della Sicilia, per cui non sono disponibili i dati. Per guanto riguarda la classificazione delle acque di transizione, per il Distretto idrografico dell'Appennino meridionale le informazioni sono disponibili per le sole regioni Puglia e Campania. Dall'esame della Figura 9.8, si evidenziano forti criticità a livello nazionale, infatti, in quasi tutti i distretti, è elevata la percentuale dei corpi idrici che non raggiunge la sufficienza. In particolare, da segnalare il Delta del Po e la Puglia con. rispettivamente, il 100% e il 67%, dei corpi idrici ricadenti nelle classi "scarso" e "cattivo". Il Distretto della Sardegna, invece, presenta il 67% dei corpi idrici in stato "buono". Lacune conoscitive si rilevano nel Distretto idrografico delle Alpi orientali. con il 33% dei corpi idrici in stato "sconosciuto".

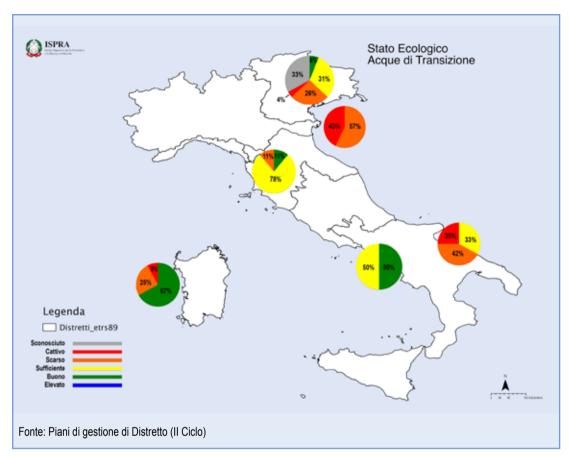


Figura 9.8: Stato ecologico dei corpi idrici di transizione (lagune costiere) - Percentuale dei corpi idrici di transizione (lagune costiere) nelle diverse classi di qualità ecologica

EUTROFIZZAZIONE

DESCRIZIONE

L'indicatore Eutrofizzazione è annoverato come Descrittore all'interno della Direttiva 2008/56/CE e fa parte degli 11 Descrittori per i quali deve essere raggiunto il Buono Stato Ambientale (*Good Environmental Status* o GES). La Direttiva richiede, per il Descrittore 5, che sia ridotta al minimo l'eutrofizzazione di origine umana, in particolare i suoi effetti negativi, come perdita di biodiversità, degrado dell'ecosistema, fioriture algali nocive e carenza di ossigeno nelle acque di fondo.

L'art. 8 del D.Lgs.190/2010 richiede di effettuare la valutazione iniziale dello stato ambientale attuale e dell'impatto delle attività antropiche sull'ambiente marino, sulla base dei dati e delle informazioni esistenti.

La normativa indica come la valutazione dell'eutrofizzazione nelle acque marine debba tenere conto della valutazione delle acque costiere e di transizione ai sensi della Direttiva 2000/60/CE e relativi orientamenti in modo da garantire la comparabilità. La valutazione deve combinare le informazioni relative ai livelli di nutrienti e quelle relative a una serie di effetti primari e secondari pertinenti dal punto di vista ecologico (criteri). I criteri che consentono di valutare il GES per il Descrittore 5 sono 3, cui sono associati 8 indicatori:

- 1) Livelli di nutrienti
 - Concentrazione di nutrienti nella colonna d'acqua
 - Rapporto dei nutrienti (silicio, azoto e fosforo), se pertinente
- 2) Effetti diretti dell'arricchimento in nutrienti
 - Concentrazione di clorofilla nella colonna d'acqua
 - Trasparenza dell'acqua legata all'aumento delle alghe in sospensione, se pertinente
 - · Abbondanza di macroalghe opportuniste
 - Cambiamento nella composizione in specie della flora, come per esempio il rapporto fra diatomee e flagellati, tra specie bentoniche e pelagiche o le fioriture algali nocive o tossiche causate da attività antropiche
- 3) Effetti indiretti dell'arricchimento in nutrienti
 - Abbondanza di alghe e angiosperme marine perenni (ad esempio fucacee, Zostera marina

- e Posidonia oceanica) che subiscono un impatto a causa di una ridotta trasparenza dell'acqua
- Ossigeno disciolto, ossia cambiamenti dovuti a un aumento della decomposizione di sostanza organica e dell'estensione dell'area interessata

Le aree di valutazione per le tre sottoregioni (Mare Adriatico, Mar Mediterraneo occidentale, Mar Ionio e Mediterraneo orientale) sono state identificate partendo dall'elaborazione dei dati di clorofilla "a" da satellite. L'estensione delle aree identificate arriva al limite delle acque territoriali ed è sufficientemente ampia da comprendere zone aventi impatto non elevato, così che all'interno di ciascuna area possa essere presente un gradiente di impatto. Le aree di valutazione fissate per il D5 sono state le seguenti:

Adriatico settentrionale
Adriatico centrale
Adriatico meridionale
Golfo di Taranto
Mar Ionio occidentale e Canale di Sicilia
Mar Ligure e Tirreno settentrionale
Tirreno centrale
Tirreno meridionale
Sardegna

Viene di seguito riportata la valutazione effettuata per l'Adriatico settentrionale, in quanto è ritenuta l'area più significativa, a livello nazionale, per il fenomeno dell'eutrofizzazione.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
2	2	2	2

I dati rappresentati e gli indicatori sono rilevanti e in larga misura provengono dal monitoraggio istituzionale effettuato dalle ARPA. È necessario garantire una migliore copertura spaziale e implementare le attività di formazione degli operatori preposti al monitoraggio, già avviate da parte del Ministero dell'ambiente e della tutela del territorio e del mare in collaborazione con ISPRA.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2008/56/CE richiede agli Stati membri di raggiungere, entro il 2020, il buono stato ambientale (GES, Good Environmental Status) per le acque marine sotto la propria giurisdizione. La determinazione del buono stato ambientale si basa su un elenco di 11 descrittori qualitativi dell'ambiente marino che fanno riferimento a molteplici aspetti degli ecosistemi marini tra cui il Descrittore 5 – Eutrofizzazione.

STATO E TREND

La metodologia di valutazione dello stato trofico in corso di definizione, pertanto non si assegna l'icona di Chernoff. Tuttavia, l'elaborazione dei dati disponibili , in particolare quella riferita ai valori di concentrazione degli indicatori nutrienti e clorofilla 'a', ha consentito di evidenziare come l'Alto Adriatico, soprattutto le zone prospicienti il delta del Po e la costa emiliano-romagnola, siano le aree maggiormente a rischio relativamente al fenomeno di eutrofizzazione. Nonostante il quadro generale degli ultimi 10 anni evidenzi una riduzione del livello trofico dell'Alto Adriatico, permangono episodi di intensi blooms microalgali innescati e sostenuti prevalentemente dagli apporti di nutrienti del bacino padano ed eventi distrofici con ipossie/ anossie nelle acque di fondo.

COMMENTI A TABELLE E FIGURE

Carichi di azoto e fosforo (da Figura 9.9 a Figura 9.17)

Per quasi tutti i bacini afferenti all'Alto Adriatico sono disponibili i dati sulle portate medie annue per il periodo 2004-2009 (nel caso del Po e dell'Adige dal 2003 al 2010). Occorre segnalare che il Po presenta portate medie annue comprese tra 1.000 e 1.500 mc/sec, di gran lunga superiori a quelle degli altri fiumi che sfociano in Alto Adriatico. Vi è stato un aumento delle portate medie negli anni più recenti (2008-2010), comportamento questo comune a tutti i bacini presi in considerazione. Per quanto riquarda i carichi di nutrienti convogliati a mare, il contributo del Po è preponderante: oltre 100.000 t/ anno di azoto e 7.000 t/anno di fosforo contro valori di carico che solo nel caso dell'Adige e Livenza superano le 10.000 t/anno di N e le 300 t/anno di P (Figura 9.16). Il contributo proveniente dal comparto civile, considerato sulla base dei dati degli impianti che verosimilmente recapitano direttamente a mare (Figura 9.17) risulta molto contenuto se confrontato con quello dei bacini fluviali. Esso è valutabile a circa 8.000 t/anno per l'azoto e circa 2.000 t/anno per il fosforo.

Concentrazione di nutrienti nell'ambiente marino (da Figura 9.18 a Figura 9.22)]

Nell'area di valutazione Alto Adriatico, gli andamenti annuali delle concentrazioni di azoto in mare (azoto disciolto inorganico o DIN) sono molto variabili e risentono in maniera evidente dei regimi idrologici dei fiumi che recapitano in Alto Adriatico. L'azoto proviene soprattutto dalle sorgenti diffuse e guindi i carichi sversati a mare tendono ad aumentare nel caso di annate particolarmente piovose. Nel caso del fosforo, è possibile evidenziare un comportamento sostanzialmente diverso, con una variabilità interannuale meno sensibile ai regimi idrologici dei fiumi e con una tendenza al decremento, sia pur lieve, negli anni (da 0,8 µmol/L a 0,5 µmol/L tra il 2001 e il 2009) (Figura 9.18). Per le stesse ragioni, i valori di concentrazione dell'azoto sono massimi durante la stagione invernale e minimi nel periodo estivo, quando gli apporti fluviali tendono a diminuire (Figura 9.19). Anche per il fosforo totale le concentrazioni minime sono rilevate nella stagione estiva, con valori pari alla metà di quelli del periodo invernale (Figura 9.20). Degno di nota è il comportamento del fosforo ortofosfato: esso non presenta un'evidente variabilità stagionale e tende a rimanere sempre molto basso, prossimo ai limiti di rilevabilità analitica (0,1 µmol/L).

Dal punto di vista spaziale, l'azoto mostra elevate concentrazioni in corrispondenza delle aree direttamente interessate dall'Adige (Rosolina) e dal Po (Porto Garibaldi). Da non sottovalutare è anche l'effetto degli apporti provenienti dagli altri fiumi minori e dalle lagune di Grado-Marano e Venezia (Figura 9.21).

Le stazioni che presentano le concentrazioni massime di fosforo totale sono quelle direttamente interessate dagli apporti padani (Porto Garibaldi e le altre stazioni del litorale romagnolo) (Figura 9.22).

Clorofilla "a"

I valori assunti dalla clorofilla "a" in quest'area, soprattutto nella fascia costiera emilianoromagnola, sono i più alti in assoluto tra quelli rilevabili lungo tutto lo sviluppo costiero italiano a causa della presenza del fiume Po che condiziona profondamente con i suoi carichi di nutrienti i livelli trofici.

La Figura 9.23 mostra un'ampia fluttuazione delle concentrazioni medie annuali, con una forte diminuzione tra il 2003 e il 2005 e una tendenza all'aumento negli ultimi due anni.

Osservando le medie per ciascuna stazione (Figura 9.24) si evidenzia l'aumento della concentrazione della clorofilla "a" nella zona al di sotto della foce del Po rispetto alle concentrazioni che si rilevano nella parte Nord orientale dell'area adriatica. Il marcato incremento del parametro nelle stazioni direttamente investite dal Bacino padano è confermato dalla mappa, nella quale si notano, in particolare, concentrazioni medie intorno ai 5.5 µg/L in corrispondenza della stazione di Porto Garibaldi. Esaminandolemediestagionalidellaconcentrazione di clorofilla "a" (Figura 9.25), in relazione ai valori assunti al parametro trasparenza, si rileva come elevate concentrazioni di clorofilla 'a' determinino una consequente riduzione della trasparenza delle acque. Le medie stagionali mantengono valori elevati lungo tutto l'arco dell'anno, maggiormente significativi in inverno e autunno.

Trasparenza

Nel periodo 2001-2009, si rileva una tendenza all'aumento, con un picco significativo nel 2007, anno in cui si registra un valore medio superiore a 5 m. (Figura 9.26)

Il parametro trasparenza presenta (Figura 9.27) valori elevati nella zona del golfo di Trieste e una progressiva diminuzione dei valori medi nelle stazioni poste più a Sud.

Ossigeno Disciolto

Le variazioni delle medie annuali della percentuale di saturazione dell'ossigeno disciolto mostrano una forte fluttuazione dei valori, con il picco più alto nel 2009 pari a circa il 106%: valori di questo tipo sono da riferirsi all'intensa attività fotosintetica (Figura 9.28).

Valori di sovrasaturazione si riscontrano nel periodo primavera-estate (Figura 9.29).

Per quanto riguarda le medie per stazione, si evidenziano i valori più alti in corrispondenza della fascia costiera emiliano-romagnola (Figura 9.30). I picchi raggiungono valori di sovrasaturazione intorno al 110%.

Figura 9.9: Punti stazione per la determinazione dei carichi di azoto e fosforo da fonti fluviali nell'area di valutazione "Alto Adriatico", sottoregione Mare Adriatico

Figura 9.10: Portate medie annuali e carichi di fosforo (in alto) e azoto (in basso) sversati a mare dal fiume Livenza. La linea tratteggiata rossa rappresenta la linea di tendenza dei carichi tra gli anni 2004 - 2009

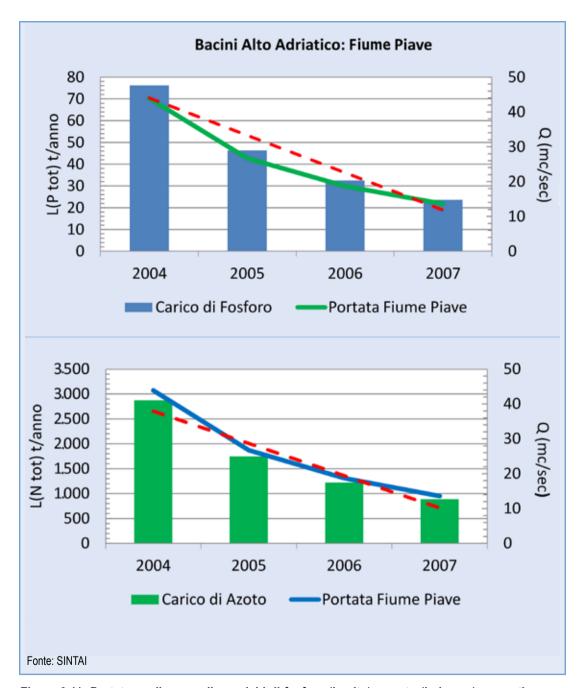


Figura 9.11: Portate medie annuali e carichi di fosforo (in alto) e azoto (in basso) sversati a mare dal fiume Piave. La linea tratteggiata rossa rappresenta la linea di tendenza dei carichi tra gli anni 2004 - 2007

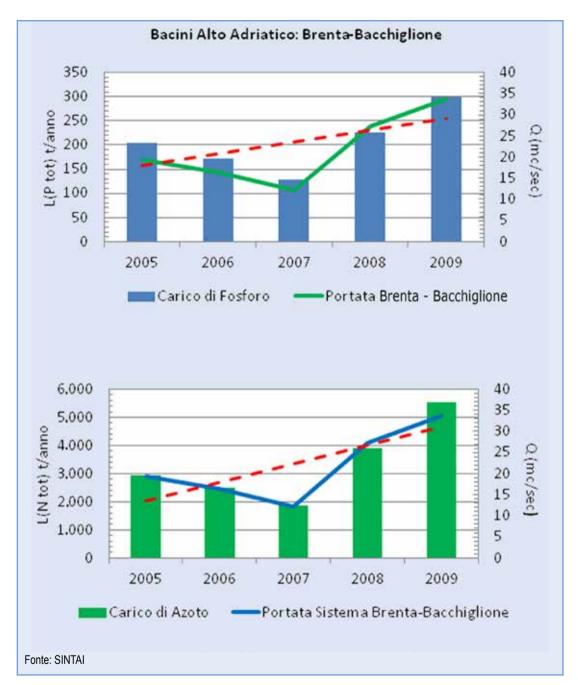


Figura 9.12: Portate medie annuali e carichi di fosforo (in alto) e azoto (in basso) sversati a mare dal Sistema Brenta-Bacchiglione. La linea tratteggiata rossa rappresenta la linea di tendenza dei carichi tra gli anni 2005 - 2009

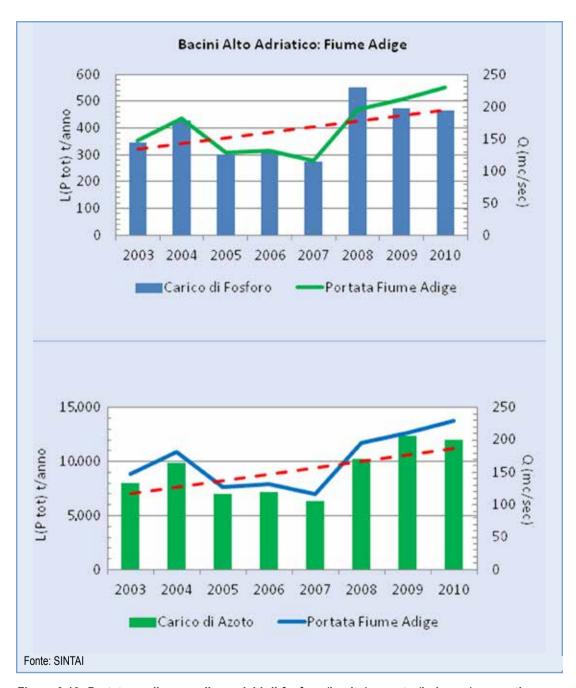


Figura 9.13: Portate medie annuali e carichi di fosforo (in alto) e azoto (in basso) sversati a mare dal fiume Adige. La linea tratteggiata rossa rappresenta la linea di tendenza dei carichi tra gli anni 2003 - 2010

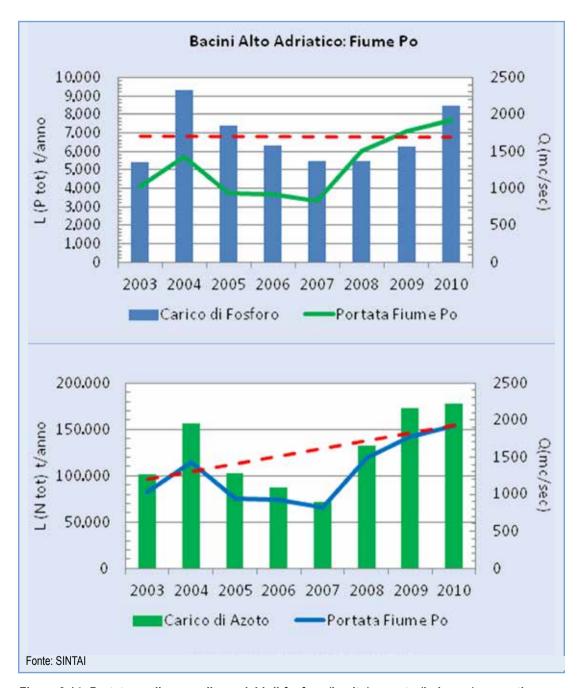


Figura 9.14: Portate medie annuali e carichi di fosforo (in alto) e azoto (in basso) sversati a mare dal fiume Po. La linea tratteggiata rossa rappresenta la linea di tendenza dei carichi tra gli anni 2003 - 2010

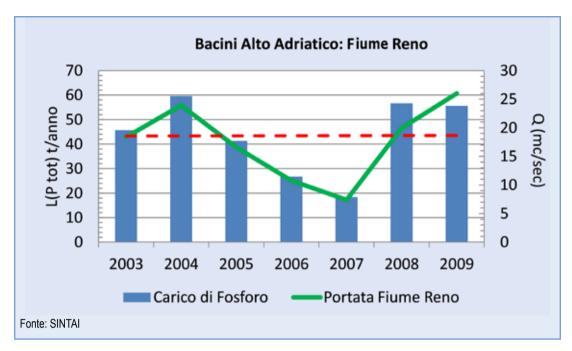


Figura 9.15: Portate medie annuali e carichi di fosforo sversati a mare dal fiume Reno. La linea tratteggiata rossa rappresenta la linea di tendenza dei carichi tra gli anni 2003 - 2009

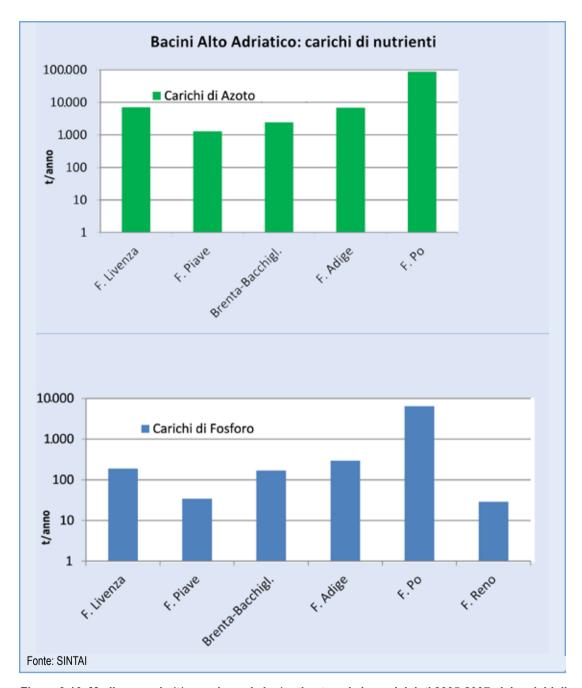


Figura 9.16: Media annuale (t/anno, in scala log), stimata sula base dei dati 2005-2007, dei carichi di azoto e fosforo sversati a mare dai principali bacini dell'Alto Adriatico

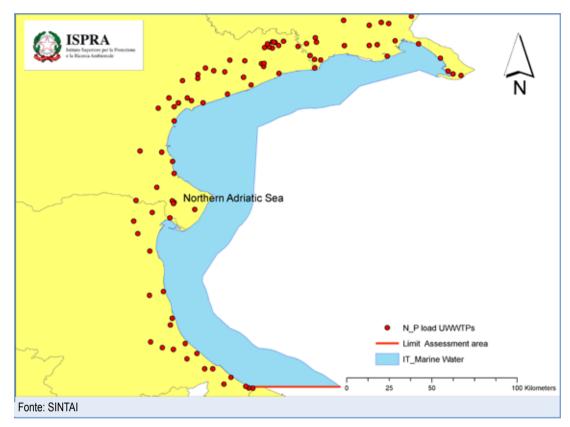


Figura 9.17: Ubicazione degli impianti di depurazione e/o sistemi di collettamento utilizzati per la stima dei carichi di azoto e fosforo da fonti urbane nell'area di valutazione "Alto Adriatico", con riferimento alla data del 31 dicembre 2009

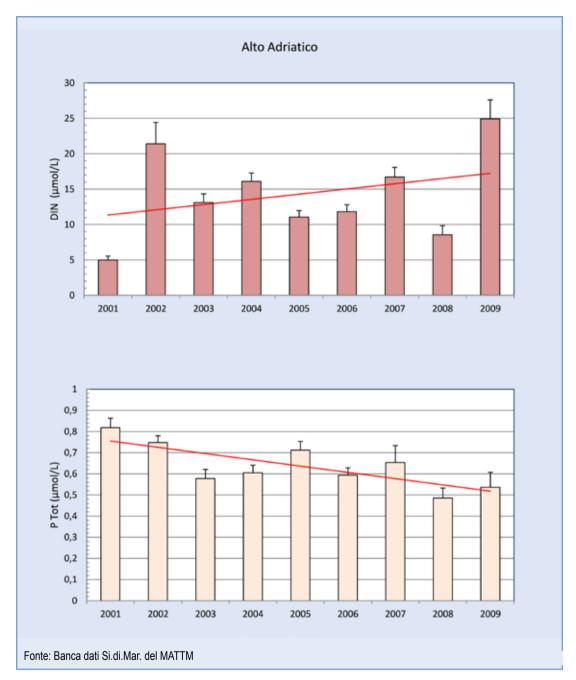


Figura 9.18: Concentrazioni medie annuali + errore standard dell'azoto inorganico disciolto (DIN, in μ mol/L, in alto) e del fosforo totale (Ptot, in μ mol/L, in basso) nell'area di valutazione "Alto Adriatico". La linea rossa rappresenta la linea di tendenza per gli anni considerati (2001-2009)

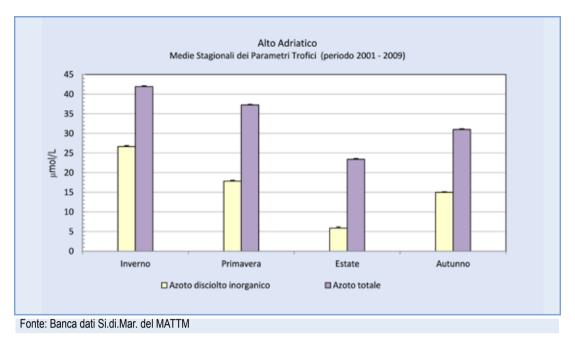


Figura 9.19: Concentrazioni medie stagionali + errore *standard* dell'azoto inorganico disciolto e dell'azoto totale (in μmol/L) nell'area di valutazione "Alto Adriatico" per gli anni 2001-2009

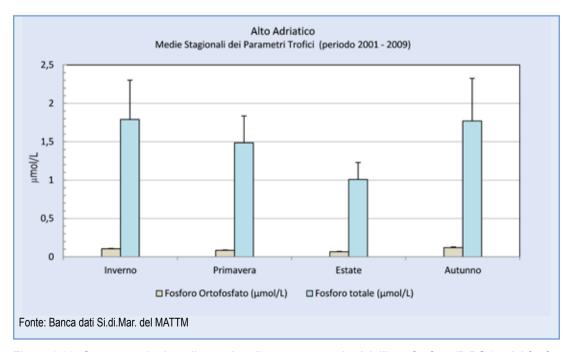


Figura 9.20: Concentrazioni medie stagionali + errore standard dell'ortofosfato (P-PO₄) e del fosforo totale(in μmol/L) nell'area di valutazione 'Alto Adriatico' per gli anni 2001-2009

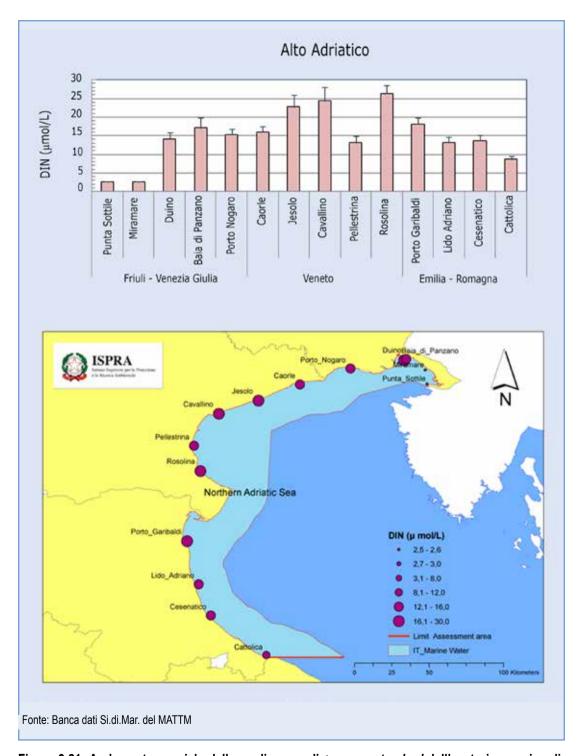


Figura 9.21: Andamento spaziale delle medie annuali + errore standard dell'azoto inorganico disciolto (DIN, in μ mol/L) per il periodo 2001-2009 (in alto). In basso, mappa GIS delle concentrazioni medie annuali di DIN (μ mol/L) con ubicazione delle stazioni di campionamento

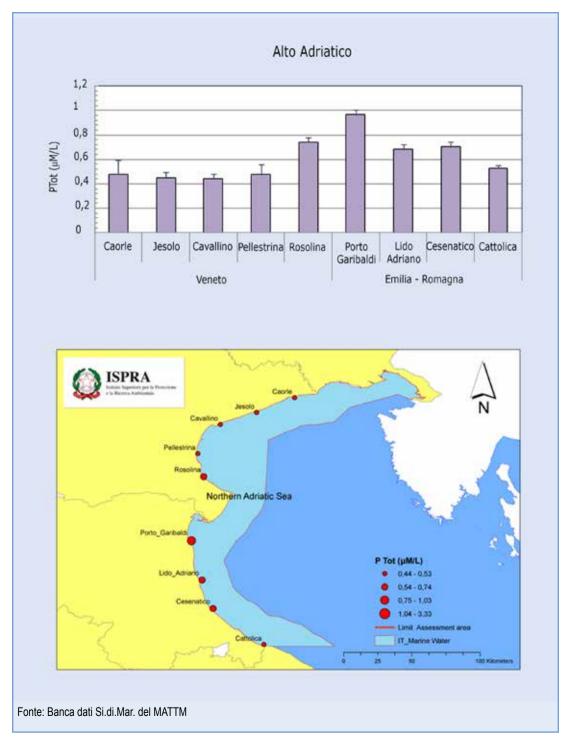


Figura 9.22: Andamento spaziale delle medie annuali + errore standard del fosforo totale(P tot, in μ mol/L) nell'area di valutazione "Alto Adriatico" per il periodo 2001-2009 (in alto). In basso, mappa GIS delle concentrazioni medie annuali di P tot μ mol/L) con ubicazione delle stazioni di campionamento

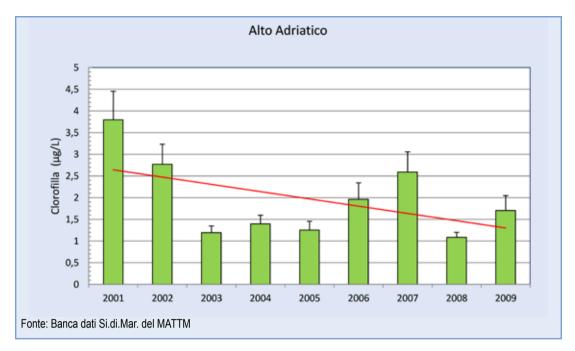


Figura 9.23: Andamento temporale della concentrazione media annuale +errore standard della clorofilla "a" (μ g/L) nell'area di valutazione "Alto Adriatico". La linea rossa rappresenta la linea di tendenza per gli anni considerati (2001-2009)



Figura 9.24: Andamento spaziale delle medie annuali +errore standard della clorofilla "a" (μ g/L) nell'area di valutazione "Alto Adriatico" per il periodo 2001-2009 (in alto). In basso, mappa GIS delle concentrazioni medie annuali di ChI "a" (μ g/L) con ubicazione delle stazioni di rilevamento

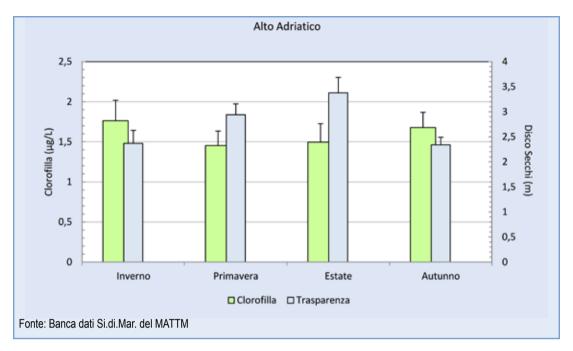


Figura 9.25: Concentrazioni medie stagionali +errore *standard* della clorofilla "a" (μg/L) e della trasparenza (disco Secchi, in m) nell'area di valutazione "Alto Adriatico" per gli anni 2001-2009

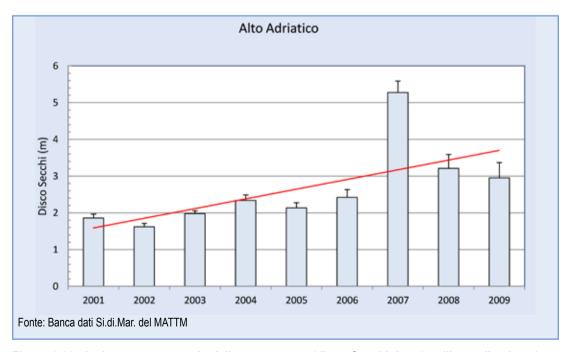


Figura 9.26: Andamento temporale della trasparenza (disco Secchi, in m) nell'area di valutazione "Alto Adriatico". La linea rossa rappresenta la linea di tendenza per gli anni 2001-2009

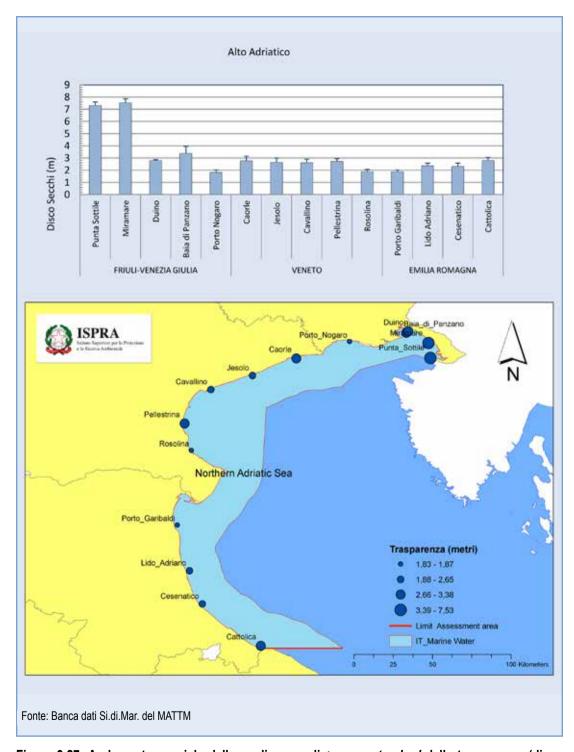


Figura 9.27: Andamento spaziale delle medie annuali +errore *standard* della trasparenza (disco Secchi, in m) nell'area di valutazione "Alto Adriatico" per il periodo 2001-2009 (in alto). In basso, mappa GIS della trasparenza (disco Secchi, in m) con ubicazione delle stazioni di rilevamento

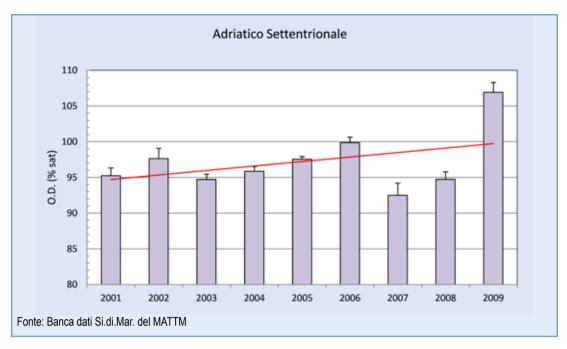


Figura 9.28: Andamento temporale (medie annuali + errore *standard*) dell'ossigeno disciolto, espresso in percentuale di saturazione (% sat), nell'area di valutazione "Alto Adriatico". La linea rossa rappresenta la linea di tendenza per gli anni 2001-2009

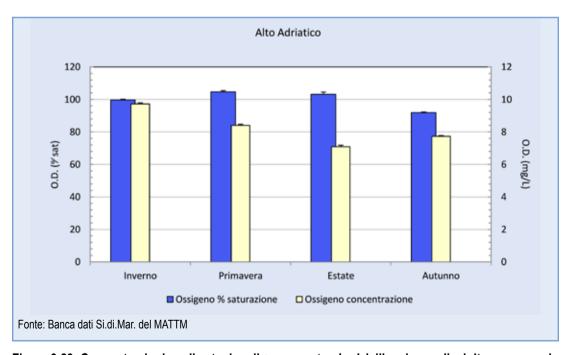


Figura 9.29: Concentrazioni medie stagionali + errore *standard* dell'ossigeno disciolto, espresso in termini di % di saturazione (% sat) e di concentrazione (mg/L) nell'area di valutazione "Alto Adriatico" per gli anni 2001-2009

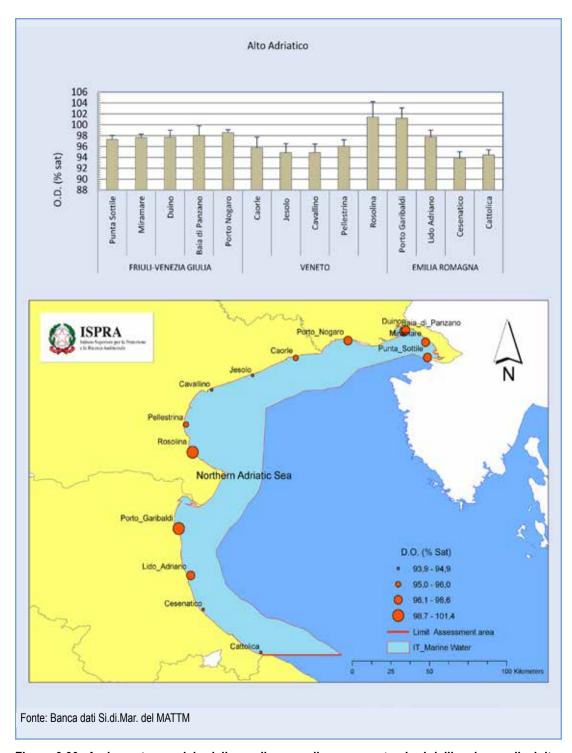


Figura 9.30: Andamento spaziale delle medie annuali + errore standard dell'ossigeno disciolto, espresso in percentuale di saturazione (% sat), nell'area di valutazione "Alto Adriatico" per il periodo 2001-2009 (in alto). In basso, mappa GIS della concentrazione media annuale di ossigeno disciolto (% sat) con ubicazione delle stazioni di rilevamento

CONCENTRAZIONE DI CONTAMINANTI E LORO EFFETTI

DESCRIZIONE

L'indicatore misura la concentrazione e gli effetti dei contaminanti nelle matrici biota, sedimento e acqua, tenendo conto dei processi biologici selezionati e dei gruppi tassonomici nei quali è stata individuata una relazione di causa/effetto che deve essere monitorata. Inoltre misura l'impatto dei contaminanti nei prodotti ittici destinati al consumo umano.

I dati raccolti, distribuiti in un arco temporale dal 2006 al 2012, sono stati integrati temporalmente. Le aree di valutazione (AV), nelle quali è stato applicato l'indicatore, sono state selezionate in modo da essere rappresentative delle tre sottoregioni: Adriatic Sea (AS), West Mediterranean Sea (WMS) e Ionian Sea and Central Mediterranean Sea (ISCMS). Le singole AV sono state suddivise in celle di dimensioni variabili in funzione della matrice, dell'habitat e del gruppo funzionale. Sono state considerate le sostanze o i gruppi di sostanze presenti nell'elenco di priorità (Regolamento 2455/2001), raggruppate nelle classi suggerite dalla Comunità Europea: metalli, idrocarburi del petrolio, idrocarburi policiclici aromatici (IPA), composti organici alogenati (OCs), pesticidi e biocidi, pesticidi, composti organo-stannici, BTEX, fenoli, diossine e furani (PCDD/PCDF), polibromoderivati (BPBDE), ftalati.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	2	2

La qualità dell'informazione è abbastanza buona. L'accuratezza, nonostante l'affidabilità delle fonti, risente dell'incompletezza delle serie temporali e di alcune lacune nella copertura spaziale. Qualche riserva per la comparabilità nel tempo, in quanto la metodologia impiegata non è sempre costante, e nello spazio, poichè le metodologie utilizzate dalle regoni non sono le medesime.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2008/56/CE richiede agli Stati membri di raggiungere, entro il 2020, il buono stato ambientale (GES, Good Environmental Status) per le proprie acque marine. La determinazione del buono stato ambientale si basa su un elenco di undici descrittori qualitativi dell'ambiente marino che fanno riferimento a molteplici aspetti degli ecosistemi marini tra cui i Descrittore 8 e Descrittore 9, basati sulla determinazione dei contaminanti e i loro effetti.

STATO E TREND

Essendo un nuovo indicatore non è possibile oggi stabilire un *trend*. Non si effettua l'esame dello stato complessivo per l'intera regione mediterranea, ma viene definito a livello di Area di valutazione o Subregione, e a livello di matrice.

COMMENTI A TABELLE E FIGURE

La Figura 9.31 mostra la concentrazione, la percentuale di copertura spaziale e la percentuale di celle in buono stato di metalli, IPA, OCs, composti organo stannici, diossine e composti diossina-simili e HCB nei sedimenti dell'Area di Valutazione A1, situata nella parte settentrionale della Subregione Mare Adriatico.

Per quanto riguarda i metalli, i dati analizzati coprono l'1,52% della AV. Oltre il 70% dei *record* risulta in buono stato.

Per gli IPA, la copertura spaziale è dell'1,49% e il 98% delle celle analizzate risulta in buono stato.

In merito agli OCs risulta coperto l'1,39% della AV e il 92% dei *record* è in buono stato.

La copertura spaziale dell'area per i composti organo stannici è dello 0,26% e il 76 % delle celle corrisponde ad uno stato buono.

I dati riguardanti le Diossine coprono lo 0,41% e nessun *record* si trova in un buona stato.

Infine, per l'HCB, la cui copertura spaziale corrisponde all'1% dell'area, il 98% delle celle si trova in un buono stato.

La Figura 9.32 mostra la concentrazione, la percentuale di copertura spaziale e la percentuale di *record* in buono stato di metalli, fenoli, IPA, pesticidi e biocidi, OCs, BTEX, HCB e HCBD e ftalati nella

matrice acqua dell'Area di Valutazione A1, situata nella parte settentrionale della Subregione Mare Adriatico.

La copertura spaziale riguardo i metalli è lo 0,04% della AV e il 57% delle celle risulta in buono stato. In merito a Fenoli, IPA, pesticidi e biocidi, la copertura spaziale dei dati è dello 0,04% per ciascuna categoria di contaminante e, il 100% dei *record* è in uno stato buono.

Gli OCs hanno una copertura spaziale pari allo 0,04% dell'area e il 43% dei *record* raggiunge lo stato buono.

Per i BTEX la copertura spaziale è dello 0,14% e il 100% delle celle è in buono stato.

HCB, HCBD e Ftalati raggiungono una copertura spaziale dello 0,02% e, in tutti e tre i casi, il 100% dei *record* è in stato buono.

La Figura 9.33 riporta la concentrazione nei sedimenti di metalli, IPA, OC, TBT, diossine e HCB, la percentuale di copertura spaziale la percentuale di *record* in buono stato nell' Area di Valutazione I2, situata nella Subregione Mar Ionio e Mediterraneo centrale.

I dati riguardanti i metalli hanno una copertura spaziale pari all'1,51% e il 75% delle celle si trova in uno stato buono.

Nel caso degli IPA la copertura spaziale dell'Area è 1,91% e il 91% delle celle è in buono stato.

In merito alla copertura spaziale dei dati riguardanti gli OCs, questa è dello 0,32% e l'83% dei *record* è in buono stato.

I dati sui TBT coprono lo 0,6% e il 99% delle celle è in buono stato.

Le diossine hanno una copertura spaziale dello 0,083% e il 100% dei *record* è in buono stato mentre la coperturadi HCB è dell'1,44% e il 55% dei *record* è in buono stato.

La Figura 9.34 mostra la concentrazione, la percentuale di copertura spaziale e la percentuale di *record* in buono stato di metalli, IPA, TBT e OCs nei sedimenti dell'Area di Valutazione T1, situata nella parte settentrionale della Subregione Mare Mediterraneo occidentale.

La copertura spaziale della AV, relativamente ai metalli, è dello 0,10% e il 45% delle celle è in un buono stato.

Per gli IPA la copertura spaziale è dello 0,11% e il 91% dei *record* è in buono stato.

Per i TBT la copertura è dello 0,05%, con il 69% delle celle in buono stato.

Infine per gli OCs i dati coprono lo 0,11% della AV e

l'81% delle celle si trova in un buono stato.

La Figura 9.35 mostra la concentrazione, la percentuale di copertura spaziale e la percentuale di *record* in buono stato di metalli, IPA, OCs, BTEX, fenoli, pesticidi e biocidi nella colonna d'acqua dell'Area di Valutazione T1, situata nella parte settentrionale della Subregione Mare Mediterraneo occidentale.

Per i metalli si ha una copertura spaziale corrispondente allo 0,019% dell'area e il 50% dei *record* è in uno stato buono.

La copertura spaziale degli IPA è dello 0,018% e il 100% delle celle si trova in buono stato.

Per gli OCs la copertura della subregione è dello 0.018% e il 45% delle celle risulta in buono stato.

Per i BTEX la copertura spaziale è pari allo 0,015% della Subregione e il 100% dei *record* corrisponde a uno stato buono.

Per i fenoli la copertura spaziale è dello 0,011% e il 100% delle celle è in buono stato.

Infine, per pesticidi e biocidi, si ha una copertura dello 0,013% della AV e il 25% dei *record* è in uno stato buono.

In Figura 9.36 sono riportate le concentrazioni di HCB rinvenute nel biota relative alle Aree di Valutazione A1 e T1 situate rispettivamente nelle Subregioni Mar Adriatico e Mar Mediterraneo occidentale. I dati sono suddivisi in base al gruppo funzionale o all'habitat di appartenenza (Direttiva 2008/56/EC) degli organismi analizzati.

In T1, la copertura spaziale dell'*habitat Littoral Rock* è dello 0,13% e il 100% delle celle si trova in uno stato buono. Per il gruppo funzionale *Turtles*, l'Area è coperta al 100%, e i *record*s, definiti in buono stato, sono il 100%.

InA1, la copertura spaziale è dello 0,27% per l'habitat Littoral rock e dello 0,05% per Littoral sediment; per i gruppi funzionali Coastal fish la copertura è del 3,33%, raggiunge il 23% per i Demersal fish, mentre per i Demersal elasmobranchs è del 4,2%. In tutti i gruppi funzionali rinvenuti in questa AV, il 100% dei record è in uno stato buono.

In Figura 9.37 sono riportate le concentrazioni di Hg rinvenute nel biota relative alle Aree di Valutazione A1, I2 e T1 situate rispettivamente nelle Subregioni Mar Adriatico, Mar Ionio e Mediterraneo centrale e Mar Mediterraneo occidentale. I dati sono suddivisi in base al gruppo funzionale o all'habitat di appartenenza (Direttiva 2008/56/EC) degli organismi analizzati.

In A1, gli habitat Littoral rock e Littoral sediment

raggiungono una copertura spaziale rispettivamente dello 0,5% e dello 0,3% e la relativa percentuale di celle in buono stato è del 77% e del 100%.

I gruppi funzionali *Coastal fish* hanno una copertura spaziale dello 0,5%, i *Demersal fish* dell'1,6%, i *Demersal elasmobranchs* del 4,2% mentre la copertura spaziale dei dati relativi al gruppo *Toothed whales* è del 100%. Per ciascuno di questi gruppi funzionali i *record* definiti in buono stato sono lo 0%. In 12, l'habitat Littoral rock ha una copertura spaziale rispettivamente dello 0,79% e il 62% delle celle si trova in uno stato buono. I gruppi funzionali *Demersal fish, Demersal elasmobranchs* e *Toothed whales* hanno una copertura del 100% della AV e lo 0% dei *records* è in buono stato. Per il gruppo *Pelagic fish* la copertura spaziale è dell'80% e le celle in buono stato sono il 75%.

In T1 gli habitat Littoral rock e Littoral sediment raggiungono una copertura spaziale rispettivamente dello 0,45% e dello 0,02% e la relativa percentuale di celle in buono stato è dell' 8% e del 100%.

Il gruppo funzionale dei *Costal fish* presenta una copertura spaziale dell'1,71% e la percentuale dei *record* in buono stato è pari allo 0%. Per il gruppo *Shelf littoral mud*, che raggiunge una copertura spaziale del 2,1%, la percentuale di celle in buono stato è il 100%. Nel caso dei *Cephalopods*, la copertura spaziale è del 4,55% e lo 0% dei *records* si trova in buono stato. Il gruppo delle *Toothed whales* e delle *Baleen whales*, che hanno una copertura spaziale pari al 100% della AV, presentano lo 0% dei *records* in stato buono. Il gruppo dei *Pelagic fish*, la cui copertura spaziale è del 4,55%, presenta il 100% delle celle in buono stato.

In Figura 9.38 si riportano i risultati delle elaborazioni, suddivisi in base al gruppo funzionale o all'*habitat* di appartenenza (Direttiva 2008/56/EC), in merito agli effetti dei metalli nel biota in tutte e tre le Aree di Valutazione.

Per quanto riguarda A1 nella Subregione del Mare Adriatico, gli habitat Littoral rock e Littoral sediment hanno una copertura spaziale dello 0,08% e 0,05% rispettivamente. La percentuale di record in buono stato è del 33% nel primo caso, dello 0% nel secondo. I gruppi funzionali Demersal fish e Demersal elasmobranchs hanno una copertura spaziale rispettivamente dell' 1,61% e dell'8,33% e in entrambi i casi la percentuale di celle in uno stato buono è dello 0%.

In T1 nella Subregione Mar Mediterraneo occidentale è presente solo il gruppo funzionale dei

Costal fish, con una copertura spaziale del 1,5% e il 14% delle celle in buono stato.

In 12, nel Mar Ionio e Mediterraneo centrale, il gruppo funzionale dei *Pelagic fish* è presente con una copertura del 44% e lo 0% delle celle risulta in uno stato buono.

La Figura 9.39 mostra i risultati delle elaborazioni, suddivisi in base al gruppo funzionale o all'*habitat* di appartenenza (Direttiva 2008/56/EC), riguardo gli effetti degli IPA nel biota.

In A1, nella Subregione Adriatica, gli *habitat Littoral rock* e *Littoral sediment* hanno una copertura rispettivamente dello 0,08% e 0,06% e la percentuale di celle in buono stato è 100% nel primo caso e 0% nel secondo.

I gruppi funzionali *Demersal fish*, la cui copertura è dell'1,61%, e *Demersal elasmobranchs*, che ha una copertura spaziale dell'8,33%, presentano lo 0% di *record*s in uno stato buono.

In T1, nell'area del Mediterraneo occidentale, i dati riguardano i gruppi funzionali dei *Coastal fish* e delle *Baleen whales*, la cui percentuale di copertura è rispettivamente dell'1,5% e del 100%. Nel primo caso le celle in stato buono sono il 43%, nel secondo caso sono il 100%.

I risultati delle elaborazioni, suddivisi in base al gruppo funzionale o all'habitat di appartenenza (Direttiva 2008/56/EC), riguardanti gli effetti degli OCs sul Biota sono riportati in Figura 9.40.

In A1, nella Subregione del Mar Adriatico, i dati riguardano gli *habitat Littoral rock* e *Littoral sediment*: le coperture spaziali sono dello 0,08% e 0,06% e le percentuali di celle in buono stato sono 16,7% e 20%.

I gruppi funzionali sono rappresentati da *Demersal fish* e *Demersal elasmobranchs*, con coperture dell'1,61% e dell'8,33%, e in entrambi i casi lo 0% dei *record* è in buon stato.

Per quanto riguarda T1 nella Subregione mediterranea occidentale, i gruppi funzionali presenti sono *Baleen whales* e *Toothed whales*, entrambe con una copertura spaziale del 100%. Mentre nel primo caso il 100% delle celle è in uno stato buono, nel secondo caso la percentuale dei *record*s in buono stato è 0.

In I2, nella Subregione del Mar Ionio e del Mediterraneo centrale, il gruppo dei *Pelagic fish* presenta una copertura spaziale del 78%, con il 14,3% delle celle in buono stato. Il gruppo dei *Toothed whales* mostra invece una copertura spaziale del 100% e i *record* in buono stato sono lo 0%.

Nella Figura 9.41 sono riportati i risultati delle elaborazioni, suddivisi in base al gruppo funzionale o all'habitat di appartenenza (Direttiva 2008/56/EC), riguardo gli effetti dell'HCB sulla matrice biota. In A1, nel Mar Adriatico, sono stati analizzati gli habitat Littoral rock e Littoral sediment. Nel primo caso la copertura spaziale 0,08% e il 100% delle celle si trova in uno stato buono; nel secondo la copertura è dello 0,06% e lo 0% dei record si trova in buono stato.

In I2, nel Mar Ionio e Mediterraneo centrale, i dati si riferiscono al gruppo funzionale *Pelagic fish*, che ha una copertura spaziale del 44% e lo 0% dei *records* è in buono stato mentre in T1, nel Mediterraneo occidentale, il gruppo funzionale delle *Baleen whales* è del 100% ma nessuna cella è in buono stato.

I risultati delle elaborazioni, suddivisi in base al gruppo funzionale o all'habitat di appartenenza (Direttiva 2008/56/EC), riguardo gli effetti del TBT sul biota sono rappresentati in Figura 9.42. I dati riguardano unicamente A1, nella Subregione del Mar Adriatico. Gli habitat rappresentati sono Littoral sediment, con una copertura spaziale dello 0,08% e il 50% delle celle in buono stato, e Littoral rock, la cui copertura è pari allo 0,06% e nessun record è in buono stato.

Per quanto riguarda i gruppi funzionali, nel caso dei *Demersal fish* la copertura della AV è dell'1,61% e lo 0% delle celle è in uno stato buono; per gli *Demersal elasmobranchs* la copertura spaziale è dell'8,33% e il 50% delle celle è in buono stato.

In Figura 9.43, sono rappresentati i risultati riguardanti lo studio dell'impatto sulla salute umana di cadmio, mercurio, piombo, BaP, somma IPA e prodotti diossina simili nei prodotti ittici destinati al consumo relativi alla Subregione Adriatica. I codici riportati a fianco del contaminate si riferiscono al Regolamento CE 1881/2006.

In merito al cadmio, il 100% delle celle si trova in buono stato e la copertura spaziale è del 47,1%. Il 95,2% dei *record* di mercurio sono in buono stato e la copertura spaziale della Subregione è dell'82,4%. Per il piombo, i cui *record* coprono il 49% dell'area adriatica, il 100% delle celle si trova in buono stato. In merito al benzo(a)pirene e alla somma degli IPA, il 100% delle celle si trova in buono stato e la copertura dell'area è del 29,4%, in entrambi i casi. Anche nel caso dei composti diossina simili il 100% delle celle è in uno stato buono e la percentuale di coperta della sub regione è del 56,9%.

In Figura 9.44, sono rappresentati i risultati riguardanti lo studio dell'impatto sulla salute umana di cadmio, mercurio, piombo, BaP, somma IPA e prodotti diossina simili nei prodotti ittici destinati al consumo relativi alla Subregione Mar Mediterraneo occidentale. I codici riportati a fianco del contaminate si riferiscono al Regolamento CE 1881/2006. La copertura spaziale del cadmio è del 10,8% e il 100% dei *record* è in buono stato; per il mercurio la copertura è del 15,1% e il 96% delle celle in buono stato; il piombo, con il 94,7% delle celle riscontrate in uno stato buono, ha una copertura dell'area pari al 3,6%.

Per il benzo(a)pirene la copertura spaziale è del 3,6% e il 100% delle celle è in buono stato; per la somma IPA le celle in buono stato sono l'88,9% e la copertura della Subregione è pari al 4,8%.

I record sui composti diossina simili, nel 100% dei casi in buono stato, coprono l'1,3% dell'area.

In Figura 9.45, sono rappresentati i risultati riguardanti lo studio dell'impatto sulla salute umana di cadmio, mercurio, piombo, BaP, somma IPA e prodotti diossina simili nei prodotti ittici destinati al consumo relativi alla Subregione Mar Ionio e Mediterraneo centrale. I codici riportati a fianco del contaminate si riferiscono al Regolamento CE 1881/2006. I metalli cadmio, mercurio e piombo presentano il 100% delle celle in uno stato buono; le percentuali di copertura della Subregione sono, rispettivamente, del 5,5%, 7,8% e 3,9%.

Il benzo(a)pirene e la somma degli IPA hanno il 100% dei *record* in buono stato e una copertura spaziale del 2,6%. Infine i composti diossina simili, con una copertura dell'area dell'1,3%, presentano il 100% delle celle in buono stato.

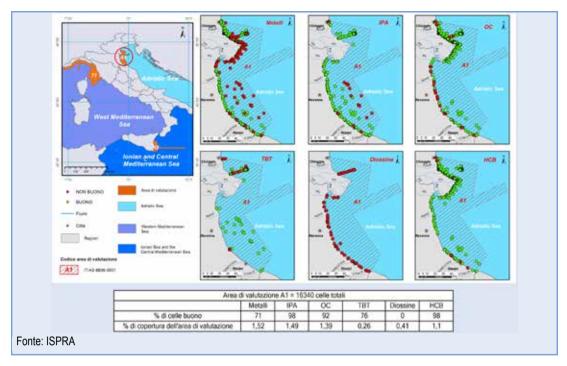


Figura 9.31: Concentrazione dei contaminanti nei sedimenti nell'Area di Valutazione A1, Subregione Mare Adriatico

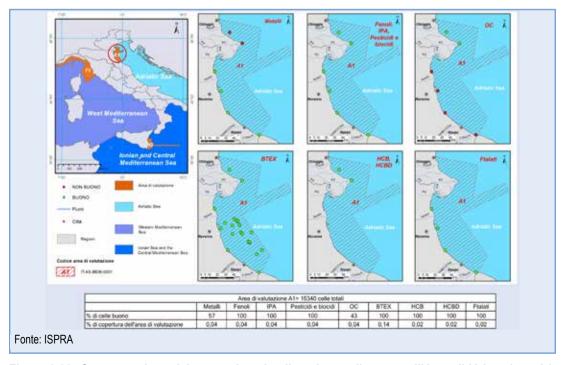


Figura 9.32: Concentrazione dei contaminanti nella colonna d'acqua nell'Area di Valutazione A1, Subregione Mare Adriatico

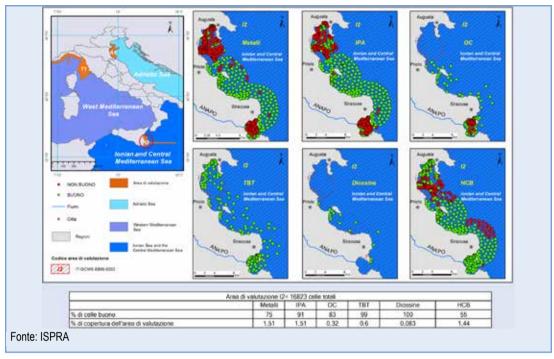


Figura 9.33: Concentrazione dei contaminanti nei sedimenti nell'Area di Valutazione I2, Subregione Mar Ionio e Mediterraneo centrale

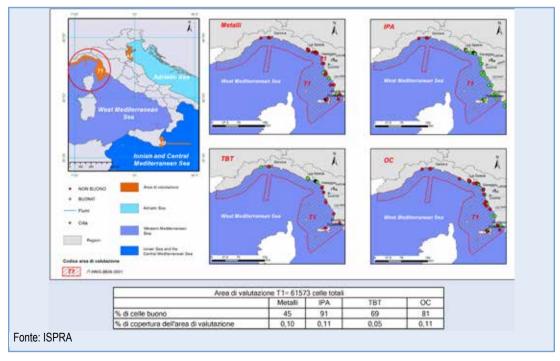


Figura 9.34: Concentrazione dei contaminanti nei sedimenti nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale

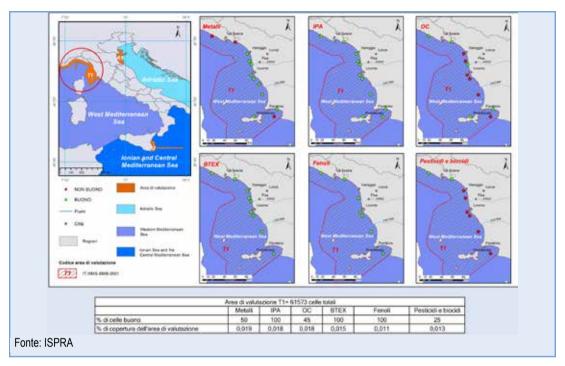


Figura 9.35: Concentrazione dei contaminanti nella colonna d'acqua nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale

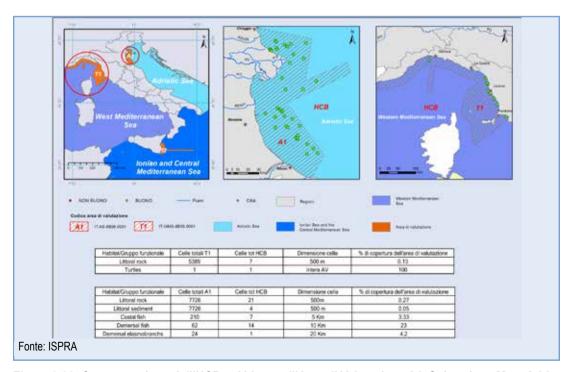


Figura 9.36: Concentrazione dell'HCB nel biota nell'Area di Valutazione A1, Subregione Mare Adriatico e nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale

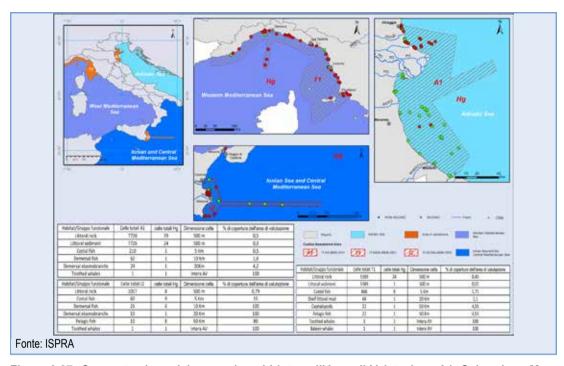


Figura 9.37: Concentrazione del mercurio nel biota nell'Area di Valutazione A1, Subregione Mare Adriatico, nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale e nell'Area di Valutazione I2, Subregione Mar Ionio e Mediterraneo centrale

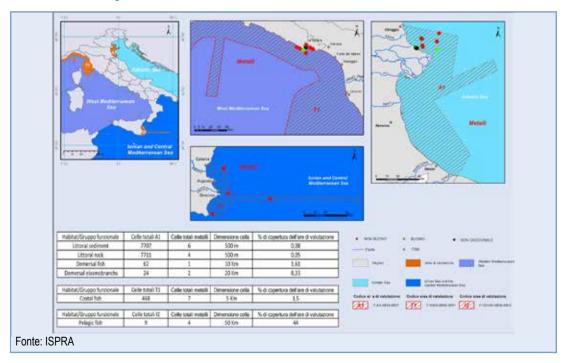


Figura 9.38: Effetti dei metalli su *habitat* e gruppi funzionali nell'Area di Valutazione A1, Subregione Mare Adriatico, nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale e nell'Area di Valutazione I2, Subregione Mar Ionio e Mediterraneo centrale

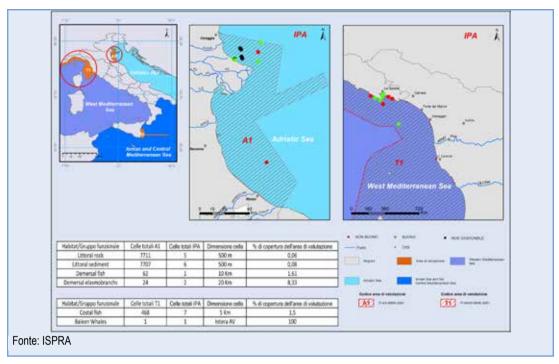


Figura 9.39: Effetti degli IPA su *habitat* e gruppi funzionali nell'Area di Valutazione A1, Subregione Mare Adriatico e nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale

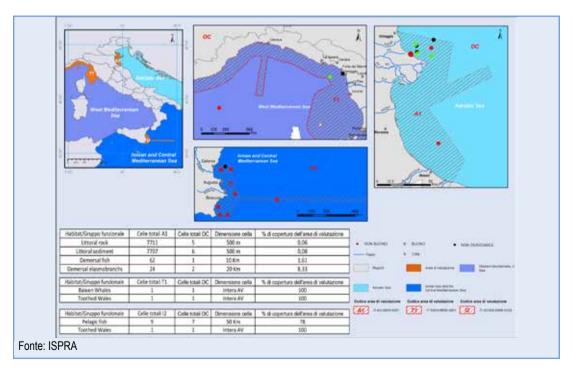


Figura 9.40: Effetti degli OCs su *habitat* e gruppi funzionali nell'Area di Valutazione A1, Subregione Mare Adriatico, nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale e nell'Area di Valutazione I2, Subregione Mar Ionio e Mediterraneo centrale

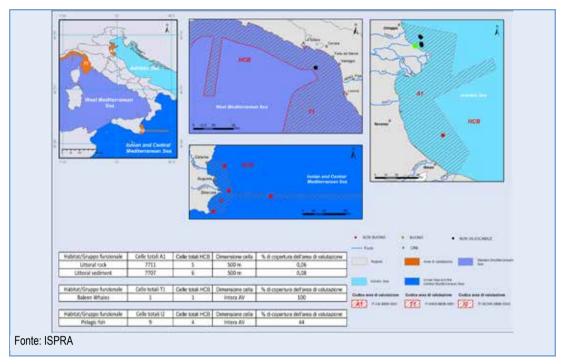


Figura 9.41: Effetti degli HCB su *habitat* e gruppi funzionali nell'Area di Valutazione A1, Subregione Mare Adriatico, nell'Area di Valutazione T1, Subregione Mar Mediterraneo occidentale e nell'Area di Valutazione I2, Subregione Mar Ionio e Mediterraneo centrale

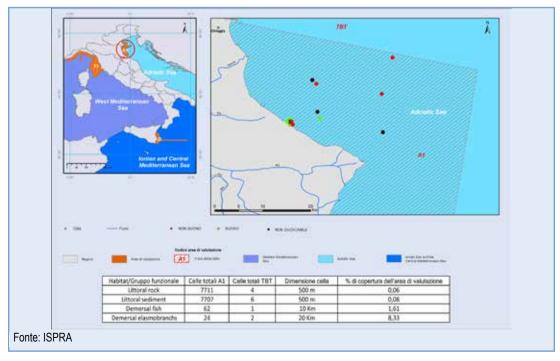


Figura 9.42: Effetti del TBT su *habitat* e gruppi funzionali nell'Area di Valutazione A1, Subregione Mare Adriatico

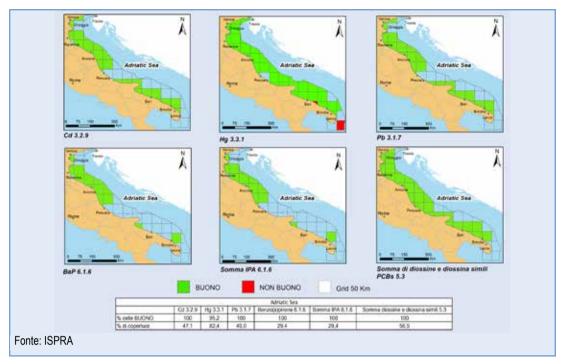


Figura 9.43: Impatto sulla salute umana - Concentrazione dei contaminanti nei prodotti ittici nella Subregione Mare Adriatico

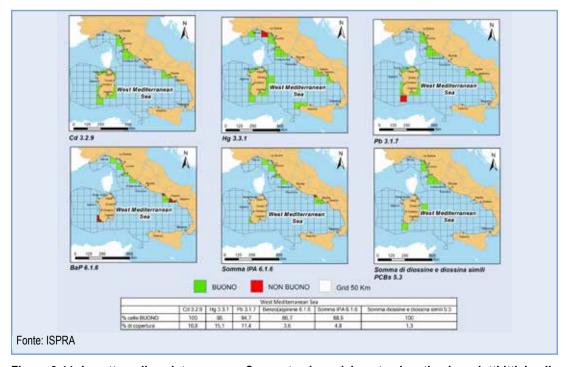


Figura 9.44: Impatto sulla salute umana - Concentrazione dei contaminanti nei prodotti ittici nella Subregione Mar Mediterraneo occidentale

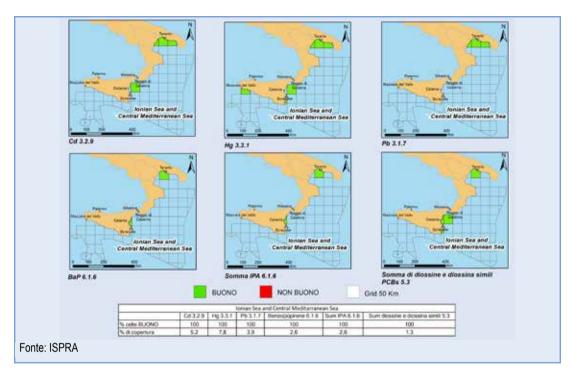


Figura 9.45: Impatto sulla salute umana - Concentrazione dei contaminanti nei prodotti ittici nella Subregione Mar Ionio e Mediterraneo centrale

INDICE DI QUALITÀ STATO CHIMICO DELLE ACQUE SUPERFICIALI

DESCRIZIONE

Per la valutazione dello Stato chimico delle acque superficiali si applicano, per le sostanze dell'elenco di priorità (tab. 1/A-colonna d'acqua del DM Ambiente 260/2010), gli Standard di Qualità Ambientali (SQA). Tali standard rappresentano, pertanto, le concentrazioni che identificano il buono stato chimico. Gli SQA sono definiti come SQA-MA (media annua) e SQA-CMA (concentrazione massima ammissibile) per le acque superficiali interne, i fiumi, i laghi e i corpi idrici artificiali o fortemente modificati. La media annua è calcolata sulla base della media aritmetica delle concentrazioni rilevate nei diversi mesi dell'anno. la concentrazione massima ammissibile rappresenta, invece, la concentrazione da non superare mai in ciascun sito di monitoraggio. La lista delle sostanze di cui alla tabella 1A allegato parte III del D.Lgs. 152/06 è stata aggiornata col D.Lgs. 172/15.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	2	1

L'indicatore rispecchia in maniera adeguata le richieste della normativa vigente, sia in ambito nazionale sia europeo. L'accuratezza dell'informazione risente della scarsità di serie temporali per alcune realtà regionali all'interno dei distretti. Il punteggio assegnato alla comparabilità nel tempo, invece, è conseguenza del recente adeguamento normativo che ha modificato i criteri di classificazione, mentre la comparabilità nello spazio è assicurata dall'emanazione dei decreti attuativi di monitoraggio di molte stazioni.

OBIETTIVI FISSATI DALLA NORMATIVA

In accordo al D.Lgs. 152/06 e s.m.i., entro il 2015 ogni corso d'acqua superficiale, e corpo idrico di esso, deve aver raggiunto uno stato di qualità ambientale "buono", attraverso il monitoraggio ai sensi della Direttiva 2000/60/CE.

STATO E TREND

Il monitoraggio dello stato chimico dei differenti corpi idrici viene effettuato con l'analisi di numerosi parametri e con programmi e reti di monitoraggio (sorveglianza e operativo) in continuo miglioramento e definizione, al fine di adempiere correttamente agli indirizzi previsti dalla normativa. L'attuazione della Direttiva 2000/60/CE è iniziata, per quasi tutto il territorio nazionale con il monitoraggio del 2010 e, trattandosi dei risultati del primo sessennio di monitoraggio,non è possibile valutare il *trend*. I risultati riportati all'interno dei piani di gestione, benché riferiti al periodo in esame, presentano delle disomogeneità negli anni effettivamente utilizzati per la classificazione, pregiudicando la valutazione dello stato.

COMMENTI A TABELLE E FIGURE

L'Indice di Qualità Stato Chimico delle acque superficiali viene rappresentato suddiviso per i fiumi e per i laghi. Per quanto riguarda i fiumi, la percentuale più alta di corpi idrici che rispetta l'obiettivo di qualità si riscontra nel Distretto Padano (88%) e nel Distretto delle Alpi orientali (83%).

Per i laghi, la situazione migliore si rileva nel Distretto delle Alpi orientali con l'87% dei corpi idrici che raggiunge l'obiettivo di qualità.

Per il bacino del Serchio va segnalata l'esiguità dei corpi idrici utilizzati per la valutazione, data la piccola dimensione di questo Distretto idrografico (51 corpi idrici fluviali e 2 corpi idrici lacustri).

I dati riguardanti il Distretto dell'Appennino settentrionale e quelli del Distretto dell'Appennino meridionale sono stati riportati nei piani di gestione accorpati per "acque superficiali", quindi, il dato riportato nelle figure coincide per fiumi e laghi.

Da segnalare, inoltre, che i dati di classificazione riportati nei Piani di Gestione dei Distretti idrografici cui si è fatto riferimento per la compilazione della scheda indicatore, non sempre sono omogenei dal punto di vista temporale. Il caso più eclatante è quello delle regioni Basilicata e Calabria del Distretto Appennino meridionale, per le quali i dati fanno riferimento al vecchio D.Lgs. 152/99.

Un dato comune a gran parte dei distretti è l'alta percentuale di corpi idrici ancora non monitorati,

superiore all'80% per fiumi e laghi del Distretto Sicilia e per i laghi del Distretto Sardegna.

Figura 9.4: Fiumi - Indice di qualità Stato Chimico (2010-2015)

Distretto idrografico	Corpo	idrico	Bud	ono	Non b	ouono	N.	D.
	Categoria	TOTALE						
	RWB/LWB ¹	n.	n.	%	n.	%	n.	%
Alpi orientali 2	R			83		1		16
Appennino settentrionale ³	R+L	1.392	1.069	77	256	18	67	5
Padano	R	2.034	1.798	88	156	8	80	4
Serchio	R	51	16	31	31	61	4	8
Appennino centrale	R	493	325	66	30	6	138	28
Appennino meridionale 4	R+L	824+66		69		24		7
Sicilia	R	256	39	15	3	1	214	84
Sardegna	R	726	470	65	41	6	215	29

Fonte: Piani di Gestione dei Distretti Idrografici

Nota:

Figura 9.5: Laghi - Indice di qualità Stato chimico (2010-2015)

Distretto idrografico	Corpo	idrico	Bud	ono	Non b	ouono	N.	D.
	Categoria	TOTALE						
	RWB/LWB ¹	n.	n.	%	n.	%	n.	%
Alpi orientali 2	L			87		3		10
Appennino settentrionale ³	R+L	1.392	1.069	77	256	18	67	5
Padano	L	106	59	56	15	14	32	30
Serchio	L	2	0	0	1	50	1	50
Appennino centrale	L	36	26	72	4	11	6	17
Appennino meridionale4	R+L			69		24		7
Sicilia	L	31	2	6	2	6	27	88
Sardegna	L	32	4	13	2	6	26	81

Fonte: Piani di Gestione dei Distretti Idrografici

Note

¹ RWB: River Water Body - LWB: Lake Water Body

² Non viene riportato il numero di corpi idrici

³Dato accorpato per fiumi e laghi (viene riportato come acque superficiali)

⁴ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali) - solo valori percentuali

¹ RWB: River Water Body - LWB: Lake Water Body

² Non viene riportato il numero di corpi idrici

³ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali)

⁴ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali) - solo valori percentuali

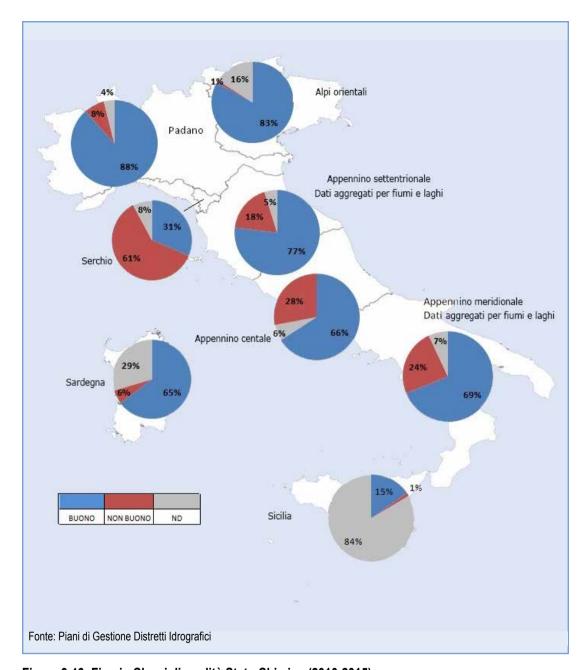


Figura 9.46: Fiumi - Classi di qualità Stato Chimico (2010-2015)

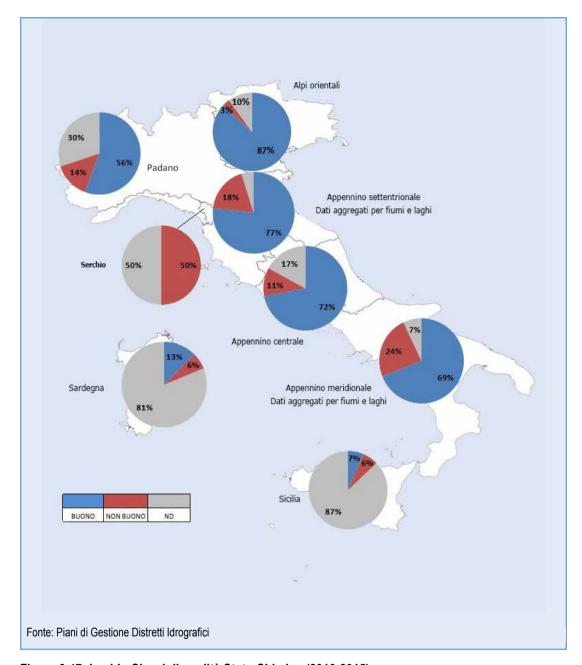


Figura 9.47: Laghi - Classi di qualità Stato Chimico (2010-2015)

INDICE DI QUALITÀ STATO ECOLOGICO DELLE ACQUE SUPERFICIALI

DESCRIZIONE

Lo Stato Ecologico delle acque superficiali interne, ai sensi del D.Lgs. 152/2006, è un indice che descrive la qualità della struttura e del funzionamento degli ecosistemi acquatici. La normativa prevede una selezione degli Elementi di Qualità Biologica (EQB) da monitorare nei differenti corpi idrici sulla base degli obiettivi e della valutazione delle pressioni e degli impatti.

Gli EQB previsti per le acque superficiali sono: macrobenthos, macrofite e fauna ittica. Inoltre, fitobenthos (diatomee) per i fiumi e fitoplancton per i laghi.

Allo scopo di permettere una maggiore comprensione dello stato e della gestione dei corpi idrici, oltre agli EQB sono monitorati altri elementi a sostegno: l'indice di qualità componenti chimico-fisiche dei fiumi (LIMeco) o dei laghi (LTLeco), gli inquinanti specifici non compresi nell'elenco di priorità (Tabella 1/B) e gli elementi idromorfologici.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	2	1

L'indicatore rispecchia in maniera adeguata le richieste della normativa vigente, sia in ambito nazionale sia europeo. L'accuratezza dell'informazione risente della scarsità di serie temporali per alcune realtà regionali all'interno dei distretti. Il punteggio assegnato alla comparabilità nel tempo, invece, è conseguenza del recente adeguamento normativo che ha modificato i criteri di classificazione, mentre la comparabilità nello spazio è assicurata dall'emanazione dei decreti attuativi

OBIETTIVI FISSATI DALLA NORMATIVA

In accordo col D.Lgs. 152/06 e s.m.i. entro il 2015 ogni corpo idrico deve raggiungere uno stato di qualità ambientale "buono".

STATO E TREND

Il monitoraggio dello stato ecologico dei differenti corpi idrici viene effettuato con l'analisi di numerosi parametri e con programmi e reti di monitoraggio (sorveglianza e operativo) che sono in continuo miglioramento e definizione, al fine di adempiere correttamente agli indirizzi previsti dalla normativa. L'attuazione della Direttiva 2000/60/CE è iniziata, per quasi tutto il territorio nazionale, con il monitoraggio del 2010, e, trattandosi dei risultati del primo sessennio di monitoraggio, non è possibile valutare il *trend*. I risultati riportati all'interno dei piani di gestione, benché riferiti al periodo in esame, presentano delle disomogeneità negli anni effettivamente utilizzati per la classificazione, pregiudicando la valutazione dello stato.

COMMENTI A TABELLE E FIGURE

L'Indice di Qualità Stato Ecologico delle acque superficiali viene rappresentato suddiviso per i fiumi e per i laghi. Per quanto riguarda i fiumi, la percentuale più alta di corpi idrici che rispetta l'obiettivo di qualità si riscontra nel Distretto delle Alpi orientali, con il 56% di corpi idrici in qualità buona o superiore. Anche nel Distretto della Sardegna detta percentuale è elevata (55%), tuttavia si segnala l'assenza di corpi idrici in stato superiore al buono. Per i laghi la situazione migliore si riscontra sempre nel Distretto delle Alpi orientali con il 34% dei corpi idrici che raggiunge l'obiettivo di qualità.

Per il bacino del Serchio va segnalata l'esiguità dei corpi idrici utilizzati per la valutazione, data la piccola dimensione di questo distretto idrografico (51 corpi idrici fluviali e 2 corpi idrici lacustri).

I dati riguardanti il Distretto dell'Appennino settentrionale e quelli del Distretto dell'Appennino meridionale sono stati riportati nei piani di gestione accorpati per "acque superficiali", quindi, il dato riportato nelle figure coincide per fiumi e laghi.

Da segnalare, inoltre, che i dati di classificazione riportati nei Piani di Gestione dei Distretti idrografici a cui si è fatto riferimento per la compilazione della scheda indicatore, non sempre sono omogenei dal punto di vista temporale. Il caso più eclatante è quello delle regioni Basilicata e Calabria del Distretto Appennino meridionale, per le quali i dati

fanno riferimento al vecchio D.Lgs. 152/99. Un dato comune a gran parte dei distretti è la percentuale di corpi idrici ancora non monitorati, si passa dal 2% per i fiumi del Distretto Appennino centrale all'84% per i laghi del Distretto della Sicilia.

Figura 9.6: Fiumi - Indice di qualità stato ecologico (2010-2015)

Distretto idrografico	Corpo id	Irico	Elev	/ato	Bud	ono	Suffic	iente	Sca	rso	Cat	tivo	N.	D.
	Categoria	Totale												
	RWB/LWB1	n.	n.	%	n.	%	n.	%	n.	%	n.	%	n.	%
Alpi orientali 2	R			12		44		19		7		2		16
Appennino settentrionale ³	R+L	1.392	31	2	468	34	479	34	291	21	93	7	30	2
Padano	R	2.034	99	5	863	42	656	32	262	13	54	3	100	5
Serchio	R	51	16	32	9	18	23	46	0	0	0	0	2	4
Appennino centrale	R	493	10	2	169	34	201	41	80	16	25	5	8	2
Appennino meridionale ⁴	R+L	824+66		1		37		31		18		5		8
Sicilia	R	124	0	0	9	3,5	106	41,4	8	3,1	1	0,4	132	51,6
Sardegna	R	726	0	0	402	55	71	10	30	4	4	1	219	30

Fonte: Piani di Gestione dei Distretti Idrografici

Nota:

Figura 9.7: Laghi - Indice di qualità stato ecologico (2010-2015)

Distretto idrografico	Corpo id	Irico	Elev	/ato	Bud	ono	Suffic	ciente	Sca	rso	Cat	tivo	N.	D.
	Categoria	Totale												
	RWB/LWB1	n.	n.	%	n.	%	n.	%	n.	%	n.	%	n.	%
Alpi orientali 2	L			2		32		23		0		0		43
Appennino settentrionale ³	R+L	1392	31	2	468	34	479	34	291	21	93	7	30	2
Padano	L	106	7	7	25	23	34	32	3	3	1	1	36	34
Serchio	L	2	0	0	0	0	2	100	0	0	0	0	0	0
Appennino centrale	L	36	0	0	8	22	23	64	3	8	0	0	2	6
Appennino meridionale ⁴	R+L	824+66		1		37		31		18		5		8
Sicilia	L	31	0	0	0	0	5	16	0	0	0	0	26	84
Sardegna	L	32	0		3	10	18	56	1	3	0		10	31

Fonte: Piani di Gestione dei Distretti Idrografici

Nota:

¹ RWB: River Water Body - LWB: Lake Water Body

² Non viene riportato il numero di corpi idrici

³ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali)

⁴ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali) - solo valori percentuali

¹ RWB: River Water Body - LWB: Lake Water Body

² Non viene riportato il numero di corpi idrici

³ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali)

⁴ Dato accorpato per fiumi e laghi (viene riportato come acque superficiali) - solo valori percentuali

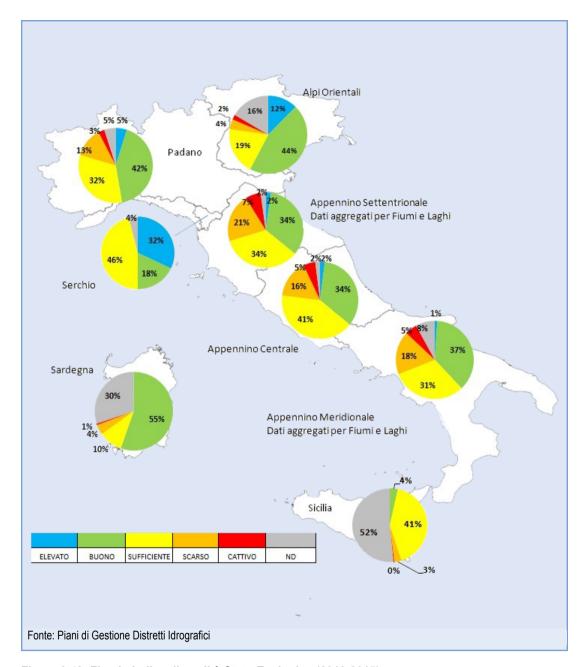


Figura 9.48: Fiumi - Indice di qualità Stato Ecologico (2010-2015)

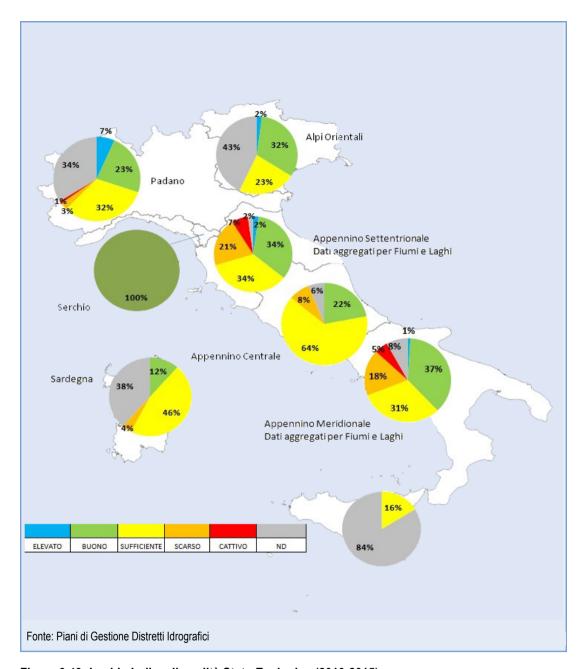


Figura 9.49: Laghi - Indice di qualità Stato Ecologico (2010-2015)

STATO CHIMICO DELLE ACQUE SOTTERRANEE (SCAS)

DESCRIZIONE

L'indice di stato chimico delle acque sotterranee (SCAS) evidenzia i corpi idrici nei quali sono presenti sostanze chimiche contaminanti derivanti delle attività antropiche. È importante definire lo stato chimico di ciascun corpo idrico sotterraneo perché, insieme allo stato quantitativo (disponibilità della risorsa idrica), permette la definizione dello stato complessivo del corpo idrico. Gli impatti antropici sullo stato chimico delle acque sotterranee sono quantificati periodicamente attraverso l'analisi chimica delle acque, prelevate da stazioni di monitoraggio, che possono essere pozzi o sorgenti, al fine di individuare la presenza di sostanze inquinanti e/o la loro tendenza ad aumentare nel tempo. Diverse sono le sostanze indesiderate o inquinanti presenti nelle acque sotterranee che possono compromettere gli usi pregiati della risorsa idrica, come ad esempio quello potabile, ma non per questo tutte le sostanze indesiderate sono sempre di origine antropica. Esistono, infatti, molte sostanze ed elementi chimici che si trovano naturalmente negli acquiferi, la cui origine geologica non può essere considerata causa di impatti antropici sulla risorsa idrica sotterranea. Ad esempio, in acquiferi profondi e confinati di pianura si possono naturalmente riscontrare, anche in concentrazioni molto elevate, metalli come ferro, manganese, arsenico, oppure sostanze inorganiche come ione ammonio derivante prevalentemente dalla degradazione anaerobica della sostanza organica sepolta (tra cui le torbe). In questi contesti, anche la presenza di cloruri (salinizzazione delle acque) può essere riconducibile alla presenza di acque "fossili" di origine marina. Nei contesti geologici caratterizzati invece da formazioni di origine vulcanica (Toscana, Lazio, Campania) possono essere naturalmente presenti sostanze riconducibili a composti di zolfo. fluoruri, boro, arsenico, mercurio. Anche metalli come il cromo esavalente può essere di origine naturale in contesti geologici di metamorfismo, sia nella zona alpina sia appenninica, come ad esempio nelle zone a ofioliti (pietre verdi). Al contrario, è indicativa di impatto antropico la presenza di pesticidi, di microinguinanti organici, di nitrati con concentrazioni medio-alte, di intrusione salina.

Pertanto, lo stato chimico delle acque sotterranee è quello influenzato dalla sola componente antropica delle sostanze indesiderate trovate, una volta discriminata la componente naturale attraverso la quantificazione del suo valore di fondo naturale per ciascun corpo idrico sotterraneo. L'indice SCAS viene rappresentato, per corpo idrico sotterraneo. in due classi, "buono" e "scarso", come definite nel D.Lgs. 30/09, che recepisce le Direttive europee 2000/60/CE e 2006/118/CE, e al tempo stesso integra e modifica il D.Lgs. 152/06. La classe di stato chimico "buono" identifica guindi le acque in cui le sostanze inquinanti o indesiderate hanno una concentrazione inferiore agli standard di qualità fissati dalle direttive europee, come ad esempio per nitrati (50 mg/L) e fitofarmaci (0,1 ug/L per ciascun principio attivo e 0,5 ug/L per la sommatoria), o ai valori soglia fissati a livello nazionale, ad esempio per sostanze inorganiche, metalli, solventi clorurati, idrocarburi. Le regioni possono modificare i valori soglia per diverse sostanze e per ciascun corpo idrico, qualora la concentrazione di fondo naturale dovesse risultare superiore al valore di soglia fissato. In altre parole, nella classe "buono" rientrano tutte le acque sotterranee che non presentano evidenze di impatto antropico, o comunque che l'impatto sia limitato entro un massimo del 20% del corpo idrico, e anche quelle in cui sono presenti sostanze indesiderate o contaminanti, ma riconducibili a un'origine naturale. Al contrario, nella classe "scarso" rientrano tutte le acque sotterranee che non possono essere classificate nello stato "buono" e nelle quali risulta evidente un impatto antropico. sia per livelli di concentrazione dei contaminanti sia per le loro tendenze all'aumento significative e durature nel tempo.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	2	1

Lo SCAS rispecchia in maniera adeguata le richieste della normativa vigente, sia in ambito nazionale sia europeo. Tuttavia, la copertura spaziale è ancora parzialmente disomogenea, dovuta

alla mancanza di dati di alcuni contesti territoriali. La comparabilità temporale risente invece del recente adeguamento normativo che ha modificato i criteri di classificazione, mentre la comparabilità nello spazio è assicurata dall'emanazione dei decreti attuativi.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2000/60/CE ha come obiettivi quelli di promuovere e attuare politiche sostenibili per l'uso e la salvaguardia delle acque superficiali e sotterranee. al fine di contribuire al perseguimento della loro tutela e miglioramento della qualità ambientale, oltre che all'utilizzo razionale delle risorse naturali. La direttiva ha individuato nei Distretti idrografici (costituiti da uno o più Bacini idrografici, D.Lgs. 152/06) gli ambiti territoriali di riferimento per la pianificazione e gestione degli interventi finalizzati alla salvaguardia e tutela della risorsa idrica. Ciascun Distretto idrografico predispone un Piano di Gestione, ovvero uno strumento conoscitivo, strategico e operativo, attraverso cui pianificare, attuare e monitorare le misure per la protezione, risanamento e miglioramento dei corpi idrici, favorendo il raggiungimento degli obiettivi ambientali previsti dalla direttiva. Tutti i corpi idrici sotterranei di ciascuno Stato membro devono raggiungere l'obiettivo di stato "buono". Tale stato viene definito in due classi, "buono" e "scarso" (Tabella 9.8), in funzione delle condizioni peggiori che il corpo idrico assume tra stato chimico e stato quantitativo. Ne conseque che l'obiettivo ambientale per i corpi idrici sotterranei è il raggiungimento dello stato di "buono" sia per lo stato quantitativo sia per lo stato chimico. Per le acque sotterranee è stata emanata anche la Direttiva 2006/118/CE, inerente la "Protezione delle acque sotterranee dall'inquinamento e dal deterioramento", recepita in Italia dal D.Lgs. 30/09, che a sua volta integra e modifica il D.Lgs. 152/06. In esso sono riportati i seguenti criteri: identificazione e caratterizzazione dei corpi idrici sotterranei; standard di qualità per alcuni parametri chimici e valori soglia per altri parametri necessari alla valutazione del buono stato chimico delle acque sotterranee: criteri per individuare e per invertire le tendenze significative e durature all'aumento dell'inquinamento e per determinare i punti di partenza per dette inversioni di tendenza; criteri per la classificazione dello stato quantitativo: modalità per la definizione dei programmi di monitoraggio. I DM 56/09 e 260/10, successivi al D.Lgs. 30/09, confermano e non modificano quanto già contenuto nel D.Lgs. 30/09 in riferimento alle tematiche sulle acque sotterranee Per classificare lo stato chimico è necessario identificare e caratterizzare i corpi idrici sotterranei, partendo dai complessi idrogeologici definiti a scala nazionale in 7 tipologie (Tabella 9.10), e per ciascuno di essi si procede a identificare gli acquiferi, tenendo conto dei criteri di quantità significativa o flusso significativo di acqua. e delimitando infine i corpi idrici sulla base di confini idrogeologici o differenze nello stato di qualità e delle pressioni antropiche esistenti. Una volta individuati i corpi idrici, a ciascuno è attribuita una classe di rischio di non raggiungere gli obiettivi di qualità previsti a livello europeo, ovvero "a rischio" e "non a rischio", sulla base dei dati di monitoraggio e/o delle pressioni antropiche presenti.

STATO E TREND

Il monitoraggio chimico delle acque sotterranee viene effettuato con campagne di misura ogni anno sempre più organizzate, derivanti da programmi e reti di monitoraggio (sorveglianza e operativo) che sono in continuo miglioramento e definizione, al fine di adempiere correttamente agli indirizzi previsti dalla normativa per il calcolo dello SCAS e per il monitoraggio degli impatti antropici. Il primo ciclo di gestione dei Distretti idrografici, ai sensi delle Direttive europee 2000/60/CE e 2006/118/CE, è terminato nel 2015 ed è pertanto questa la prima rappresentazione per corpo idrico dell'indice SCAS, in cui emerge che il 65,3% dei corpi idrici sotterranei è in stato "buono". Con i prossimi aggiornamenti dell'indicatore, presumibilmente con frequenza triennale, sarà possibile fornire il trend. Per questo motivo non si assegna ancora l'icona di Chernoff.

COMMENTI A TABELLE E FIGURE

Dall'esame della Figura 9.53 si evince che il 65,3% dei corpi idrici sotterranei risulta in classe "buono", mentre il restante 34,7% in classe "scarso". Per tenere conto della dimensione dei corpi idrici classificati è stato elaborato lo SCAS anche in termini di superficie dei corpi idrici, da cui risulta che il 57,9% delle acque sotterranee è in stato "buono". Lo SCAS è significativo a scala nazionale grazie alla partecipazione di 14 regioni

e 2 province autonome (Tabella 9.9), con 727 corpi idrici classificati rispetto ai 794 totali (copertura del 91,6%) che, in termini di superficie di corpi idrici classificati, è pari a 215.737 km² rispetto ai 233.539 km² totali (copertura del 92,4%). La dimensione media dei corpi idrici sotterranei è pari a 294,1 km², con una notevole variabilità nei diversi contesti territoriali dovuta principalmente alle caratteristiche geologiche del territorio, passando da 5,5 km² della Liguria ai 931,1 km² della Lombardia.

Considerando il dettaglio regionale, le Province autonome di Bolzano e di Trento hanno tutti i corpi idrici in stato "buono", seguite dalla Toscana (80,1%) e dalla Sardegna (78,4%) (Tabella 9.9, Figura 9.51). Al contrario, la maggiore incidenza dello stato chimico "scarso" si riscontra in Lombardia (85,2%) seguita dalla Puglia (78,3%). In alcuni contesti territoriali la rappresentazione dello SCAS per numero di corpi idrici e per superficie risulta molto diversa per effetto del ridotto numero di corpi idrici e/o per la forte disomogeneità nella dimensione dei corpi idrici medesimi, come evidente per la Valle d'Aosta. Lo SCAS è stato analizzato anche in relazione ai corpi idrici (sia in termini di numero sia di superficie) appartenenti ai diversi complessi idrogeologici: le Alluvioni delle depressioni quaternarie (DQ) sono il complesso con il maggior numero di corpi idrici, pari a 261, seguito dai calcari (CA) e dagli acquiferi locali (LOC). In termini di superficie, i corpi idrici nelle depressioni quaternarie (DQ) rappresentano il 52.1% dell'intera superficie dei corpi idrici, seguita dai calcari (CA) con il 20,4%.(Tabella 9.11; Figura 9.52)

La classe "buono" nelle DQ e CA è pari, rispettivamente, al 18,7% e 19,5% del totale dei corpi idrici classificati che, in termini di superficie, è pari al 21,7% e 16%. Al contrario, la classe "scarso" resta elevata nelle DQ (17.2% del numero dei corpi idrici e 30,4% come superficie), ma molto più bassa nei CA (2.8% del numero corpi idrici e 4.4% come superficie). Valori relativamente elevati si registrano anche per i corpi idrici delle alluvioni vallive (AV). I parametri critici che determinano la classe "scarso", per ciascun ambito territoriale o per complesso idrogeologico (Tabella 9.12), sono spesso le sostanze inorganiche quali nitrati, solfati, fluoruri, cloruri, boro, insieme a metalli pesanti, sostanze clorurate, aromatiche e pesticidi. Occorre comunque tenere conto che diverse regioni non hanno ancora definito l'eventuale origine naturale di sostanze inorganiche o metalli, quando presenti oltre i valori soglia, e ciò determina, allo stato attuale, una possibile sovrastima della classe "scarso" a scapito del "buono", in quanto lo stato chimico sarebbe determinato da cause naturali e non da impatto antropico. Ciò può incidere significativamente nella corretta classificazione dei corpi idrici, in particolare quelli dei complessi idrogeologici vulcaniti (VU) e alluvioni delle depressioni quaternarie (DQ).

Tabella 9.8 : Classificazione dello stato chimico dei corpi idrici sotterranei - SCAS

Classi di qualità	Giudizio di qualità
Buono	La composizione chimica del corpo idrico sotterraneo è tale che le concentrazioni di inquinanti non presentano effetti di intrusione salina, non superano gli standard di qualità ambientale e i valori soglia stabiliti e infine non sono tali da impedire il conseguimento degli obiettivi ambientali stabiliti per le acque superficiali connesse nè da comportare un deterioramento significativo della qualità ecologica o chimica di tali corpi nè da recare danni significativi agli ecosistemi terrestri direttamente dipendenti dal corpo idrico sotterraneo.
Scarso	Quando non sono verificate le condizioni di buono stato chimico del corpo idrico sotterraneo
Fonte: Allegato 3 - D. L	gs. 30/09
Nota:	
Scala cromatica Diretti	va 2000/60/CE

Tabella 9.9: Indice SCAS per unità territoriale, numero e superficie dei corpi idrici sotterranei (2015)

		1		₹		m	0	0	0	OI.	m	10	10	0	\sim	OI.	m	m	_	_		
	sul totale issoificati	%	Scarso	60,4	0,99	99,3	0,0	0,0	0,0	35,2	18,3	41,5	36,5	19,9	28,2	18,2	25,8	61,8	74,7	12,1	42,1	
S	Superficie corpi idrici	6	Buono	39,6	34,0	2,0	100,0	100,0	100,0	64,8	81,7	58,5	63,5	80,1	71,8	81,8	74,2	38,2	25,3	87,9	57,9	
se di SCA	classificati		Scarso	10.072	44	27.706	0	0	0	8.868	2.201	93	13.211	2.481	1.276	2.827	1.201	11.580	6.912	2.307	90.779	
Corpi idrici classificati per classe di SCAS	Superficie corpi idrici	km ²	Buono	909.9	23	183	13.223	7.400	5.823	16.309	9.806	131	22.983	10.012	3.257	12.707	3.462	7.166	2.347	16.742	124.958	
classifi	classificati		carso	75,0	25,0	85,2	0,0	0,0	0,0	39,4	29,7	39,0	31,7	20,0	34,0	27,7	53,8	78,3	51,9	21,6	34,7	
pi idrici	Corpi idrici sul totale	%	Buono Scarso	25,0	75,0	14,8	100,0	100,0	100,0	9,09	20,3	0,19	68,3	0,08	0,99	72,3	46,2	21,7	48,1	78,4	65,3	
Cor				18	_	23	0	0	0	13	11	16	46	14	16	13	4	18	27	22	252	
	Corpi idrici	Ë	Buono Scarso	9	က	4	49	39	10	20	56	22	66	26	31	34	12	2	22	80	475	
	uperficie corp ci classificati totale		8 %	26,0	92,9	8,66	100,0	100,0	100,0	100,0	99,4	100,0	100,0	100,0	99,4	100,0	2,68	95,9	75,7	2,86	92,4	V C C V
	TOTALE uperficie corp idrici classificati			16.680	29	27.888	13.223	7.400	5.823	25.177	12.007	224	36.193	12.493	4.534	15.534	4.663	18.746	9.259	19.049	215.737	ACOMPAND Company of the contract of the contra
00	Dimensione edia corpo idri	u	km²	875,4	12,0	931,1	269,9	189,7	582,3	762,9	317,8	5,5	249,6	178,5	93,1	330,5	192,6	674,0	149,2	169,4	294,0	4. 10 00 air 10
į	TOTALE Superficie corp idrici	S		29.762	72	27.932	13.223	7.400	5.823	25.177	12.077	224	36.193	12.493	4.563	15.534	5.200	19.546	12.237	19.306	233.539	
-iñi	rpi idrici class cati sul totale	၈၁	%	9'02	2'99	0,06	100,0	100,0	100,0	100,0	97,4	100,0	100,0	100,0	95,9	100,0	6,96	79,3	63,4	89,5	91,6	itimos itolo
-iñi	Anno di samento class ZADS enoiz	giorr so	ibe	2014	2015	2015	2015	2015	2015	2014	2014	2013	2013	2015	2012	2015	2012	2011	2014	2015		(
	Corpi idrici classificati		'n.	24	4	27	49	39	10	33	37	41	145	20	47	47	26	23	52	102	727	ر:ان ^م ۲
	Corpi idrici		ċ	34	ဖ	30	49	39	10	33	38	41	145	20	49	47	27	59	82	114	794	70 4/4 0
Regione/Provincia	autonoma			Piemonte	Valle d'Aosta	Lombardia *	Trentino-Alto Adige	Bolzano-Bozen *	Trento *	Veneto *	Friuli-Venezia Giulia *	Liguria *	Emilia-Romagna *	Toscana *	Marche	Lazio *	Abruzzo	Puglia	Sicilia	Sardegna *	TOTALE	Fonto: Flotonico o IODD A/ADDA Emilio Domoga

Fonte: Elaborazione ISPKA/AKPA Emilia-Komagna su dati forniti da regioni, province autonome e AKPA/APPA

Legenda:

* Regione che nella classificazione dello SCAS ha tenuto conto dei valori di fondo naturale

Tabella 9.10: Complessi idrogeologici

Acronimo	Complessi idrogeologici
DQ	Alluvioni delle depressioni quaternarie
AV	Alluvioni vallive
CA	Calcari
VU	Vulcaniti
DET	Formazioni detritiche degli altipiani plio-quaternarie
LOC	Acquiferi locali
STE	Formazioni sterili
Fonte: Allegato 1 - D.Lg	gs. 30/09

Tabella 9.11: Indice SCAS per unità territoriale, corpo idrico e per complesso idrogeologico (2015)

Regione/	Corpi idrici				Corpi idrio	i per comp	Corpi idrici per complesso idrogeologico e per classe di SCAS	eologico e	per classe	di SCAS			
Provincia autonoma	ciassificati	DO	G.	A		S	4	N		٥	DET	TOC	ပ
		Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso
							Ŀ						
Piemonte	24	9	13	0	4							0	1
Valle d'Aosta	4			3	1								
Lombardia (*)	27	0	20									4	က
Trentino Alto Adige	49			6	0	20	0	2	0			15	0
Bolzano-Bozen (*)	39			5	0	16	0	က	0			15	0
Trento (*)	10			4	0	4	0	2	0				
Veneto (*)	33	11	12	1	0	4	0	1	0			3	_
Friuli Venezia Giulia (*)	37	16	1	1	0	7	0					2	0
Liguria (*)	41	1	1	24	15								
Emilia-Romagna (*)	145	26	37	1	0					1	1	41	8
Toscana (*)	02	22	6	4	2	20	1	3	0			7	2
Marche	47			9	13	20	2					2	1
Lazio (*)	47	4	9	0	2	21	0	2	0	2		2	1
Abruzzo	26	2	3	1	10	6	0			0			
Puglia	23			0	က	က	6			2	9		
Sicilia	52			2	7	17	7	7	က	2	7	3	က
Sardegna (*)	102	18	13			21	-	24	4			17	4
TOTALE	727	136	125	52	09	142	20	39	7	7	16	66	24
%		18,7	17,2	7,2	8,3	19,5	2,8	5,3	1,0	1,0	2,2	13,5	3,3

continua

3		3	
ζ	_	Ş	
(l	כ	
c	ı)	

Regione/	Superficie			Superficie	Superficie Corpi idrici per complesso idrogeologico e per classe di SCAS	i per comp	lesso idroc	eologico e	per classe	di SCAS			
Provincia autonoma	corpi idrici	DQ		- A		. S		n _N		DET	L	707	
	classificati	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso
							"wy						
Piemonte	16.680,00	0.608,00	9.455,00	00'0	351,00							00'0	266,00
Valle d'Aosta	66,70			22,70	44,00								
Lombardia *	27.888,46	00'0	27.584,66									182,90	120,90
Trentino Alto Adige	13.223,06			608'09	00'0	4.906,29	00'0	3.487,73	00'0			4.220,95	0,00
Bolzano-Bozen *	7.399,80			341,17	00'0	1.810,33	00'0	1.027,35	00'0			4.220,95	00'00
Trento *	5.823,26			266,95	00'0	3.095,96	00'0	2.460,38	0,00				
Veneto *	25.176,75	9.365,75	8.566,75	306,00	00'0	5.269,75	00'0	996,50	00'0			370,50	301,50
Friuli Venezia Giulia *	12.006,80	5.616,47	2.200,92	108,01	00'0	3.325,17	00'0					756,20	0,00
Liguria *	224,32	61,11	29'5	20,08	87,51								
Emilia-Romagna *	36.193,47	17.566,12	12.145,95	473,75	00'0					141,10	463,19	4.801,53	601,83
Toscana *	12.493,00	4.009,00	1.963,00	264,00	101,00	1.536,00	35,00	321,00	00'0			3.882,00	382,00
Marche	4.533,60			148,82	1.240,99	1.626,65	30,31					1.481,80	5,02
Lazio *	15.534,10	1.277,90	1.592,34	00'0	338,87	5.352,15	00'0	5.422,32	00'0	281,30	279,78	373,72	615,70
Abruzzo	4.663,00	266,00	619,00	43,00	548,00	3.153,00	00'00			00'0	34,00		
Puglia	18.746,20			00'0	295,00	6.835,92	7.522,60			329,91	3.462,77		
Sicilia	9.258,90			17,31	1.033,83	1.269,29	1.794,61	176,32	1.667,69	230,36	1.605,80	652,89	810,43
Sardegna *	19.048,90	2.055,60	1.412,60			1.307,10	36,60	4.147,20	322,50			9.232,30	535,00
TOTALE	215.737,26	46.825,95	65.545,84	2.061,76	4.340,19	34.581,33	9.419,11	14.551,07	1.990,19	982,67	5.845,55	25.954,79	3.638,38
%		21,7	30,4	1,0	2,0	16,0	4,4	2'9	6'0	0,5	2,7	12,0	1,7
Fonte: Elaborazione ISPRA/ARPA Emilia-Romagna su dati forniti da regioni, province autonome e ARPA/APPA	RPA Emilia-Rom	agna su dati	forniti da re	gioni, provin	ce autonom	e ARPA/AF	ьРА						
Legenda:													

 $^{^{\}star}$ Regione che nella classificazione dello SCAS ha tenuto conto dei valori di fondo naturale; DQ - Alluvioni delle depressioni quaternarie;

AV - Alluvioni vallive;

CA - Calcari;

VU - Vulcaniti;

DET - Formazioni detritiche degli altipiani plio-quaternari;

LOC - Acquiferi locali.

Tabella 9.12.: Parametri critici e consistenza della classe di SCAS "scarso" per corpi idrici e per complesso idrogeologico (2015)

Nitration	Regione / Provincia autonoma	Corpi idrici classificati	Complesso	Tipologia acquifero	Punti di in classe "sca	Punti di prelievo in classe di SCAS "scarso"	Parametri critici di classe "scarso"
sta 4 AV Freatico 11 45,8 sta 4 AV Freatico 2 8,3 LOC Confinato 2 8,3 LOC Confinato 1 4,2 1,00 Confinato 1 25,0 1,11 25,0 1,20 Ereatico 1 25,0 1,11 3,0 LOC Treatico 3 11,1 LOC Treatico 8 21,6 DQ Freatico 1 2,4 DQ Freatico 1 2,4 AV Freatico 1 3,0 DQ Freatico 1 2,4 AV Freatico 15 36,6 DQ Confinato 15 10,3 LOC Freatico 8 5,5		'n.			Ŀ.	% su totale	
sta			ga	Freatico	11	45,8	Nitrati, Cromo VI, Nichel, Organoalogenati, Pesticidi
sta 4 AV Freatico 4 16,7 sta LOC Confinato 1 4,2 sta LOC Confinato 1 25,0 sta A8,1 sta LOC Confinato 7 25,9 sta LOC Confinato 7 25,9 sta LOC Confinato 3 8,1 sta LOC Confinato 15 36,6 sta LOC Confinato 15 10,3 sta LOC Confinato 15 10,3 sta LOC Freatico 8 5,5 sta LOC Freatico 8 5,5 sta LOC Confinato 15 10,3 sta LOC Freatico 8 5,5 sta LOC Confinato 15 10,3 sta LOC Freatico 8 5,5 sta LOC Confinato 15 10,3 sta LOC Freatico 8 5,5 sta LOC Confinato 15 10,3 sta LOC Freatico 8 5,5 sta LOC Confinato 15 10,3 sta LOC CONTINUATO 15 10,3 sta LOC	, c	ĉ	DQ	Confinato	2	8,3	Nitrati, Cromo VI, Organoalogenati
sta 4 AV Freatico 1 4,2 a* 4 AV Freatico 1 25,0 a* 27 DQ Freatico 13 48,1 LOC 13 48,1 11 48,1 LOC 12 33 11,1 36,4 LOC 12 36,4 1 36,4 DQ Freatico 8 21,6 1 DQ Freatico 15 36,6 1 A1 AV Freatico 15 36,6 DQ Confinato 15 36,6 DQ Confinato 15 10,3 PQ Freatico 15 10,3 PQ Freatico 15 10,3 PQ Freatico 1 0,7 PQ Freatico 1 0,7 PQ Freatico 1 0,7		4	W	Freatico	4	16,7	Solfati, Cloruri, Conducibilità, Organoalogenati
sta 4 AV Freatico 1 25,0 a** 27 DQ Freatico 13 48,1 a** 27 DQ Confinato 7 25,9 LOC 33 11,1 3,0 LOC 1 3,0 1 DQ Freatico 1 3,0 A1 AV Freatico 15,2 magna* 145 DDQ Confinato 15,2 LOC Freatico 22 15,2 H45 DET Freatico 1 0,7 LOC Freatico 8 5,5			707	Confinato	1	4,2	Cromo VI
a* 27 DQ Confinato 7 25,9 11,1	Valle d'Aosta	4	W	Freatico	-	25,0	Fluoruri, Cromo VI, Cromo totale, Ferro, Manganese, Nichel, Organoalogenati
a* 27 DQ Confinato 7 25,9 1,11 LOC 3 11,1 BQ 12 36,4 33 LOC 1 3,0 LOC 7 1 3,0 LOC 8 21,6 BQ Freatico 1 2,4 41 AV Freatico 15 36,6 magna * 145 DET Freatico 1 0,7 LOC Freatico 6 15 10,3 Freatico 1 0,7 LOC Freatico 8 5,5			DØ	Freatico	13	48,1	Nitrati, Cloruri, Ione ammonio, Arsenico, Cromo VI, Cromo totale, Mercurio, Piombo, PCB, Diossine e Furani, Organoalogenati, Pesticidi
LOC 12 36,4 33 LOC 1 3,0 Ezia Giulia * 37 DQ Freatico 15 36,6 41 AV Freatico 15 10,3	Lombardia *	27	DØ	Confinato	7	25,9	Ione ammonio, Cloruri, Arsenico, Cromo VI, Benzo(a)pirene, Benzo(g,h,i)perilene, Dibenzo(a,h)antracene, Organoalogenati, Pesticidi
33 LOC 1 36,4 ezia Giulia* 37 DQ Freatico 8 21,6 DQ Freatico 1 2,4 A1 AV Freatico 15 36,6 magna* 145 DET Freatico 8 5,5 I			707		က	11,1	Ione ammonio, Cromo VI, Organoalogenati
LOC	Veneto *	33	DØ		12	36,4	Nitrati, Nitriti, Ione ammonio, Cloruri, Conducibilità, Solfati, Boro, Arsenico, Cromo VI, Nichel, Piombo, Esadorobenzene, Toluene, Organoalogenati, Pesticidi
rezia Giulia * 37 DQ Freatito 8 21,6 A1 DQ Freatito 1 2,4 AN Freatito 15 36,6 DQ Confinato 15 36,6 Preatito 15 10,3 10,3 Preatito 22 15,2 15,2 DET Freatito 1 0,7 1 LOC Freatito 8 5,5 1			700		_	3,0	Nitrati, Organoalogenati
DQ Confinato 3 8,1 DQ Freatico 1 2,4 AV Freatico 15 36,6 DQ Confinato 15 10,3 Freatico 22 15,2 DET Freatico 8 5,5	* 011-11-11-11-11-11-11-11-11-11-11-11-11-	37	DQ	Freatico	80	21,6	Nitrati, Nitriti, Ione ammonio, Cromo VI, Organoalogenati, Pesticidi
Magna* 41 AV Freatico 15 36,6 DQ Confinato 15 10,3 Freatico 22 15,2 DET Freatico 8 5,5 LOC Freatico 8 5,5	riidii-veriezia Gidiia	70	DQ	Confinato	3	8,1	Cromo VI, Organoalogenati, Pesticidi
22 15,2 magna * 145 DET Freatico 15 36,6 magna * 145 DET Freatico 8 5,5 magna * 241 Magna * 25			DQ	Freatico	-	2,4	Cloruri, Conducibilità
145	Ligunia *	14	W	Freatico	15	36,6	Nitrati, Solfati, Ione ammonio, Fluoruri, Cloruri, Conducibilità, Antimonio, Boro, Cromo VI, Benzene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(g,h,i)perilene, Benzo(k)fluorantene, Dibenzo(a,h)antracene, Organoalogenati
145 Freatioo 22 15,2 15,2			ga	Confinato	15	10,3	Nitrati, Ione ammonio, Cloruri, Conducibilità, Boro, Organoalogenati
Freatico 1 0,7 Freatico 8 5,5	Emilia-Romagna *	145		Freatico	22	15,2	Nitrati, Nitriti, Ione Ammonio, Cloruri, Conducibilità, Solfati, Boro, Arsenico, Cromo VI, Nichel, Organoalogenati, Pesticidi
Freatico 8 5,5			DET	Freatico	1	2,0	Nitrati, Organoalogenati
			TOC	Freatico	80	5,5	Cromo VI, Pesticidi

Φ
⊒
χ,
š

Regione /	Corpi	Complesso	Tipologia	Punti di	Punti di prelievo	Parametri critici di classe "scarso"
Ü	classificati			"SC8	"scarso"	
	Ľ.			خ	% su totale	
		DO		6	12,9	Nitrati, Ione ammonio, Boro, Organoalogenati
***************************************	6	AV		2	2,9	Conducibilità, Organoalogenati
loscalia	2	CA		1	1,4	Organoalogenati
		COC		2	2,9	Organoalogenati
		AV	Freatico	13	27,7	Nitrati, Cloruri, Solfati, Conducibilità, Selenio
Marche	47	CA		2	4,3	Cadmio, Organoalogenati
		DO1		1	2,1	Selenio
		DQ	Freatico	9	12,8	Nitrati, Piombo
***************************************	77	AV	Freatico	2	10,6	Nitrati
רמלוס	ř	DET	Freatico	1	2,1	Nitrati
		COC	Freatico	1	2,1	Nitrati, Organoalogenati
		ğ		3	11,5	Nitrati, Nitriti, Ione ammonio, Solfati, Piombo, Organoalogenati, Pesticidi
Abruzzo	26	AV		10	38,5	Nitrati, Nitriti, Ione ammonio, Solfati, Cloruri, Conducibilità, Boro, Nichel, Benzene, Idro-
	ì					carburi totali, Organoalogenati, Pesticidi
		DET		-	3,8	Ione ammonio, Cloruri, Conducibilità
		ΑV	Freatico	3	13,0	Nitrati, Solfati
Puglia	23	CA	Confinato	6	39,1	Nitrati, Ione ammonio, Cloruri, Conducibilità, Selenio
		DET	Freatico	9	26,1	Nitrati, Ione ammonio, Fluoruri, Solfati, Cloruri, Conducibilità, Selenio
		§ A		7	13,5	Nitrati, Nitriti, Ione ammonio, Solfati, Cloruri, Conducibilità, Antimonio, Arsenico, Boro, Mercurio, Selenio, Organoalogenati
CIII CI	Ç.	S		7	13,5	Nitrati, Nitriti, Ione ammonio, Cloruri, Conducibilità, Arsenico, Antimonio, Nichel, Organo- alogenati, Pesticidi
000	70	ΩΛ		7	13,5	Nitrati, Solfati, Cloruri, Conducibilità, Boro, Cromo totale, Nichel, Piombo, Vanadio, Benzo(ghi)perilene, Organoalogenati
		DET		က	5,8	Nitrati, Nitriti, Ione ammonio, Cloruri, Conducibilità, Solfati, Arsenico, Mercurio, Piombo, Selenio, Esaclorobenzene, Organoalogenati, Pesticidi

Φ
⊃
g
Φ
တ

2000						
Regione / Provincia autonoma	Corpi idrici classificati	Complesso idrogeologico	Tipologia acquifero	Punti d in class	Punti di prelievo in classe di SCAS "scarso"	Parametri critici di classe "scarso"
	-i			ü.	% su totale	
Sicilia		207		က	2,8	Nitrati, Antimonio, Organoalogenati
		ğ	Freatico	13	12,7	Nitrati, Nitriti, Ione ammonio, Fluoruri, Solfati, Cloruri, Conducibilità, Arsenico, Boro, Piombo, Esadorobenzene, Pentaclorobenzene, P-xylene, Toluene, Organoalogenati
		క	Confinato	1	1,0	Solfati, Cadmio, Piombo
* 000000	102	ΩΛ	Confinato	4	3,9	Nitrati, Solfati, Cloruri, Conducibilità
oging oging oging	70	007	Freatico	1	1,0	Solfati, Cadmio, Nichel, Piombo
		207	Confinato	က	2,9	Cloruri, Conducibilità, Solfati, Boro, Triclorobenzeni, Esaclorobenzene, Pentaclorobenze-
						ne, P-xylene, Toluene, Etilbenzene, Benzo(g,h,i)perilene, Benzene, Dibenzo(a,h)antrace-
						ne, diclorobenzene, clorobenzene, Organoalogenati
Fonte: Elaborazione ISPRA/ARPA Emilia-Romagna su dati forniti da regioni, province autonome e ARPA/APPA	VARPA Emil	ia-Romagna su c	dati forniti da re	gioni, provin	ce autonome e	ARPA/APPA

Legenda:

* Regione che nella classificazione dello SCAS hanno tenuto conto dei valori di fondo naturale;

DQ - Alluvioni delle depressioni quaternarie;

AV - Alluvioni vallive;
CA - Calcari;
VU - Vulcaniti; DET - Formazioni detritiche degli altipiani plio-quatemari;

LOC - Acquiferi locali

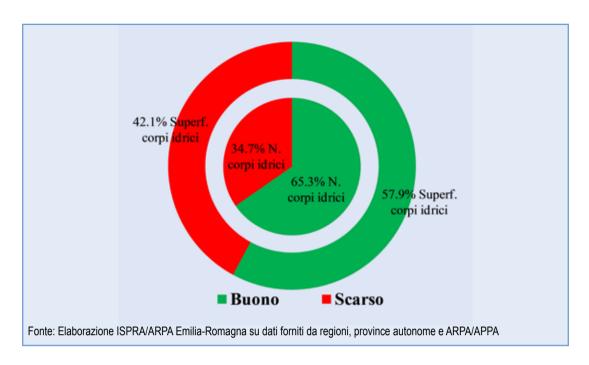


Figura 9.50: Indice SCAS per numero e superficie di corpi idrici sotterranei (2015)

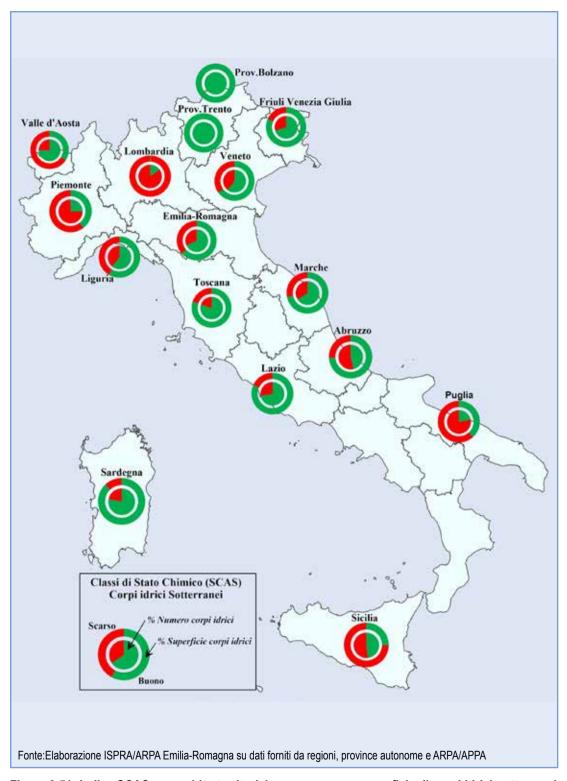
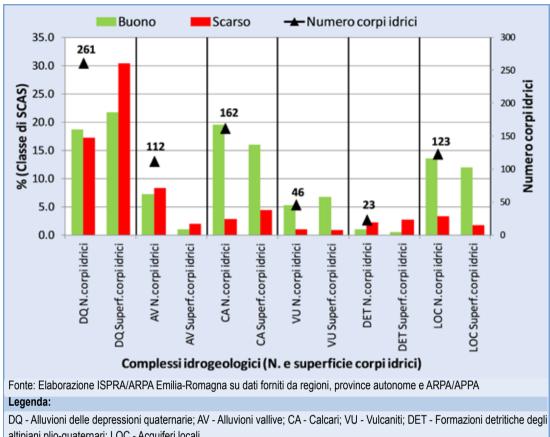



Figura 9.51: Indice SCAS per ambito territoriale, per numero e superficie di corpi idrici sotterranei (2015)

altipiani plio-quaternari; LOC - Acquiferi locali

Figura 9.52: Indice SCAS per complesso idrogeologico (2015)

INDICE STATO QUANTITATIVO DELLE ACQUE SOTTERRANEE (SQUAS)

DESCRIZIONE

Lo Stato Quantitativo delle Acque Sotterranee (SQUAS) evidenzia i corpi idrici nei quali risulta critico l'equilibrio, sul lungo periodo, del ravvenamento naturale rispetto i prelievi di acque sotterranee operati dalle attività antropiche. È. pertanto, un indice che descrive l'impatto antropico sulla quantità della risorsa idrica sotterranea. individuando come critici i corpi idrici nei quali la quantità di acqua prelevata sul lungo periodo è maggiore di quella che naturalmente si infiltra nel sottosuolo a ricaricare i medesimi. In altre parole. tiene conto del bilancio idrogeologico e quantifica la sostenibilità sul lungo periodo delle attività antropiche idroesigenti presenti in un determinato contesto territoriale, il cui approvvigionamento avviene con acque di falda. Le principali tipologie di prelievi sono quelle per usi irrigui, acquedottistici, industriali, zootecnici ed energetici. La quantità di acqua prelevata e utilizzata per i diversi usi dipende sia dalla disponibilità e dalla qualità delle risorse idriche presenti nel territorio, siano esse sotterranee o superficiali, sia dalla tipologia del tessuto produttivo (agricolo, industriale) e di quello insediativo. Ad esempio, gli usi acquedottistici e zootecnici necessitano di acque di buona qualità oltre che di quantitativi consistenti, mentre gli usi irrigui e industriali hanno bisogno di quantità costanti di acqua durante tutto l'anno, in particolare nei periodi estivi e autunnali per gli usi irrigui, che peraltro sono i periodi nei quali è minore la ricarica naturale dei corpi idrici sotterranei.

Lo SQUAS non evidenzia solo condizioni di disequilibrio del bilancio idrogeologico sul lungo periodo, ma anche situazioni in cui le attività antropiche (prelievi o impermeabilizzazione del suolo) inducano modificazioni permanenti nel deflusso naturale delle acque sotterranee, dalle zone di ricarica, di transito a quelle di recapito delle acque all'interno di ciascun corpo idrico sotterraneo, nonché situazioni che possano provocare impatti negativi, in termini di quantità, sul raggiungimento degli obiettivi ecologici dei corpi idrici superficiali eventualmente connessi, oppure arrecare danni significativi agli ecosistemi terrestri dipendenti, comportando uno scadimento della qualità dello

stesso corpo idrico sotterraneo.

Pertanto, per determinare lo stato quantitativo è necessario definire il bilancio idrogeologico di ciascun corpo idrico, ricostruire le modalità di deflusso delle acque sotterranee e individuare gli eventuali impatti rispetto alle condizioni naturali e rispetto ai corpi idrici superficiali ed ecosistemi terrestri. Il monitoraggio dei livelli delle falde o delle portate attraverso la ricostruzione delle carte piezometriche (isolinee di livello dell'acqua di falda rispetto il livello del mare) permette di evidenziare le direzioni di deflusso delle acque sotterranee ed eventuali alterazioni, di migliorare nel tempo il modello concettuale e ottimizzare lo stesso (ubicazione stazioni di monitoraggio, frequenza di monitoraggio, ecc.), individuando così le zone nelle quali aggiungere alla misura di livello anche la determinazione della qualità delle acque per definire eventuali impatti da contaminanti e/o salinizzazione. La scelta della frequenza di monitoraggio dei livelli è fondamentale nelle diverse tipologie di corpi idrici/complessi idrogeologici per ricostruire correttamente lo stato quantitativo. per tale ragione sono sempre più diffuse reti di monitoraggio automatico (freguenza di misura giornaliera o addirittura oraria).

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	2	2

Lo SQUAS rispecchia in maniera adeguata le richieste della normativa vigente, sia in ambito nazionale sia europeo. L'accuratezza, la comparabilità nel tempo e nello spazio risentono ancora dell'assenza di documenti tecnici, esplicativi della normativa di riferimento, circa i criteri necessari per la classificazione dello stato quantitativo dei corpi idrici sotterranei.

**

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva 2000/60/CE ha come obiettivi quelli

di promuovere e attuare politiche sostenibili per l'uso e la salvaguardia delle acque superficiali e sotterranee, al fine di contribuire al perseguimento della loro tutela e miglioramento della qualità ambientale, oltre che all'utilizzo razionale delle risorse naturali. La direttiva ha individuato nei Distretti idrografici (costituiti da uno o più Bacini idrografici, D.Lgs. 152/06) gli ambiti territoriali di riferimento per la pianificazione e gestione degli interventi finalizzati alla salvaguardia e tutela della risorsa idrica. Tutti i corpi idrici di ciascuno Stato membro dovranno raggiungere entro il 2015 il "buono stato" ambientale. Lo stato dei corpi idrici sotterranei viene definito in due classi, "buono" e "scarso" (Tabella 9.13), in funzione delle condizioni peggiori che il corpo idrico assume tra stato chimico e stato quantitativo . Ne conseque che l'obiettivo per i corpi idrici sotterranei è il raggiungimento dello stato di "buono" sia per lo stato quantitativo sia per lo stato chimico. Il D.Lgs. 30/09 recepisce le direttive europee per i corpi idrici sotterranei e riporta i seguenti criteri: identificazione e caratterizzazione dei corpi idrici sotterranei; standard di qualità per alcuni parametri chimici e valori soglia per altri parametri necessari alla valutazione del buono stato chimico delle acque sotterranee: criteri per individuare e per invertire le tendenze significative e durature all'aumento dell'inquinamento e per determinare i punti di partenza per dette inversioni di tendenza; criteri per la classificazione dello stato quantitativo; modalità per la definizione dei programmi di monitoraggio. I DM 56/09 e 260/10, successivi al D.Lgs. 30/09, confermano e non modificano quanto già contenuto nel D. Lgs. 30/09 in riferimento alle tematiche sulle acque sotterranee.

STATO E TREND

Il monitoraggio quantitativo dei corpi idrici sotterranei viene effettuato con campagne di misura, dei livelli di falda e delle portate, strutturate in modo sempre più organizzato, in diversi casi anche tramite l'ausilio di strumentazione automatica, al fine di definire l'andamento dei livelli sul lungo periodo depurate dalla componente climatica stagionale e pluriannuale. Il primo ciclo di gestione dei Distretti idrografici, ai sensi della Direttiva europea 2000/60/CE, è terminato nel 2015 ed è pertanto questa la prima rappresentazione per corpo idrico dell'indice SQUAS, in cui emerge che

l'84,2% dei corpi idrici sotterranei è in stato "buono". Con i prossimi aggiornamenti dell'indicatore, presumibilmente con frequenza triennale, sarà possibile fornire il *trend*. Al momento, pertanto non si assegna l'icona di Chernoff.

COMMENTI A TABELLE E FIGURE

Dall'esame della Figura 9.53 si evince che l'84,2% dei corpi idrici sotterranei è in classe "buono", mentre il restante 15,8% in classe "scarso". Per tenere conto della dimensione dei corpi idrici classificati è stato elaborato lo SQUAS anche in termini di superficie, da cui risulta che il 90,7% delle acque sotterranee è in stato "buono".

La prima valutazione a scala nazionale dello SQUAS è stata effettuata con la partecipazione di 13 regioni e le province autonome di Bolzano e di Trento (Tabella 9.14), per 682 corpi idrici classificati rispetto i 718 totali (copertura del 95%) che, in termini di superficie di corpi idrici classificati, è pari a 208.658 km² rispetto ai 223.776 km² totali (copertura del 93,2%). La dimensione media dei corpi idrici sotterranei è pari a 311,7 km², con una notevole variabilità nei diversi contesti territoriali dovuta principalmente alle caratteristiche geologiche del territorio, passando da 5.5 km² della Liguria ai 931,1 km² della Lombardia.

Considerando il dettaglio regionale, le province autonome di Bolzano e di Trento, la Valle d'Aosta, la Lombardia e il Veneto hanno tutti i corpi idrici in stato "buono", seguite dal Piemonte (95,7%), Lazio (93,6%) e Sardegna (89,8%). Al contrario, la maggiore incidenza dello stato quantitativo" scarso" si riscontra in Puglia (60% considerando che il 69% dei corpi idrici individuati è stato classificato), Liguria (37,8%) e Sicilia (22%).

La rappresentazione dello SQUAS per numero di corpi idrici e per superficie dei medesimi non presenta differenze sostanziali, anche se vi sono regioni dove la classificazione deve essere completata. Solo in Emilia-Romagna si osserva uno scostamento positivo, infatti, il 79,3% dei corpi idrici è in stato "buono" a fronte del 97,2% delle superficie. Lo SQUAS è stato analizzato anche in relazione ai corpi idrici (sia in termini di numero sia di superficie) appartenenti ai diversi complessi idrogeologici: le Alluvioni delle depressioni quaternarie (DQ) sono il complesso con il maggior numero di corpi idrici, pari a 257, seguito dai calcari (CA) e dagli acquiferi locali (LOC). (In termini di superficie, i corpi idrici

nelle depressioni quaternarie (DQ) rappresentano il 53,4% dell'intera superficie dei corpi idrici, seguita dai calcari (CA) con il 18,9% (Tabella 9.11, Figura 9.52). La classe "buono" nelle DQ è più elevata degli altri complessi idrogeologici sia in termini di corpi idrici (29,4%) sia di superficie (51,2%), mentre risultano confrontabili le percentuali dei calcari (CA) e degli acquiferi locali (LOC). Valori più elevati in classe "scarso" si registrano nelle DQ (8.2%), nelle alluvioni vallive (AV) e nei calcari (CA).

Tabella 9.13: Classificazione dello stato quantitativo dei corpi idrici sotterranei - SQUAS

Classi di qualità	Giudizio di qualità
Buono	Il livello delle acque sotterranee nel corpo idrico è tale che la media annua dell'estrazione a lungo termine non esaurisca le risorse idriche sotterranee disponibili. Di conseguenza, il livello delle acque sotterranee non subisce alterazioni antropiche tali da: • impedire il conseguimento degli obiettivi ecologici specificati per le acque superficiali connesse; • comportare un deterioramento significativo della qualità di tali acque; • recare danni significativi agli ecosistemi terrestri direttamente dipendenti dal corpo idrico sotterraneo. Inoltre, alterazioni della direzione di flusso risultanti da variazioni del livello possono verificarsi, su base temporanea o permanente, in un'area delimitata nello spazio; tali inversioni non causano tuttavia l'intrusione di acqua salata o di altro tipo né imprimono alla direzione di flusso alcuna tendenza antropica duratura e chiaramente identificabile che possa determinare siffatte intrusioni"
Scarso	Quando non sono verificate le condizioni di buono stato quantitativo del corpo idrico sotterraneo
Fonte: Allegato 3 -	D.Lgs. 30/09
Nota:	
Scala cromatica Di	rettiva 2000/60/CE

Tabella 9.14: Indice SQUAS per unità territoriale, numero e superficie dei corpi idrici sotterranei (2015)

Regione/Provincia			SV		į	00				Cor	oi idrici	classific	Corpi idrici classificati per classe di SQUAS	se di SQU/	4S	
autonoma	Corpi idrici	Corpi idrici classificati	Anno di giornament icazione SQU	Corpi idric classificati su totale	TOTALE groo eicifrequi ioirbi	Dimensione edia corpo idri	TOTALE uperficie corp idrici	uperficie corp ci classificati totale	Corpi idrici	IN IN INC.	Corpi idrici sul totale	classificati	Superficie ioribi idrici	classificati	Superficie corpi idrici	sul totale classificati
					S	ew			ë		%		km²	2	%	
	ċ	ċ	clo	%		km ²		%	Buono	Scarso	Buono Scarso	carso	Buono	Scarso	Buono	Scarso
Piemonte	34	23	2014	9'.29	29.762,00	875,4	16.414	55,2	22	-	2,26	4,3	16.362,00	52,00	2,66	0,3
Valle d'Aosta	9	9	2015	100,0	71,80	12	72	100,0	9	0	100,0	0,0	71,80	0,00	100,0	0,0
Lombardia	30	25	2015	83,3	27.932,47	931,1	27.832	966	22	0	100,0	0,0	27.831,55	0,00	100,0	0,0
Trentino-Alto Adige	49	49	2015	100,0	13.223,06	269,9	13.223	100,0	49	0	100,0	0,0	13.223,06	0,00	100,0	0,0
Bolzano-Bozen	39	39	2015	100,0	7.399,80	189,7	7.400	100,0	39	0	100,0	0,0	7.399,80	00'0	100,0	0,0
Trento	10	10	2015	100,0	5.823,26	582,3	5.823	100,0	10	0	100,0	0,0	5.823,26	00'0	100,0	0,0
Veneto	33	33	2014	100,0	25.176,75	762,9	25.177	100,0	33	0	100,0	0,0	25.176,75	00'0	100,0	0,0
Friuli-Venezia Giulia	38	37	2013	97,4	12.076,80	317,8	12.007	99,4	31	9	83,8	16,2	9.986,70	2.020,10	83,2	16,8
Liguria	41	37	2013	90,5	224,32	5,5	177	78,8	23	14	62,2	37,8	138,60	38,18	78,4	21,6
Emilia-Romagna	145	145	2013	100,0	36.193,47	249,6	36.193	100,0	115	30	79,3	20,7	35.195,08	998,39	97,2	2,8
Toscana	70	20	2015	100,0	12.493,00	178,5	12.493	100,0	25	13	81,4	18,6	10.905,00	1.588,00	87,3	12,7
Lazio	47	47	2015	100,0	15.534,10	330,5	15.534	100,0	44	3	93,6	6,4	12.759,95	2.774,10	82,1	17,9
Puglia	29	20	2011	0,69	19.546,00	674	18.188	93,1	8	12	40,0	0,09	8.106,90	10.081,50	44,6	55,4
Sicilia	82	82	2013	100,0	12.236,50	149,2	12.236	100,0	64	18	78,0	22,0	10.847,55	1.388,94	9,88	11,4
Sardegna	114	108	2015	94,7	19.306,10	169,4	19.112	0,66	26	11	86,8	10,2	18.698,90	412,70	8,76	2,2
TOTALE	718	682		95,0	223.776,37	311,7	208.658	93,2	574	108	84,2	15,8	189.303,84	19.353,91	2,06	9,3
Fonte: Elaborazione ISPRA/ARPA Emilia-Romagna	SPRA/A	RPA Emilia	-Romagna su	ı dati forniti d	la regioni, pro	ovince auto	su dati forniti da regioni, province autonome e ARPA/APPA	APPA								

9. Idrosfera

Tabella 9.15: Complessi idrogeologici

Acronimo	Complessi idrogeologici	
DQ	Alluvioni delle depressioni quaternarie	
AV	Alluvioni vallive	
CA	Calcari	
VU	Vulcaniti	
DET	Formazioni detritiche degli altipiani plio-quaternarie	
LOC	Acquiferi locali	
STE	Formazioni sterili	
Fonte: Allegato 1 - D. Lgs. 30/09		

continua

9,0

7 2

Scarso 7 2 2 15 4 7 49 6 က 15 18,2 20 124 Buono 2 7,2 9 Scarso H 9 ر % 2 12 Corpi idrici per Complesso idrogeologico e per classe di SQUAS Buono 0 0 0 7 4,0 0 0 က Scarso \geq 7 2 3 2 ကက 4 29 45 9,9 Buono Tabella 9.16: Indice SQUAS per unità territoriale, corpo idrico e per complesso idrogeologico (2015) 7,2 0 0 0 9 က 0 9 Scarso Buono 2 16 20 5 35 24 136 19,9 7 000000000 0 0 0 တ 22 3,7 Scarso ⋛ 0 2 8,2 4 4 22 26 Buono 0 9 8,2 0 2 = 0 ∞ 26 Scarso g 29,4 9 64 20 9 2 23 7 24 201 Buono 9 64 39 145 23 25 33 2 20 82 80 682 37 37 47 Corpi idrici classificati Trento Bolzano-Bozen Provincia autonoma Friuli-Venezia Giulia Frentino-Alto Adige Emilia-Romagna Valle d'Aosta Lombardia Piemonte Sardegna TOTALE **Toscana** /eneto Liguria Puglia Sicilia Lazio %

0 0 0 0 0

0 0 0

Φ
\supset
Ö
S

	Ciciporticio			Cilia	reicio corni	idrici por c	i ossolama	SALION is asset your a coincidency is a second and is in it is a configuration of	20 202 0	IOS ib oss	34		
Provincia autonoma	corpi idrici	DO		A		AS SALES		na sa		DET		TOC	
	classificati	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso	Buono	Scarso
							km²						
Piemonte	16.414,00	16.011,00	52,00	351,00	00'0								
Valle d'Aosta	71,80			66,70	00'0							5,10	0,00
Lombardia	27.831,55	27.584,66	0,00									246,89	00'0
Trentino-Alto Adige	13.223,06			608'09	00'0	4.906,29	00'0	3.487,73	00'0			4.220,95	00'0
Bolzano-Bozen	7.399,80			341,17	00'0	1.810,33	00'0	1.027,35	00'0			4.220,95	0,00
Trento	5.823,26			266,92	00'0	3.095,96	00'0	2.460,38	00'0				
Veneto	25.176,75	17.932,50	0,00	306,00	00'0	5.269,75	00'0	996,50	00'0			672,00	00,00
Friuli-Venezia Giulia	12.006,79	5.797,30	2.020,10	108,01	00'0	3.325,17	00'0					756,20	00,00
Liguria	176,78	61,11	29'9	77,49	32,56								
Emilia-Romagna	36.193,47	28.854,78	857,29	473,75	00'0					141,10	463,19	5.403,36	00,00
Toscana	12.493,00	4.562,00	1.410,00	187,00	178,00	1.571,00	00'0	321,00	00'0			4.264,00	00'0
Lazio	15.534,17	2.870,20	0,00	338,87	00'0	5.287,90	64,30	2.712,50	2.709,90	561,10	00'0	989,40	00'0
Puglia	18.188,40			53,50	426,80	7.567,40	6.478,00			486,00	3.176,70		
Sicilia	12.236,46			1.038,59	270,87	3.185,05	296,03	1.844,00	00'0	1.228,54	709,31	3.551,37	112,70
Sardegna	19.111,60	3.189,90	250,40			1.382,70	00'0	4.465,40	51,00			9.660,90	111,30
TOTALE	208.657,83 106	106.863,45	4.595,41	3.609,00	908,23	32.495,27	6.838,33	13.827,13	2.760,90	2.416,74	4.349,20	29.770,17	224,00
%		51,2	2,2	1,7	0,4	15,6	3,3	9'9	1,3	1,2	2,1	14,3	1,0
Fonte: Elaborazione ISPRA/ARPA Emilia-Romagna	RPA Emilia-Rom	_	forniti da reg	jioni, provind	se autonome	su dati forniti da regioni, province autonome e ARPA/APPA	PA						
Legenda:													

DQ - Alluvioni delle depressioni quaternarie; AV - Alluvioni vallive; CA - Calcari; VU - Vulcaniti; DET - Formazioni detritiche degli altipiani plio-quaternari;

LOC - Acquiferi locali.

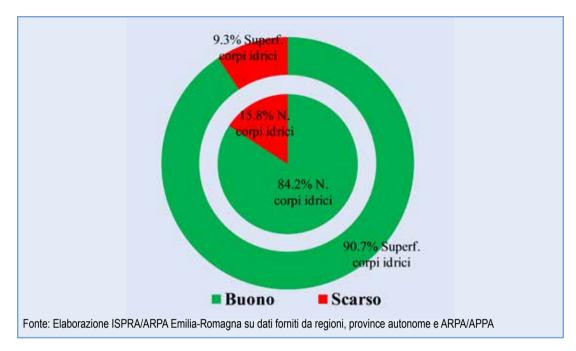


Figura 9.53: Indice SQUAS per numero e superficie di corpi idrici sotterranei (2015)

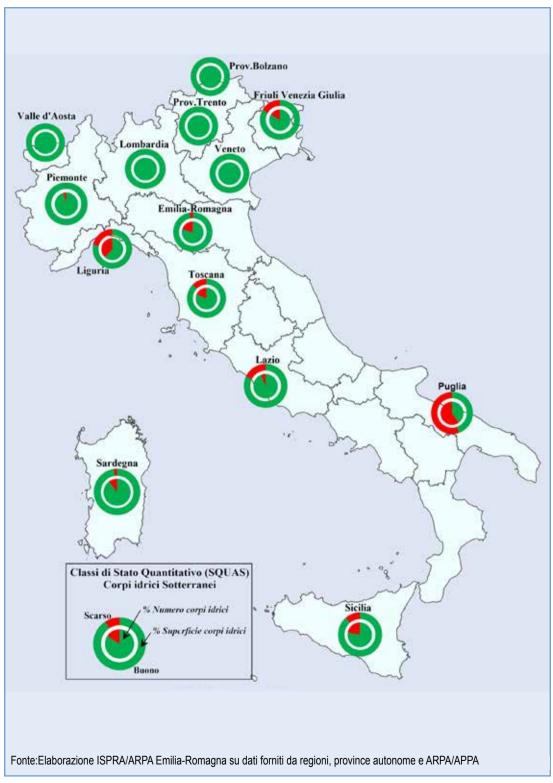


Figura 9.54: Indice SQUAS per ambito territoriale, per numero e superficie dei corpi idrici sotterranei (2015)

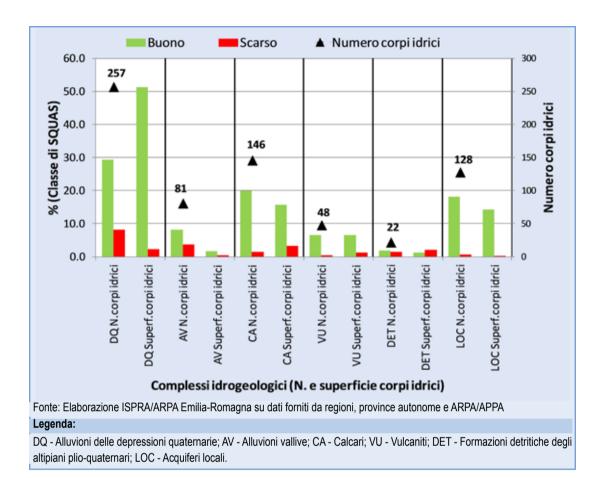


Figura 9.55: Indice SQUAS per complesso idrogeologico (2015)

9.2 RISORSE IDRICHE E USI SOSTENIBILI

Gli indicatori selezionati offrono la rappresentazione a scala nazionale di alcuni parametri correlati con la quantità delle risorse idriche e con lo stato di qualità dei corpi idrici ai sensi della Direttiva Quadro Acque 2000/60/CE. Dall'analisi dei singoli indicatori si può valutare la capacità di risposta dei bacini a eventi meteorici, stimare i carichi inquinanti, avere un quadro d'insieme delle pressioni più significative in grado di influire sullo stato di qualità dei corpi idrici; sono di supporto, inoltre, alla valutazione dei cambiamenti climatici e dei bilanci idrologici e all'analisi degli estremi del ciclo idrologico. Nel quadro Q9.2 sono riportati per ciascun indicatore la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi

Q9.2: QUADRO DELLE CARATTERISTICHE INDICATORI RISORSE IDRICHE E USI SOSTENIBILI

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Prelievo di acqua per i diversi usi ^a	Analizzare: i quantitativi prelevati da fonti superficiali e da fonti sotterranee rispetto al totale prelevato, per avere un quadro dello sfruttamento delle risorse idriche superficiali e sotterranee per questa specifica destinazione d'uso; le percentuali di prelievi regionali sul totale prelevato, per evidenziare quali regioni prelevano maggiori quantità; le percentuali per area geografica dei prelievi totali e suddivisione tra prelievi superficiali e sotterranei, per computare quale fonte è più sfruttata e in quale area geografica	Р	Direttiva 98/83/CE Direttiva 2000/60/CE D.Lgs. 31/01 modificato e integrato dal D.Lgs. 27/02 D.Lgs. 152/06
Pressione sui corpi idrici	Valutare la vulnerabilità dello stato dei corpi idrici e prevedere la capaci- tà di raggiungere o meno gli obiettivi di qualità nei tempi previsti dalla nor- mativa, attraverso la valutazione de- gli impatti quali – quantitativi correlati	Р	Direttiva 2000/60/CE D.Lgs. 152/06

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Portate	La misura sistematica delle portate del corso d'acqua riveste un ruolo fondamentale poiché consente di: valutare la capacità di risposta di un bacino a un evento meteorico, indispensabile ai fini di difesa del suolo e adempiere gli obblighi previsti nel D.Lgs. 49/2010, attuativo della Direttiva 2007/60/CE; determinare la quantità di risorsa disponibile nel periodo, necessaria alla valutazione del bilancio idrologico; definire i parametri qualitativi come indicato nel D.Lgs. 152/06 e nella Direttiva Quadro 2000/60/CE	S	Direttiva 2000/60/CE D.Lgs. 152/06 D.Lgs. 49/2010
Temperatura dell'aria	Primo passo per la valutazione del volume di acqua restituito per evapotraspirazione, componente fondamentale nell'equazione di bilancio idrologico. La conoscenza delle temperature dell'aria è necessaria per valutare i cambiamenti climatici e i fenomeni indotti (livello dei mari, siccità, desertificazione)	S	Non applicabile
Precipitazioni	La conoscenza degli apporti meteorici è necessaria per lo studio e la prevenzione di eventi estremi (inondazioni, frane) e per effettuare il bilancio idrologico e, più in generale, per avere un andamento della situa- zione climatica	S	L 267/98 D. Lgs. 152/06 D. Lgs. 49/2010
Siccità idrologica	Quantificare le condizioni di siccità idrologica di un territorio in termini di deviazione statistica della precipitazione occorsa su una data scala temporale rispetto al corrispondente regime pluviometrico. In altre parole, permette di fornire, e confrontare in un'unica mappa tematica, la valutazione della siccità idrologica per aree del territorio italiano caratterizzate da diversi regimi climatici	S	Non applicabile
${}^{a}Nella presente edizione, l'indicatore non \`e stato aggiornato. La relativa scheda \`e consultabile nel DB http://annuario.isprambiente.it$			

BIBLIOGRAFIA

ISPRA (APAT), Annuario dei dati ambientali, anni vari

Per l'indicatore *Prelievo di acqua per uso potabile*:

Ministero della salute – Dipartimento prevenzione e comunicazione

Per gli indicatori *Portate*, *Temperatura dell'aria e Precipitazioni*:

Servizio Idrografico e Mareografico Nazionale, Norme tecniche per la raccolta e l'elaborazione dei dati idrometeorologici, Roma 1997

Servizio Idrografico e Mareografico Nazionale, *Pubblicazione n. 17*. Roma 1970

Servizio Idrografico e Mareografico Nazionale. Annali Idrologici

World Meteorological Organization, Guide to Hydrological Practices, 1994

B. Lastoria, 2008: "Hydrological processes on the land surface: A survey of modelling approaches". FORALPS Technical Report, 9. Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale, Trento, Italy, 56 pp

G. Braca, 2008: "Stage-discharge relationships in open channels: Practices and problems". Foralps technical reports, 11. Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale, Trento, Italy, 28 pp

PRESSIONE SUI CORPI IDRICI

DESCRIZIONE

L'indicatore descrive la percentuale che deriva da una media pesata sull'area dei singoli distretti del numero totale di corpi idrici superficiali - sotterranei soggetti ad una determinata "pressione significativa".

Una pressione è definita "significativa" qualora da sola, o in combinazione con altre, contribuisce ad un impatto (un peggioramento dello stato) che può mettere a rischio il raggiungimento degli obiettivi ambientali di cui all'art. 4, comma 1, della WFD (Water Framework Directive).

Per individuare tutte le tipologie delle possibili pressionipresentisulterritoriodistrettuale, la Commissione europea rende disponibile attraverso la piattaforma CIRCABC – https://circa.europa.eu – apposite linea guida: "Common Implementation Strategy for the Water Framework Directive (2000/60/EC) – Guidance Document n. 3" – Analysis of Pressures and Impacts". A tale linea guida, fa riferimento anche la struttura dei dati del reporting obbligatorio verso il sistema informativo europeo WISE e la relativa standardizzazione (WFD Reporting Guidance 2016).

http://cdr.eionet.europa.eu/help/WFD/WFD_521_2016/ Guidance/WFD_ReportingGuidance.pdf.

Le tipologie di pressioni individuate e analizzate in tutti in PdG con i relativi determinanti (*driver*) sono riportate in Tabella 9.17.

Pertanto, l'indicatore descrive una prima situazione nazionale inerente le principali pressioni "significative" agenti sui corpi idrici, che dovrà essere confermato dall'analisi dei dati ufficiali caricati sul sistema WISE entro il 2016.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	3	2

L'indicatore fornisce in modo esaustivo le informazioni di carattere ambientali ad esso correlate è sufficientemente accurato, attualmente non è comparabile nel tempo (lo sarà nei futuri aggiornamenti non può essere fatto per gli anni passati) ed è abbastanza comparabile nello spazio.

OBIETTIVI FISSATI DALLA NORMATIVA

L'analisi delle pressioni è prevista dalla Direttiva 2000/60/CE e dalla norma italiana di recepimento il D. Lgs. 3 aprile 2006, n. 152 recante "Norme in materia ambientale" e deve essere contenuta nei Piani di gestione delle acque distrettuali in quanto necessaria per valutare il raggiungimento degli obiettivi ambientali dettati dalle suddette norme e in particolare il raggiungimento dello stato "buono" dei corpi idrici e del loro non deterioramento.

STATO E TREND

Dalle analisi effettuate emerge che le principali pressioni significative sulle acque superficiali per il territorio nazionale (a esclusione della Sicilia) sono: Diffuse - agricoltura e zootecnia \approx 17%, Puntuali - impianti di depurazione \approx 9,5%, Alterazione fisica dei canali/alveo/fascia riparia/sponda per protezione dalle alluvioni \approx 9%, Altre alterazioni idromorfologiche - cause naturali \approx 6%, Diffuse – dilavamento urbano \approx 5%, Prelievi agricoltura \approx 4%. Per i corpi idrici sotterranei, risulta: Diffuse - agricoltura e zootecnia \approx 24%, Prelievi agricoltura \approx 12%, Altri prelievi \approx 10%, Puntuali impianti IED \approx 9%, Siti contaminati, potenzialmente contaminati e siti produttivi abbandonati (codice WSE 1.5) \approx 6%, Prelievi uso potabile \approx 5.6%.

COMMENTI A TABELLE E FIGURE

In attesa dei dati ufficiali dalle Autorità competenti, che saranno caricati nel sistema WISE entro dicembre 2016, le informazioni più recenti, possono essere estratte dai PdG adottati a dicembre 2015 e recentemente approvati (marzo 2016). Pertanto, da una prima analisi dei dati contenuti nei suddetti PdG 2015 – 2020, emerge come sia prevalente sia per le acque superficiali che per quelle sotterranee la fonte di pressione "diffusa - agricoltura e zootecnia".

Tabella 9.17: Tipologia di pressioni

-	-			
Pressioni			Driver principali	Descrizione
1. Pressioni puntuali	1.1 Puntuali - impianti di depurazione	1.1.1 puntuali - depuratori < 2.000 AE	Sviluppo urbano	Incluse o no nella Direttiva UWWT. Incluse acque provenienti da aree artigianali assimi-
		1.1.2 puntuali - depuratori 2.000-10.000 AE		labili ad acque reflue urbane. Incluse acque non trattate o scarichi urbani solo par-
		1.1.3 puntuali - depuratori 10000-15000 AE		zialmente trattati identificabili come sorgenti puntuali.
		1.1.4 puntuali - depuratori 15.000-150.000 AE		
		1.1.5 puntuali - depuratori >150.000 AE		
	1.2 Puntuali - sfioratori di piena		Sviluppo urbano	Sfioratori di piena (di tipo separato o combinato) identificabili come sorgenti puntuali (per quelle diffuse vedi "Diffusa – Dilavamento urbano")
	1.3 Puntuali - impianti IED		Industria	Sorgenti puntuali di tipo industriale derivanti da impianti inclusi nel E-PRTR
	1.4 Puntuali - impianti non IED		Industria	Ogni altra sorgente puntuale di tipo industriale non compresa in 1.3
	1.5 Puntuali - siti contaminati/siti industriali abbandonati	abbandonati	Industria	Inquinamento derivante da un sito contaminato o industriale abbandonato dovuto alle passate attività industriali, discarica illegale di rifiuti industriali o area inquinata accidentalmente. Deve essere identificabile come sorgente puntuale (se diffusa vedi 2.5). Questa categoria non comprende tutte le esistenti attività industriali
	1.6 Puntuali - discariche		Sviluppo urbano	Sorgenti puntuali dovute alla presenza di impianti di smaltimento/frattamento di rifiuti urbani o industriali
	1.7 Puntuali - acque di miniera		Industria	Sorgenti puntuali dovute all'attività mineraria che ha contaminato le acque. Non include inquinamento da processi industriali

220			
Pressioni		Driver principali	Descrizione
1. Pressioni puntuali	1.8 Puntuali - acquacoltura	Acquacoltura	
	1.9 Puntuali - altre		Altre sorgenti puntuali non incluse nelle precedenti categorie
2. Pressioni diffuse	2.1 Diffuse - dilavamento urbano	Sviluppo urbano, industria	Scarichi di sfloratori e altri scarichi in aree urbanizza- te non classificabili come sorgenti puntuali
	2.2 Diffuse - agricoltura	Agricoltura	
	2.3 Diffuse - forestazione*	Forestazione	Pressione dovuta alla "coltivazione" delle foreste. I problemi sono dovuti non tanto alla coltivazione in sé quanto alla viabilità, alle lavorazioni, all'erosione del suolo
	2.4 Diffuse - trasporto	Trasporto	Inquinamento dovuto al traffico su gomma, su rotaie, aviazione e infrastrutture
	2.5 Diffuse - siti contaminati/siti industriali abbandonati	Industria	Inquinamento derivante da un sito contaminato o industriale abbandonato dovuto alle passate attività industriali, discarica illegale di rifiuti industriali o area inquinata accidentalmente. Deve essere identificabile come sorgente diffusa (se puntuale vedi 1.5). Questa categoria non comprende tutte le esistenti attività industriali
	2.6 Diffuse - scarichi non allacciati alla fognatura	Sviluppo urbano	Inquinamento derivante da scarichi in ambiente urbano non collegati alla rete di pubblica fognatura e identificabili come fonte diffusa
	2.7 Diffuse - deposizioni atmosferiche	Agricoltura, energia non-idroelettrica, industria, trasporto, sviluppo urbano	Inquinamento delle acque derivante da emissioni atmosferiche di qualsiasi origine
	2.8 Diffuse - miniere	Industria	Inquinamento delle acque dovuto all'attività mineraria (se puntuale vedi 1.7)
	2.9 Diffuse - acquacoltura	Acquacoltura	
	2.10 Diffuse - altre		Alterazioni dovute a pressioni di tipo diffuso non incluse nelle precedenti categorie

9 9 9 9			
Pressioni		Driver principali	Descrizione
3. Prelievi	3.1 Prelievi/diversioni - agricoltura	Agricoltura	Include prelievi per irrigazione e allevamento zootecnico
	3.2 Prelievi/diversioni - uso potabile pubblico	Sviluppo urbano	Per corpi idrici di transizione o costieri, segnalare solo se presenti impianti di dissalazione
	3.3 Prelievi/diversioni - industria	Industria	Prelievi per processi industriali (non per processi di raffreddamento, vedi 3.4)
	3.4 Prelievi/diversioni - raffreddamento	Industria, energia non-idro- elettrica	
	3.5 Prelievi/diversioni - idroelettrico	Energia idroelettrica	
	3.6 Prelievi/diversioni - piscicoltura	Acquacoltura	
	3.7 Prelievi/diversioni - altro	Ricreazione	Prelievi per ogni altro uso non incluso nelle precedenti categorie
 Regolazioni di portata e alterazioni 	4.1.1 Alterazione fisica dei canali/alveo/fascia riparia/sponda per protezione dalle alluvioni	Protezione dalle alluvioni	Modifiche di tipo longitudinale afferenti ai corpi idrici
morfologiche delle acque superficiali	4.1.2 Alterazione fisica dei canali/alveo/fascia riparia/sponda per agricoltura	Agricoltura	Modifiche di tipo longitudinale afferenti ai corpi idrici. Includono bonifiche di aree per renderle adatte all'agricoltura
	4.1.3 Alterazione fisica dei canali/alveo/fascia riparia/sponda per navigazione	Trasporto	Modifiche di tipo longitudinale afferenti ai corpi idrici
	4.1.4 Alterazione fisica dei canali/alveo/fascia riparia/sponda - altro		Modifiche di tipo longitudinale afferenti ai corpi idrici. Impermeabilizzazione di suolo
	4.1.5 Alterazione fisica dei canali/alveo/fascia riparia/sponda - sconosciuto o obsoleto		Modifiche di tipo longitudinale afferenti ai corpi idrici il cui determinante è sconosciuto
	4.2.1 Dighe, barriere e chiuse per enegia idroelettrica	Energia idroelettrica	
	4.2.2 Dighe, barriere e chiuse per protezione dalle alluvioni	Protezione dalle alluvioni	Modifiche di tipo trasversale afferenti ai corpi idrici
	4.2.3 Dighe, barriere e chiuse per acqua potabile	Sviluppo urbano	
	4.2.4 Dighe, barriere e chiuse per irrigazione	Agricoltura	
	4.2.5 Dighe, barriere e chiuse per ricreazione	Ricreazione	
			:

o se			
Pressioni		Driver principali	Descrizione
 Regolazioni di portata e alterazioni morfologiche delle 	4.2.6 Dighe, barriere e chiuse per industria	Industria, energia non-idro- elettrica	Modifiche di tipo trasversale afferenti ai corpi idrici, sbarramenti realizzati per uso industriale o per raffreddamento
acque superficiali	4.2.7 Dighe, barriere e chiuse per navigazione	Trasporto	Modifiche di tipo trasversale afferenti ai corpi idrici, piccoli sbarramenti realizzati a fini ricreativi (balneazione) o per pesca sportiva.
	4.2.8 Dighe, barriere e chiuse - altro		Modifiche di tipo trasversale afferenti ai corpi idrici non incluse nelle precedenti categorie
	4.2.9 Dighe, barriere e chiuse - sconosciuto o obsoleto		Modifiche di tipo trasversale afferenti ai corpi idrici
	4.3.1 Alterazione idrologica - agricoltura	Agricoltura, trasporto	Tipicamente derivazioni di acqua
	4.3.2 Alterazione idrologica - trasporto	Trasporto	Tipicamente per navigazione interna
	4.3.3 Alterazione idrologica – energia idroelettrica	Energia idroelettrica	Tipicamente in caso di impianti idroelettrici dove opera di presa e di restituzione sono distanti
	4.3.4 Alterazione idrologica – acqua potabile pubblica	Sviluppo urbano	Tipicamente derivazione di acqua
	4.3.1 Alterazione idrologica - acquacoltura	Pescicoltura e acquacol- tura	Tipicamente deviazioni per alimentare allevamenti di pesci
	4.3.1 Alterazione idrologica - altro		
	4.4 Perdita fisica di tutto (o parte del) corpo idrico	Protezione dalle alluvioni, cambiamento climatico	Sicatà, etc.
	4.5 Altre alterazioni idromorfologiche		Altre variazioni idromorfologiche non incluse nelle precedenti categorie (alterazioni del livello idrico o del volume delle falde, etc.) non riconducibili a determinanti menzionati nelle altre categorie
5. Gestione delle acque superficiali	5.1 Introduzione di specie e malattie	Trasporto, Pescicoltura e acquicoltura, turismo e ricreazione	Specie aliene e/o invasive e malattie
	5.2 Sfruttamento/rimozione di animali/piante	Ricreazione, Pescicoltura e acquicoltura	Pesca sportiva e attività simili o raccolta di piante e alghe a fini commerciali
	5.3 Rifuti/discaniche abusive	Sviluppo urbano, trasporto	Include discariche abusive, riffuti delle navi, etc. (Tutti i riffuti della terraferma)

enfie			
Pressioni		Driver principali	Descrizione
6. Gestione delle acque sotterranee	6.1 Ricarica delle acque sotterranee	Agricoltura, energia non-idroelettrica, industria, sviluppo urbano	
	6.2 Acque sotterranee – alterazione del livello di falda o del volume	Industria, sviluppo urbano	Include tutte le attività che possono alterare il livello di acqua nelle falde svolgendosi sottoterra (tipicamente miniere o grandi opere civili). Non include le alterazioni di livello dovute a attuali o passate attività di sovrasfruttamento della risorsa sotterranea (caso incluso nella categoria "prelievi")
7. Altre pressioni antropogeniche	ogeniche		Altre pressioni non incluse nelle precedenti categorie
8. Pressioni antropogeniche sconosciute	iche sconosciute		Solo quelle rilevanti, dove lo stato è lontano da "Buono", ma non si conosce la pressione
9. Pressioni antropogen	9. Pressioni antropogeniche - inquinamenti storici		
Fonte: WFD Reporting Guidance 2016	Guidance 2016		

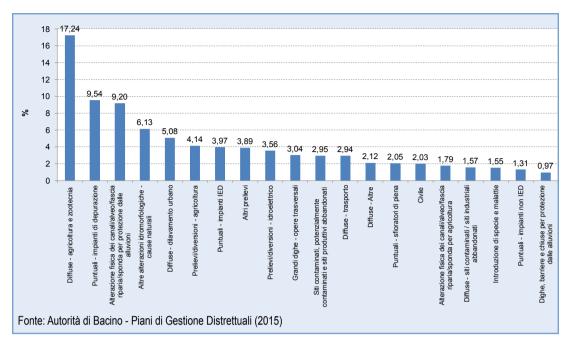


Figura 9.56: Percentuale corpi idrici superficiali impattati dalle diverse tipologie di pressioni

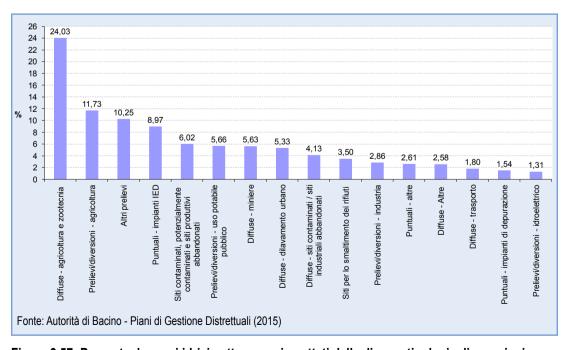


Figura 9.57: Percentuale corpi idrici sotterranee impattati dalle diverse tipologie di pressioni

DESCRIZIONE

È un indicatore di stato che misura il volume d'acqua (metri cubi) che attraversa una data sezione di un corso d'acqua nell'unità di tempo (secondo). La misura di portata dei corsi d'acqua viene eseguita dalle strutture regionali subentrate agli Uffici periferici del Servizio Idrografico e Mareografico Nazionale secondo standard e procedure pubblicate dal SIMN nel quaderno "Norme tecniche per la raccolta e l'elaborazione dei dati idrometeorologici - parte II", conformi alle norme del World Meteorological Organization (WMO).

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	1	1

La qualità dell'informazione è buona, per la rispondenza alle norme tecniche, tuttavia ne risulta penalizzata la copertura spaziale per la mancanza di un numero sufficiente di dati attendibili e aggiornati al 2014.

OBIETTIVI FISSATI DALLA NORMATIVA

normativa italiana vigente obbliga raggiungimento di obiettivi ambientali specifici per i corsi d'acqua anche in termini quantitativi (es. deflusso minimo vitale). L'indicatore contribuisce al raggiungimento degli obiettivi fissati dal D.Lgs. 152/06.

STATO E TREND

Per esprimere un giudizio sul trend di questo indicatore occorrerebbe risalire alle condizioni naturali, cioè non influenzate dall'azione antropica (prelievi, derivazioni, opere di invaso), pertanto non si assegna alcuna icona di Chernoff.

COMMENTI A TABELLE E FIGURE

La Figura 9.58 rappresenta il confronto tra i volumi annui complessivamente defluiti nel corso del 2014 attraverso le 6 sezioni fluviali considerate e quelli relativi all'anno e al decennio precedente. Per tutte le sezioni di misura, i volumi annui registrati nel 2014 sono nettamente superiori a quelli medi calcolati sul decennio di confronto così come lo sono, seppure in misura minore e con l'eccezione della sezione di Ripetta sul Tevere, rispetto a quelli dell'anno precedente. Per caratterizzare le variazioni dei deflussi di un corso d'acqua rispetto al decennio precedente, nella Figura 9.59 è rappresentato il valore normalizzato della portata media mensile, ottenuto dal rapporto tra le portate medie mensili registrate nel 2014 e quelle ricavate mediando i valori del decennio precedente, per il quale si dispone di una serie continua di dati. Nella Figura 9.59 è possibile notare come nel corso dell'anno 2014 le portate medie mensili nelle sei sezioni di misura considerate si sono mantenute per lo più ben al di sopra dei valori medi di confronto per quasi tutto l'anno, ad eccezione della sezione di Ripafratta sul Serchio in cui si sono registrati deflussi medi mensili sensibilmente inferiori a quelli del decennio precedente da aprile a giugno e nel mese dicembre. Per quest'ultimo mese si sono verificati valori inferiori alla media di riferimento anche per le sezioni di San Giovanni alla Vena sull'Arno (in deficit anche nel mese di ottobre) e di Ripetta sul Tevere. Gli andamenti delle portate giornaliere relative alle sei stazioni considerate nel corso del 2014 sono riportati nella Figura 9.60. Nella Figura 9.61 sono rappresentate le stazioni di portata e i limiti dei bacini idrografici principali a cui afferiscono. Nella Tabella 9.18 sono elencate alcune informazioni caratteristiche delle stazioni di portata considerate.

Tabella 9.18: Caratteristiche delle stazioni di misura di portata considerate

Corso d'acqua	Nome stazione	Regione	Provincia	Comune	Zero Idrometrico (m s.m.)	Area bacino sotteso (km²)
Adige	Boara Pisani	Veneto	PD	Boara Pisani	8,41	11.954
Arno	San Giovanni alla Vena	Toscana	PI	Vicopisano	6,71	8.186
Bacchiglione	Montegalda	Veneto	VI	Montegalda	16,18	1.384
Po	Pontelagoscuro	Veneto	RO	Occhiobello	8,12	70.091
Serchio	Ripafratta	Toscana	PI	San Giuliano Terme	6,84	1.325
Tevere	Ripetta	Lazio	RM	Roma	0,44	16.545
Fonte: ISPRA						

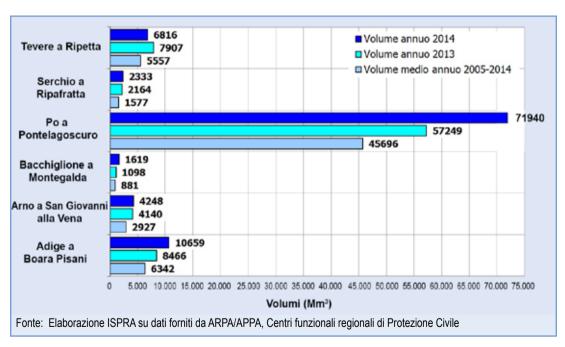


Figura 9.58 : Confronto tra volumi annui defluiti nel 2014 e quelli defluiti rispettivamente nell'anno e nel decennio precedente per le sezioni di: Adige a Boara Pisani, Arno a San Giovanni alla Vena, Bacchiglione a Montegalda, Po a Pontelagoscuro, Serchio a Ripafratta e Tevere a Ripetta

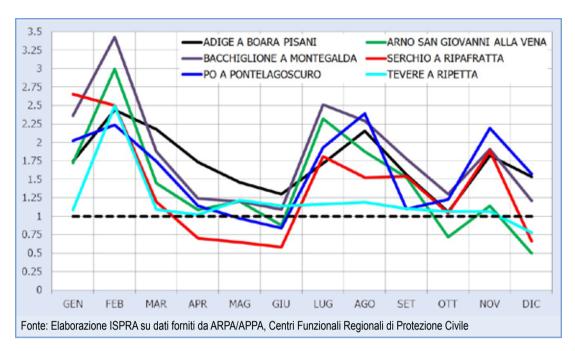


Figura 9.59: Rapporto tra la portata media mensile dell'anno 2014 e la portata media mensile calcolata sul decennio precedente per le sezioni di: Adige a Boara Pisani, Arno a San Giovanni alla Vena, Bacchiglione a Montegalda, Po a Pontelagoscuro, Serchio a Ripafratta e Tevere a Ripetta

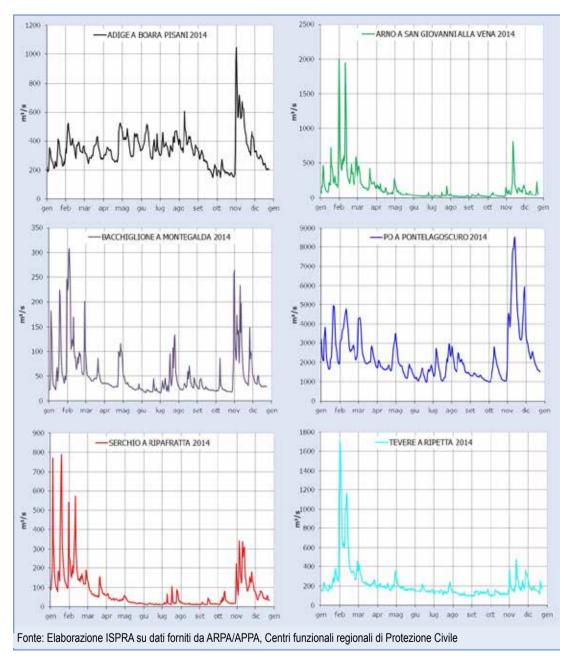


Figura 9.60: Portate medie giornaliere registrate nelle sezioni di: Adige a Boara Pisani, Arno a San Giovanni alla Vena, Bacchiglione a Montegalda, Po a Pontelagoscuro, Serchio a Ripafratta e Tevere a Ripetta

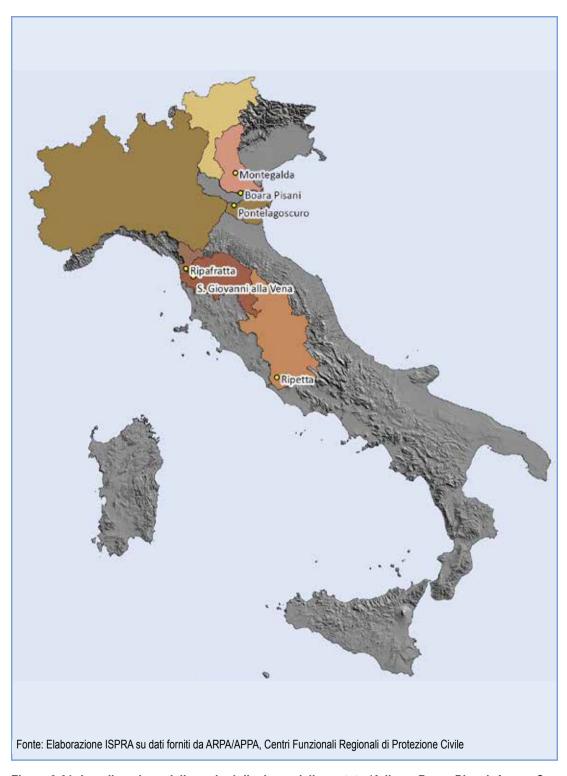


Figura 9.61: Localizzazione delle sezioni di misura delle portate (Adige a Boara Pisani, Arno a San Giovanni alla Vena, Bacchiglione a Montegalda, Po a Pontelagoscuro, Serchio a Ripafratta e Tevere a Ripetta) rispetto ai relativi bacini idrografici

TEMPERATURA DELL'ARIA

DESCRIZIONE

È un indicatore di stato che misura la temperatura dell'aria. La misura della temperatura viene eseguita dalle strutture regionali subentrate agli Uffici periferici del Servizio Idrografico e Mareografico Nazionale (SIMN) secondo standard e procedure normate dalla World Meteorological Organization (WMO) e recepite dal SIMN nel quaderno "Norme tecniche per la raccolta e l'elaborazione dei dati idrometeorologici – parte l" conforme alle norme del WMO.

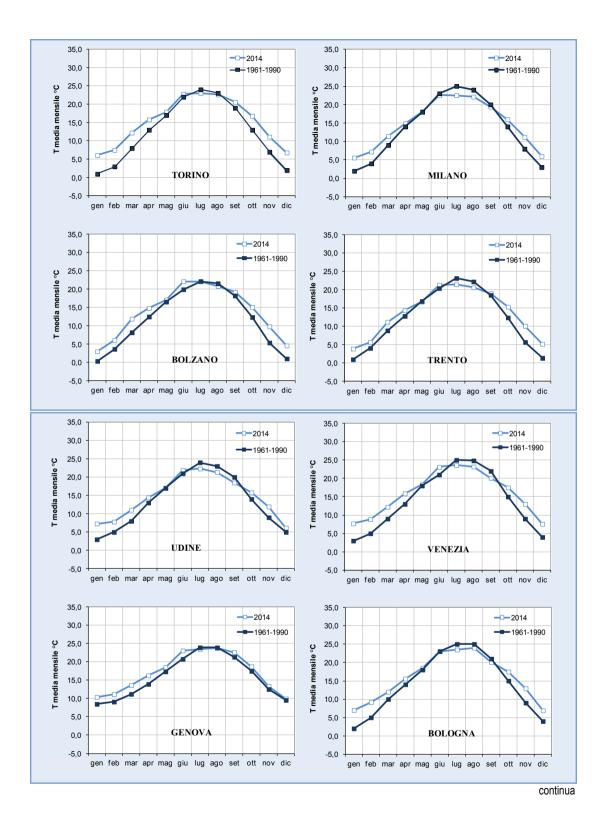
QUALITÀ DELL'INFORMAZIONE

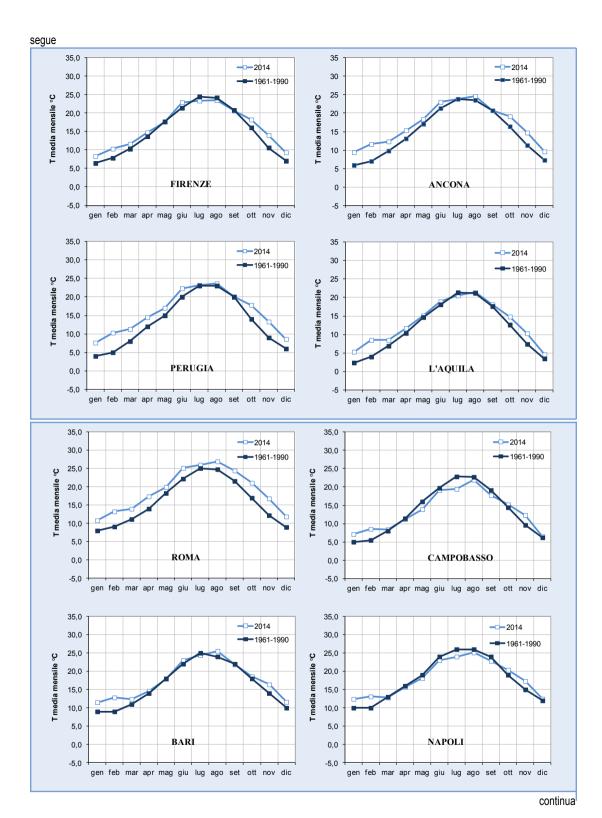
Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'informazione espressa dall'indicatore proviene da dati acquisiti e validati secondo procedure omogenee a livello nazionale che ne consentono una buona comparabilità temporale e spaziale

OBIETTIVI FISSATI DALLA NORMATIVA

La normativa vigente non fissa obiettivi ambientali specifici.


STATO E TREND


Sono in corso di elaborazione procedure di omogeneizzazione e validazione dei dati che permetteranno l'analisi del *trend* su serie di lunga durata. Ad oggi, pertanto, non si assegna l'icona Chernoff.

COMMENTI A TABELLE E FIGURE

Nella Figura 9.62 è rappresentato il confronto tra l'andamento delle temperature medie mensili registrate nel 2014 e quelle relative al trentennio 1961-1990 (standard WMO), per le stazioni riportate in Figura 9.63. Per quanto specificato in stato e trend, a oggi non è possibile pervenire a considerazioni interpretative che abbiano una validità significativa almeno per quanto concerne le

tendenze. Tuttavia ciò che si può constatare è che nel corso del 2014 le temperature medie mensili si sono mantenute per lo più al di sopra di quelle calcolate sul trentennio di riferimento, a eccezione dei mesi estivi durante i quali in alcuni casi si sono registrati valori di temperatura mediamente inferiori a quelli di confronto.

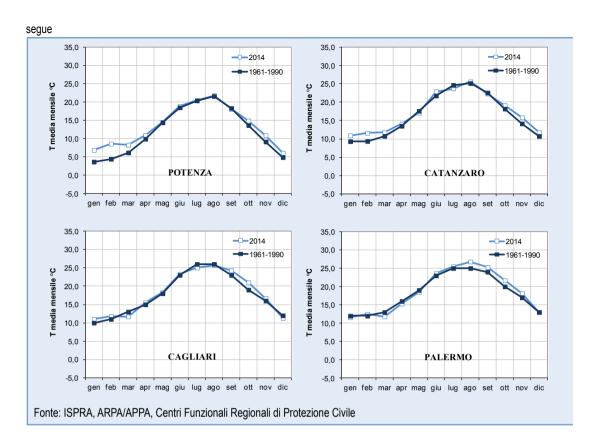


Figura 9.62: Confronto tra l'andamento delle temperature medie mensili del 2014 e quelle relative al trentennio 1961-1990 per le stazioni di misura rappresentate in Figura 9.63

Figura 9.63 : Stazioni termometriche considerate

DESCRIZIONE

È un indicatore di stato che misura i volumi d'acqua affluiti sul bacino attraverso il ragguaglio spaziale delle piogge misurate ai pluviometri. La misura delle piogge viene eseguita dalle strutture regionali subentrate agli Uffici periferici del Servizio Idrografico e Mareografico Nazionale secondo standard e procedure normate dalla World Meteorological Organization (WMO) e recepite dal SIMN nel quaderno "Norme tecniche per la raccolta e l'elaborazione dei dati idrometeorologici - parte l' conformi alle norme del WMO. Inoltre le misure sono effettuate dall'Aeronautica Militare, dai servizi meteorologici regionali e dai gestori delle reti agrometeorologiche.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'informazione espressa dall'indicatore è rilevante per gli scopi relativi alla difesa del suolo e all'approvvigionamento idrico. Essa, inoltre, proviene da dati acquisiti e validati secondo procedure omogenee a livello nazionale che ne consentono una buona comparabilità temporale e spaziale.

OBIETTIVI FISSATI DALLA NORMATIVA

La normativa italiana vigente non fissa obiettivi ambientali specifici. Le norme di riferimento per lo svolgimento del monitoraggio sono: la Legge 267/98, il D.Lgs. 152/06 e il D.Lgs. 49/2010.

STATO E TREND

Sono in corso di elaborazione procedure di omogeneizzazione dei dati che permetteranno l'analisi del trend a partire da serie di lunga durata. Ad oggi, pertanto, non si assegna l'icona di Chernoff.

COMMENTI A TABELLE E FIGURE

La carta tematica della precipitazione totale annua relativa al 2014 è stata realizzata attraverso l'interpolazione spaziale su una griglia spaziale di lato 1 km dei valori rilevati da 1.828 stazioni uniformemente distribuite sul territorio non nazionale (Figura 9.64). Analogo procedimento è stato applicato per la Figura 9.65, relativa alla precipitazione media del trentennio di riferimento 1961-1990 (standard WMO), in cui le stazioni utilizzate sono 1.250. Nell'angolo in alto a destra di ciascuna delle due carte tematiche è riportata la distribuzione delle stazioni pluviometriche utilizzate. In Figura 9.66 è rappresento, invece, il rapporto tra la precipitazione totale annua del 2014 e la precipitazione annua media relativa al trentennio di riferimento. Come si evince, il 2014 è stato caratterizzato da valori cumulati di precipitazione superiori alla media del trentennio di riferimento in più del 67% del territorio nazionale, in particolare lungo guasi tutto l'arco alpino, in Liguria, in Toscana sul settore Nord-occidentale della regione e sulla fascia costiera. Da segnalare il cumulato di precipitazione di 5.406 mm annui registrato al pluviometro di Musi, frazione del comune di Lusevera in provincia di Udine. Valori più modesti ma comunque superiori alla media di riferimento si sono registrati in buona parte dell'Italia centrale. in particolare lungo la fascia costiera adriatica marchigiana e lungo la fascia costiera tirrenica laziale, lungo la dorsale appenninica umbra e abruzzese. Al Sud è la Puglia (in particolare la zona garganica) la regione in cui si sono registrati valori di pioggia superiori alla media di riferimento per gran parte del suo territorio. Valori di pioggia inferiori alla media di riferimento si sono registrati su gran parte della Sardegna, in maniera più pronunciata sul settore orientale, e della Basilicata, in particolare nelle zone più interne.

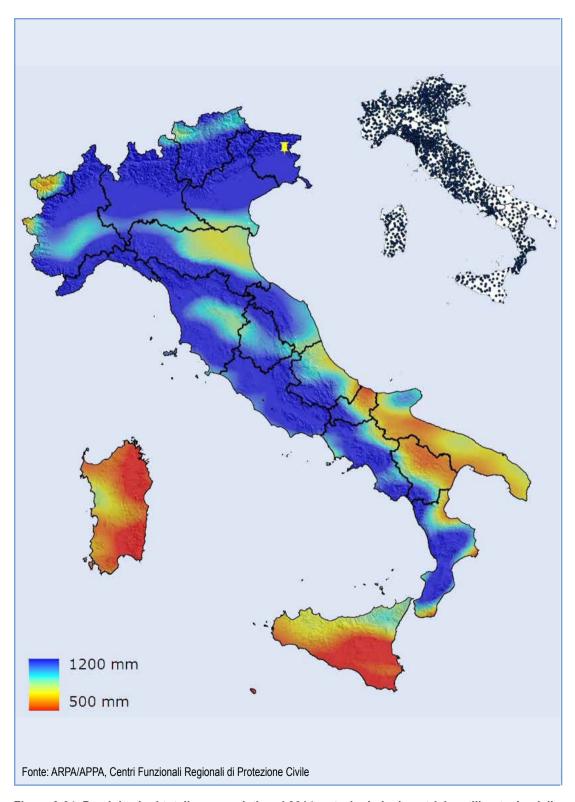


Figura 9.64: Precipitazioni totali annue relative al 2014 e stazioni pluviometriche utilizzate. In giallo segnalato il pluviometro di Musi

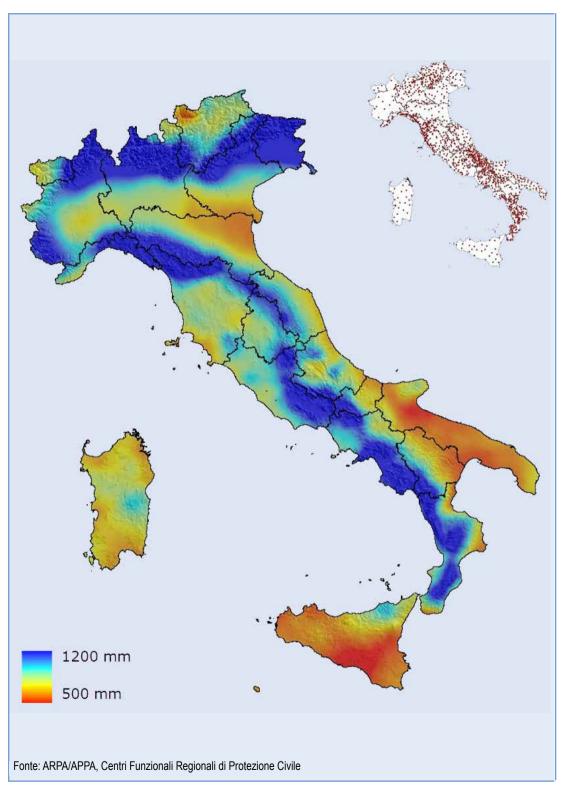


Figura 9.65: Media delle precipitazioni annue calcolata sul trentennio 1961-1990 e stazioni pluviometriche utilizzate

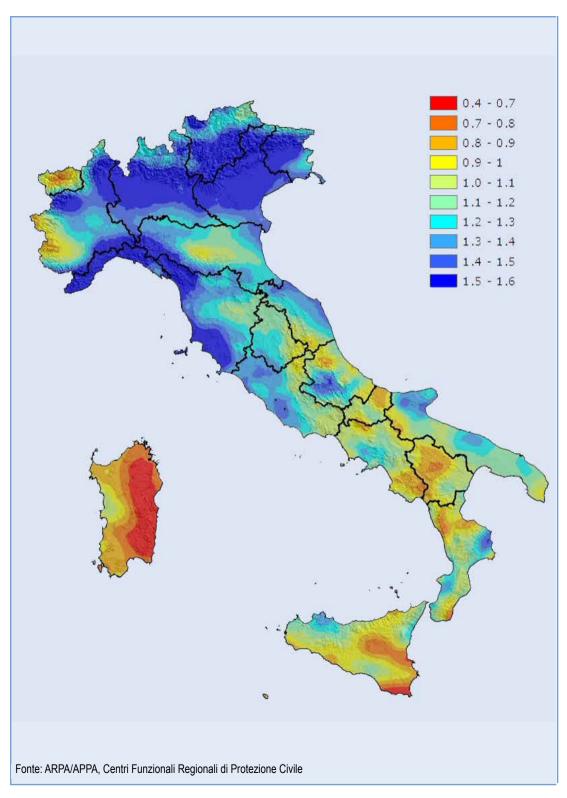


Figura 9.66: Rapporto tra le precipitazioni totali annue del 2014 e la media delle precipitazioni totali annue sul trentennio 1961-1990

SICCITÀ IDROLOGICA

DESCRIZIONE

La siccità è una condizione temporanea e relativa di scarsità idrica definita come uno scostamento rispetto a condizioni climatiche medie di un determinato luogo di interesse. Pertanto, non è da confondere con il fenomeno di aridità che indica una condizione di permanente carenza di risorse idriche. Non esiste un'unica definizione di siccità. occorre infatti specificare a quale ambito di fenomeni, siano essi naturali, sociali, o economici, si fa riferimento. Si parla, quindi, di siccità meteorologica in caso di relativa scarsità di precipitazioni; di siccità idrologica in presenza di un apporto idrico relativamente scarso nel suolo, nei corsi d'acqua, o nelle falde acquifere; di siccità agricola in caso di carenza di acqua rispetto all'usuale fabbisogno per l'irrigazione; e di siccità socio-economica se riferita al complesso dei consumi sul territorio. L'impatto sull'ambiente è poi legato al perdurare delle condizioni siccitose. Una carenza di piogge prolungata per molti mesi (6-12 mesi) avrà effetti sulla portata dei fiumi; mentre per un periodo maggiore (uno o due anni) graverà sulla disponibilità di acqua nelle falde. Lo Standardized Precipitation Index (SPI) è l'indice comunemente usato a livello nazionale e internazionale per quantificare, su una data scala temporale, il deficit o il surplus di precipitazioni nelle aree di interesse rispetto al valore medio: valori positivi indicano una precipitazione maggiore della media, ossia condizioni umide; valori negativi indicano una precipitazione minore della media, ossia condizioni siccitose più o meno estreme. Questo indice è spesso utilizzato a livello regionale per il monitoraggio e l'individuazione di periodi siccitosi, ed è stato inserito sia in ambito europeo ("Water Scarcity & Drought" Expert Group della Common Implementation Strategy per la Water Framework Directive 2000/60/EC) che internazionale (World Meteorological Organization) come uno degli strumenti più efficaci per il monitoraggio della siccità. Per ciascuna area in esame, il calcolo dello SPI si basa sulla normalizzazione della distribuzione di probabilità della pioggia cumulata sulla scala temporale considerata (1-3-6-12-24 o 48 mesi). Così facendo si rendono confrontabili regioni caratterizzate da diversi regimi climatici. Al fine di una valutazione delle condizioni di siccità idrologica, in analogia con quanto fatto per gli anni passati a partire dal 2010, si utilizzano le mappe di SPI a 12 mesi prendendo come dati di precipitazione le rianalisi su grigliati a 2.5° del National Centers for Environmental Prediction/Department of Energy (NCEP/DOE reanalysis) e come riferimento climatologico il periodo 1948-2013 per le mappe relative al 2014 e il periodo 1948-2014 per le mappe relative al 2015.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza		Comparabilità nello spazio
1	1	1	1

Il metodo di calcolo dell'indice SPI e i dati di reanalisi del NCEP /DOE utilizzati garantiscono: la rilevanza dell'informazione in termini di aderenza dell'indicatore alla domanda di informazione riguardante la siccità idrologica; l'accuratezza in termini di comparabilità del dato, di affidabilità delle fonti, di completezza delle serie storiche e di copertura spaziale su scala nazionale: la comparabilità sia nel tempo, sia nello spazio.

OBIETTIVI FISSATI DALLA NORMATIVA

La normativa italiana vigente non fissa obiettivi ambientali specifici.

STATO E TREND

L'icona di Chernoff si riferisce allo stato. L'ultimo trimestre del 2014, così come già osservato dall'inizio dell'anno (cf. Annuario 2014-2015), non è stato caratterizzato da eventi siccitosi a scala nazionale. Sulla scala temporale di 12 mesi, non sono stati osservati nel 2015 deficit di precipitazione rispetto alla media climatologica, mentre sulla scala dei 3 mesi un deficit di precipitazione è stato osservato a fine 2015.

COMMENTI A TABELLE E FIGURE

Le mappe di SPI a 12 mesi non evidenziano, su

scala nazionale, fenomeni di siccità nell'ultimo trimestre dell'anno 2014, ma indicano un surplus di precipitazione sul centro Italia rispetto alla media climatologica, che è stata calcolata per il periodo 1948–2013 sulla base delle serie di precipitazione cumulata su 12 mesi ottenute dai dati giornalieri di rianalisi NCEP. Tali mappe confermano l'andamento del periodo già evidenziato nei mesi precedenti nelle mappe di siccità pubblicate in precedenza nell'Annuario 2014-2015.

Per quanto riguarda il 2015, c'è da segnalare che su scala annuale le mappe del bollettino di siccità non segnalano *deficit* di precipitazione, bensì un surplus di pioggia sul centro Italia nei primi mesi dell'anno (Figure 9.70 - 9.74) rispetto alla media climatologica - calcolata per il periodo 1948–2014 sulla base delle serie di precipitazione cumulata su 12 mesi ottenute dai dati giornalieri di rianalisi NCEP - e sulla Sicilia nella seconda metà dell'anno e in particolare tra agosto (Figura 9.77) e novembre (Figura 9.80).

Tuttavia, se si analizzano le mappe di SPI a 3 mesi, non presenti nell'Annuario, ma consultabili sul portale ISPRA (http://www.isprambiente.gov.it/pre_meteo/siccitas/), si può osservare un *deficit* di precipitazione nel breve periodo tra la fine 2015 e l'inizio del 2016. Tale situazione di piovosità inferiore alla media climatologica sui 3 mesi è confermata dalle mappe regionali di SPI e/o di anomalia di precipitazione presenti nei bollettini mensili emessi dall'ARPA Emilia-Romagna, dall'ARPA Lombardia e dall'ARPA Piemonte e ottenute sulla base dei dati di pioggia misurati dalle loro reti pluviometriche. Su scala regionale, si evidenziano periodi siccitosi, rispetto alla media climatologica su 3 mesi del periodo, anche nell'estate 2015.

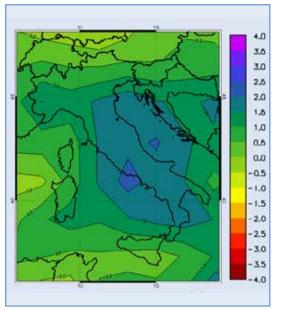


Figura 9.67: SPI a 12 mesi - ottobre 2014

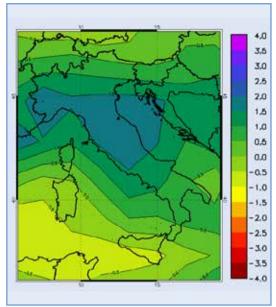


Figura 9.68: SPI a 12 mesi - novembre 2014

Figura 9.69: SPI a 12 mesi - dicembre 2014

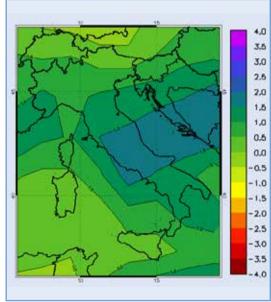


Figura 9.70: SPI a 12 mesi - gennaio 2015

Legenda:

NCEP Reanalysis II data > 2.0 Estremamente umido; da 1.5 a 1.99 Molto umido; da 1.0 a 1.49 Moderatamente umido; da -0.99 a 0.99 Vicino alla norma; da -1.49 a -1 Siccità moderata; da -1.99 a -1.5 Siccità severa; < -2.0 Siccità estrema

Nota:

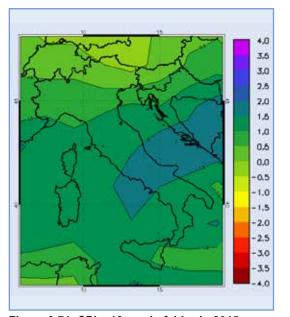


Figura 9.71: SPI a 12 mesi - febbraio 2015

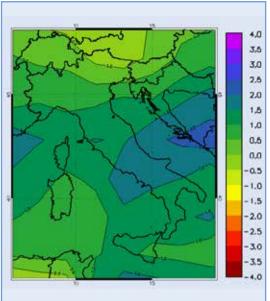


Figura 9.72: SPI a 12 mesi - marzo 2015

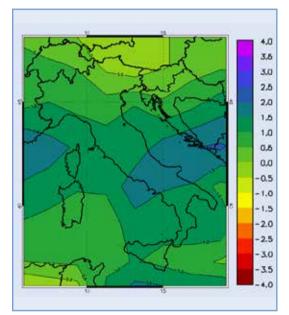


Figura 9.73: SPI a 12 mesi - aprile 2015

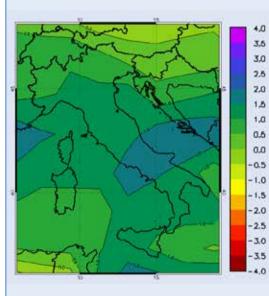


Figura 9.74: SPI a 12 mesi - maggio 2015

Legenda

NCEP Reanalysis II data > 2.0 Estremamente umido; da 1.5 a 1.99 Molto umido; da 1.0 a 1.49 Moderatamente umido; da -0.99 a 0.99 Vicino alla norma; da -1.49 a -1 Siccità moderata; da -1.99 a -1.5 Siccità severa; < -2.0 Siccità estrema

Nota:

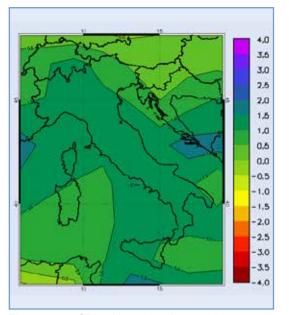


Figura 9.75: SPI a 12 mesi - giugno 2015

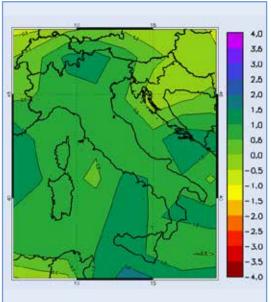


Figura 9.76: SPI a 12 mesi - luglio 2015

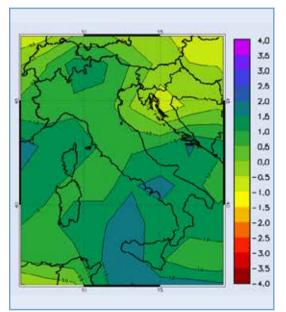


Figura 9.77: SPI a 12 mesi - agosto 2015

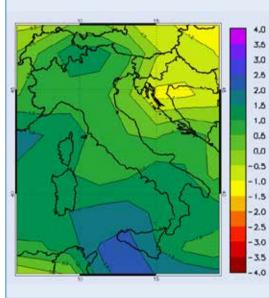


Figura 9.78: SPI a 12 mesi - settembre 2015

Legenda

NCEP Reanalysis II data > 2.0 Estremamente umido; da 1.5 a 1.99 Molto umido; da 1.0 a 1.49 Moderatamente umido; da -0.99 a 0.99 Vicino alla norma; da -1.49 a -1 Siccità moderata; da -1.99 a -1.5 Siccità severa; < -2.0 Siccità estrema

Nota

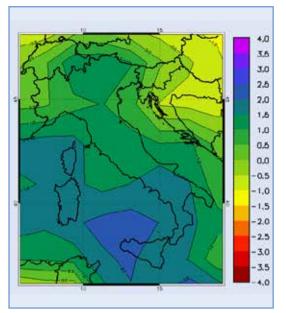


Figura 9.79: SPI a 12 mesi - ottobre 2015

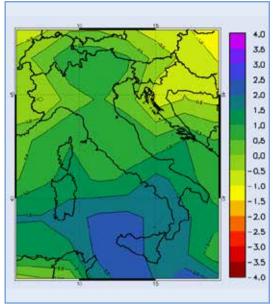


Figura 9.80: SPI a 12 mesi - novembre 2015

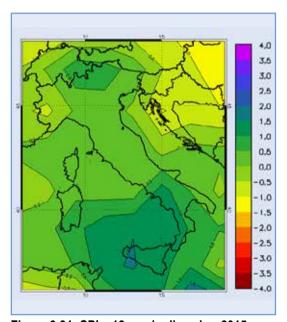


Figura 9.81: SPI a 12 mesi - dicembre 2015

Legenda

NCEP Reanalysis II data > 2.0 Estremamente umido; da 1.5 a 1.99 Molto umido; da 1.0 a 1.49 Moderatamente umido; da -0.99 a 0.99 Vicino alla norma; da -1.49 a -1 Siccità moderata; da -1.99 a -1.5 Siccità severa; < -2.0 Siccità estrema

Nota:

9.3 INQUINAMENTO DELLE RISORSE IDRICHE

Le risorse idriche nazionali sono soggette a molteplici e diversificate pressioni derivanti dalla massiccia antropizzazione del territorio, dalle dimensioni del sistema produttivo comprendente i servizi, la piccola e media industria, la grande industria e il settore agricolo e zootecnico.

Per offrire un quadro di lettura dei fenomeni di inquinamento delle risorse idriche si presentano gli indicatori: Depuratori: conformità del sistema di fognatura delle acque reflue urbane, fornisce informazioni sul grado di copertura della rete fognaria all'interno dell'agglomerato e sulla conformità dei sistemi di fognatura a servizio degli agglomerati; e Percentuale di acque reflue depurate, che consente di verificare la percentuale di acque reflue depurate sul territorio nazionale. Mentre gli indicatori Indice sintetico inquinamento da nitrati delle acque sotterranee (NO, Status) e Indice sintetico inquinamento da nitrati delle acque superficiali (NO₃ Status) forniscono informazioni sul livello d'inguinamento da nitrati delle acque superficiali e sotterranee di un dato territorio.

Nel quadro Q9.3 sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Q 9.3: QUADRO DELLE CARATTERISTICHE INDICATORI INQUINAMENTO DELLE RISORSE IDRICHE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Medie di nutrienti in chiusura di bacino ^a	Fornire ulteriori informazioni per la caratterizzazione dei corsi d'acqua e loro apporto inquinante	S	D. Lgs. 152/99 D. Lgs. 152/06
Depuratori: conformità del sistema di fognatura delle acque reflue urbane	Verificare la conformità dei sistemi di fognatura a servizio degli agglomera- ti presenti sul territorio nazionale ai requisiti previsti dalla normativa	R	D.Lgs. 152/06 Direttiva del Consiglio del 21 maggio 1991, n.271
Depuratori: conformità dei sistemi di depurazione delle acque reflue urbane ^a	Verificare la conformità dei depuratori ai requisiti previsti dal D.Lgs. 152/06	R	D.Lgs. 152/06 Direttiva del Consiglio del 21 maggio 1991, n.271
Percentuale di acque reflue depurate	Verificare la percentuale di acque reflue depurate sul territorio nazionale	R	Direttiva del del Consiglio del 21 maggio 1991, n.271
Indice sintetico inquinamento da nitrati delle acque superficiali (NO ₃ Status)	Fornire informazioni sintetiche riguardo al livello d'inquinamento da nitrati delle acque superficiali a livello sia regionale sia nazionale	S	D.Lgs. 152/06 Direttiva 91/676/CEE
Indice sintetico inquinamento da nitrati delle acque sotterranee (NO ₃ Status)	Fornire informazioni sintetiche riguardo al livello d'inquinamento da nitrati delle acque sotterranee a livello sia regionale sia nazionale	S	D.Lgs. 152/06 Direttiva 91/676/CEE

nella presente edizione, l'indicatore non e stato aggiornato. La relativa scheda è consultabile nel DB http://annuario.isprambiente.it

BIBLIOGRAFIA

ISPRA, Annuario dei dati ambientali, anni vari

DEPURATORI: CONFORMITÀ DEL SISTEMA DI FOGNATURE DELLE ACQUE REFLUE URBANE

DESCRIZIONE

Indicatore di risposta che fornisce informazioni circa il grado di copertura della rete fognaria all'interno dell'agglomerato e, quindi, della capacità di garantire il fabbisogno di collettamento dell'agglomerato. È ritenuto: conforme, l'agglomerato provvisto di rete fognaria e con grado di copertura uguale o superiore al 90%; parzialmente conforme. l'agglomerato provvisto di rete fognaria, ma con grado di copertura compreso tra il 70% e il 90%; non conforme, l'agglomerato con grado di copertura inferiore al 70%.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio	
1	1	1	1	

La qualità dell'informazione è da ritenersi adequata alle richieste della normativa vigente. I dati sono acquisiti e validati secondo procedure omogenee a livello nazionale e consentono una buona comparabilità temporale e spaziale.

OBIETTIVI FISSATI DALLA NORMATIVA

Il Decreto legislativo 3 aprile 2006, n. 152, recante "Norme in materia ambientale", in qualità di norma di recepimento della Direttiva 91/271/CEE. concernente il trattamento delle acque reflue urbane, definisce una serie di scadenze temporali per l'adequamento dei sistemi di collettamento e depurazione a servizio degli agglomerati, al fine di completare la copertura territoriale del sistema fognario e depurativo, e di adeguare gli impianti esistenti ai nuovi standard qualitativi previsti per gli scarichi idrici e agli obiettivi di qualità ambientale previsti dalla normativa per i corpi idrici recettori. La normativa di riferimento ha stabilito la data del 31/12/2005 per l'adequamento tecnologico dei sistemi di collettamento a servizio di agglomerati maggiori o uguali a 2.000 abitanti equivalenti (a.e.).

STATO E TREND

La percentuale di conformità dei sistemi di fognatura è pari al 99,1%.

COMMENTI A TABELLE E FIGURE

La conformità dei sistemi di collettamento ai requisiti previsti dalla normativa di riferimento ha raggiunto il 100% in 14 regioni e nelle province autonome di Trento e Bolzano, mentre è ha valori compresi tra 92% e 99% nelle restanti 5 regioni (Tabella 9.19 -Figura 9.82). Il grado di conformità nazionale dei sistemi di collettamento è pari al 99,1 %, di poco superiore rispetto a quanto riscontrato nel 2012. La conformità dei sistemi di collettamento è stata calcolata sommando la percentuale di carico organico convogliata in fognatura a quella trattata con sistemi "sistemi individuali o appropriati" che, secondo quanto stabilito dalla Direttiva 91/271/CEE, devono rappresentare una valida alternativa ai tradizionali sistemi di collettamento e trattamento delle acque reflue urbane quando non sono presenti le condizioni ambientali ed economiche idonee all'installazione degli abituali sistemi di collettamento e depurazione.

É stata, altresì, calcolata la percentuale del carico organico convogliata in fognatura e di quella trattata con sistemi individuali o appropriati (Tabella 9.20). A livello nazionale, la percentuale di carico organico convogliato in fognatura è pari al 94,3% (per un totale di 74.891.586 a.e.), mentre quello indirizzato ai sistemi individuali è del 4,5% (pari a 3.594.147 a.e.) (Figura 9.83). Nel 2014, sia il carico organico totale convogliato in rete fognaria sia la frazione di carico organico trattata con sistemi individuali presentano valori di poco inferiori a quelli rilevati nel 2012.

A livello regionale, la percentuale di carico organico convogliato in fognatura è maggiore del 95% in 12 regioni e nelle province autonome di Trento e di Bolzano, mentre valori compresi tra il 95% e il 90% si riscontrano in 4 regioni. In Friuli-Venezia Giulia, Basilicata e Sicilia si registrano valori inferiori al 90%, rispettivamente 89,3%, 87,8% e 81% (Figura 9.84).

Tabella 9.19: Conformità dei sistemi di fognatura relativi ad agglomerati maggiori o uguali a 2.000 a.e. - dettaglio regionale (2014)

Regione/Provincia	TOTALE			Area normale				Area se	Area sensibile + bacino drenante	o drenante		Conformità
autonoma	agglomerati	Agglomerati	Conformi	Non conformi	Parzialmente	Dato non	Agglomerati	Conformi	Non conformi	Parzialmente	Dato non	
			(Peso 1)	(Peso 0)	conformi (Peso 0,75)	disponibile (Peso 0)		(Peso 1)	(Peso 0)	conformi (Peso 0,75)	disponibile (Peso 0)	
						c .						%
Piemonte	170	0	0	0	0	0	170	170	0	0	0	100,0
Valle d'Aosta	17	0	0	0	0	0	17	17	0	0	0	100,0
Lombardia	400	2	4	1	0	0	395	395	0	0	0	8'66
Trentino-Alto Adige	87	0	0	0	0	0	87	87	0	0	0	100,0
Trento	99	0	0	0	0	0	56	56	0	0	0	100,0
Bolzano - Bozen	31	0	0	0	0	0	31	31	0	0	0	100,0
Veneto	210	0	0	0	0	0	210	210	0	0	0	100,0
Friuli-Venezia Giulia	98	1	1	0	0	0	85	82	0	0	0	100,0
Liguria	09	54	54	0	0	0	9	9	0	0	0	100,0
Emilia-Romagna	205	0	0	0	0	0	202	202	0	0	0	100,0
Toscana	224	116	116	0	0	0	108	108	0	0	0	100,0
Umbria	34	30	30	0	0	0	4	4	0	0	0	100,0
Marche	92	80	80	0	0	0	12	12	0	0	0	100,0
Lazio	196	130	130	0	0	0	99	99	0	0	0	100,0
Abruzzo	137	131	122	3	3	3	9	9	0	0	0	95,1
Molise	39	37	37	0	0	0	2	2	0	0	0	100,0
Campania	151	151	103	0	48	0	0	0	0	0	0	92,1
Basilicata	85	09	25	2	1	0	25	25	0	0	0	97,4
Calabria	236	236	223	4	6	0	0	0	0	0	0	97,4
Puglia	170	149	149	0	0	0	21	21	0	0	0	100,0
Sicilia	336	325	321	1	3	0	11	11	0	0	0	99,5
Sardegna	236	110	110	0	0	0	126	126	0	0	0	100,0
TOTALE	3.171	1.615	1.537	11	64	3	1.556	1.556	0	0	0	99,1
Fonte: Elaborazione ISPRA/APPA e regioni (Questionario UWWTD 2015)	ISPRA/APPA	e regioni (Que	stionario UV	WWTD 2015)								

Tabella 9.20: Ripartizione del carico generato convogliato in rete fognaria e in sistemi individuali dettaglio regionale (2014)

Regione/Provincia autonoma	Totale carico generato	Carico co in rete f		Carico convogliato in sistemi individuali		Carico non convogliato in rete fognaria o in sistemi individuali	
uatorioma	a.e	a.e	%	a.e	%	a.e	%
Piemonte	5.117.993	5.104.493	99,7	0	0,0	13.500	0,3
Valle d'Aosta	213.217	213.217	100,0	0	0,0	0	0,0
Lombardia	12.422.989	11.969.074	96,3	109.170	0,9	344.745	2,8
Trentino-Alto Adige	2.694.986	2.679.363	99,4	15.623	0,6	0	0,0
Trento	1.018.135	1.016.116	99,8	2.019	0,2	0	0,0
Bolzano - Bozen	1.676.851	1.663.247	99,2	13.604	0,8	0	0,0
Veneto	6.475.594	5.827.936	90,0	647.658	10,0	0	0,0
Friuli-Venezia Giulia	1.337.836	1.195.352	89,3	142.484	10,7	0	0,0
Liguria	2.351.583	2.346.389	99,8	5.194	0,2	0	0,0
Emilia-Romagna	5.714.103	5.684.305	99,5	29.798	0,5	0	0,0
Toscana	5.695.252	5.654.088	99,3	41.164	0,7	0	0,0
Umbria	681.550	675.285	99,1	6.265	0,9	0	0,0
Marche	1.512.420	1.497.246	99,0	15.174	1,0	0	0,0
Lazio	5.575.045	5.483.097	98,4	91.948	1,6	0	0,0
Abruzzo	1.952.695	1.890.476	96,8	8.222	0,4	53.997	2,8
Molise	399.832	391.835	98,0	7.997	2,0	0	0,0
Campania	6.336.608	5.729.386	90,4	406.923	6,4	200.299	3,2
Basilicata	770.278	676.535	87,8	77.099	10,0	16.644	2,2
Calabria	3.578.656	3.242.042	90,6	193.704	5,4	142.910	4,0
Puglia	6.241.329	5.674.427	90,9	566.902	9,1	0	0,0
Sicilia	6.817.189	5.523.518	81,0	1.168.006	17,1	125.665	1,8
Sardegna	3.494.609	3.433.792	98,3	60.817	1,7	0	0,0
TOTALE	79.383.763	74.891.856	94,3	3.594.147	4,5	897.760	1,1
Fonte: Elaborazione ISPRA/APPA e regioni (Questionario UWWTD 2015)							

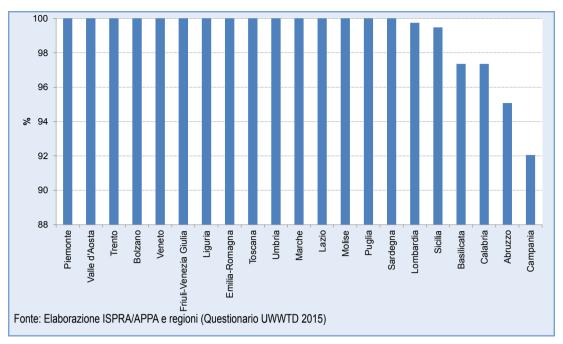


Figura 9.82: Grado di conformità dei sistemi di fognatura relativi ad agglomerati maggiori o uguali a 2.000 a.e. - dettaglio regionale (2014)

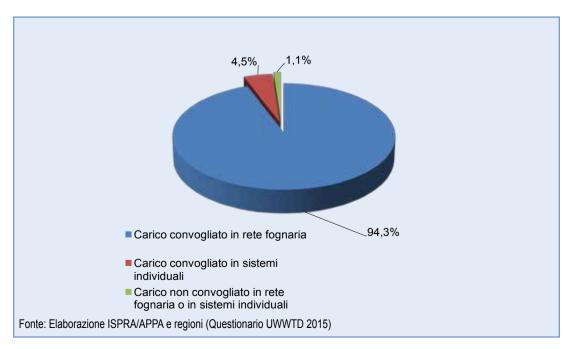


Figura 9.83: Percentuale totale di carico organico collettato



Figura 9.85: Percentuale di carico organico collettato - dettaglio regionale (2014)

PERCENTUALE DI ACQUE REFLUE DEPURATE

DESCRIZIONE

Indicatore di risposta che esprime la quantità di carico organico biodegradabile che raggiunge gli impianti di trattamento delle acque reflue urbane, rispetto al carico organico totale prodotto dagli agglomerati (maggiori o uguali a 2.000 a.e.) presenti sul territorio nazionale. La percentuale del carico organico biodegradabile convogliata a impianti di depurazione dotati di trattamento secondario (o più avanzato per i depuratori con scarichi in area sensibile) rappresenta il grado di copertura dei sistemi di depurazione sul territorio nazionale.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	
1	1	1	1

La qualità dell'informazione è da ritenersi adeguata alle richieste della normativa vigente. I dati sono acquisiti e validati secondo procedure omogenee a livello nazionale e consentono una buona comparabilità temporale e spaziale.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva del Consiglio del 21 maggio 1991, concernente il trattamento delle acque reflue urbane stabilisce che i reflui convogliati dalla rete fognarie, prima dello scarico, devono essere sottoposti a un trattamento secondario (biologico) o equivalente. Inoltre, la normativa di riferimento prevede che l'intero carico organico prodotto dall'agglomerato (carico generato) deve essere depurato con sistemi di trattamento adeguati alla dimensione dell'utenza e alla tipologia di area di scarico.

STATO E TREND

Nel 2014, il carico organico prodotto dagli agglomerati presenti sul territorio nazionale (con potenzialità uguale o maggiore di 2.000 a.e.) è risultato pari a 79.383.763 a.e. La frazione del carico organico depurato è risultata pari a 70.216.437 a.e. Il grado

di copertura nazionale del servizio di depurazione risulta pari all'88% e, pertanto, invariato rispetto al 2012 (Figura 9.86).

COMMENTI A TABELLE E FIGURE

Nel 2014, il valore del carico organico depurato è pari a 70.216.437 a.e., rispetto al carico generato totale pari a 79.383.763 a.e. (Tabella 9.21 – Figura 9.86). Il dettaglio regionale evidenzia che la percentuale di carico organico depurato è maggiore o uguale al 90% in 11 regioni e nelle province autonome di Trento e di Bolzano, mentre in 7 regioni ha raggiunto valori compresi tra il 70% e il 89%. La percentuale più bassa è stata riscontrata in Sicilia con un valore pari al 54% (Figura 9.86).

Tabella 9.21: Carico generato e carico depurato degli agglomerati maggiori o uguali a 2.000 a.e. dettaglio regionale (2014)

Regione/	Carico generato	Carico depurato	Carico depurato			
Provincia autonoma	a.	%				
Piemonte	5.117.993	5.104.493	100			
Valle d'Aosta	213.217	154.800	73			
Lombardia	12.422.989	11.969.074	96			
Trentino-Alto Adige	2.694.986	2.675.739	99			
Trento	1.018.135	1.016.080	100			
Bolzano - Bozen	1.676.851	1.659.659	99			
Veneto	6.475.594	5.832.341	90			
Friuli-Venezia Giulia	1.337.836	982.547	73			
Liguria	2.351.583	2.343.321	100			
Emilia-Romagna	5.714.103	5.517.362	97			
Toscana	5.695.252	5.605.748	98			
Umbria	681.550	674.561	99			
Marche	1.512.420	1.365.725	90			
Lazio	5.575.045	5.391.808	97			
Abruzzo	1.952.695	1.875.798	96			
Molise	399.832	357.634	89			
Campania	6.336.608	4.870.531	77			
Basilicata	770.278	655.185	85			
Calabria	3.578.656	2.951.013	82			
Puglia	6.241.329	4.712.335	76			
Sicilia	6.817.189	3.685.512	54			
Sardegna	3.494.609	3.491.007	100			
TOTALE	79.383.763	70.216.534	88			
Fonte: Elaborazione ISPRA su dati ARPA/APPA e regioni (Questionario UWWTD 2015)						

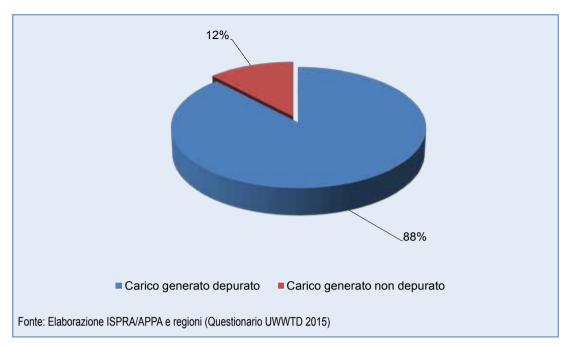


Figura 9.85: Percentuale totale relativa al trattamento del carico generato

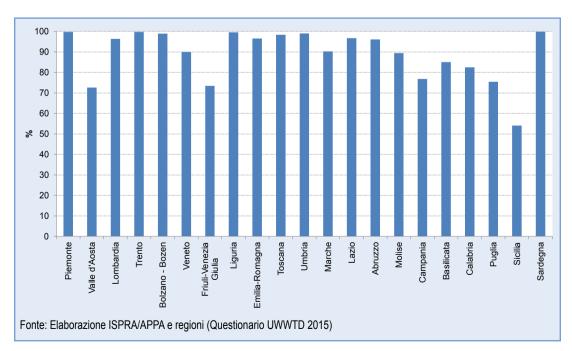


Figura 9.86: Percentuale del carico organico depurato relativo ad agglomerati maggiori o uguali a 2.000 a.e. - dettaglio regionale (2014)

INDICE SINTETICO INQUINAMENTO DA NITRATI DELLE ACQUE SUPERFICIALI (NO, STATUS)

DESCRIZIONE

L'indice fornisce in modo sintetico informazioni riguardo al livello d'inquinamento da nitrati delle acque superficiali di un dato territorio. L'indice è un numero razionale compreso tra 0 e 1; esprime contemporaneamente le seguenti informazioni: lo stato generale delle acque, in un dato territorio, rispetto all'inquinamento da nitrati di origine agricola; la qualità dell'inquinamento, espresso in termini di classi percentuali di superamento delle soglie rispettivamente di "forte inquinamento", "pericolo" e "attenzione", così come definite a livello comunitario nell'ambito della Direttiva 91/676/CEE (Direttiva Nitrati) in maniera distinta per le acque superficiali e quelle sotterrane. Le classi di concentrazione per le acque superficiali sono le seguenti: 0-1,99 mg/l; 2-9,99 mg/l (soglia di attenzione): 10-24,99 mg/l (soglia di pericolo); 25 mg/l (forte inquinamento). Tanto più l'indice si approssima all'unità quanto più lo stato complessivo delle acque di un dato territorio rispetto all'inquinamento da nitrati è migliore.

A titolo esemplificativo, considerate due regioni R1 e R2 aventi rispettivamente l'indice pari a 0,748 e 0,392, si può ricavare quanto seque: la regione R1 (I1 = 0.748) rispetto alla regione R2 (I2 = 0.392). ha una qualità migliore delle acque, essendo 0,748 > 0,392. L'indice (calcolato come descritto nella metodologia) è composto di tre cifre dopo la virgola: detti valori forniscono, rispettivamente, informazioni sui superamenti della soglia di "forte inquinamento", di "pericolo", di "attenzione", quanto più prossimi al 9 tanto migliore sarà la situazione. Pertanto relativamente alle regioni R1 e R2 si potranno fornire queste informazioni: R1 ha un numero di superamenti della soglia di "forte inquinamento" minore di R2 (7>3, che sono i valori dei decimi rispettivamente in I1 e I2); R1 ha un numero di superamenti della soglia di pericolo di molto maggiore ad R2 (4<9, che sono i valori dei centesimi rispettivamente in I1 e I2); nella regione R1 ci sono pochi superamenti della soglia di attenzione rispetto alla regione R2 (8>2, valori dei millesimi dei due indici).

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	
1	1	1	1

I dati di monitoraggio utilizzati come base informativa per il calcolo dell'indice sono raccolti ed elaborati da tutte le regioni con la medesima finalità di reporting nell'ambito della Direttiva nitrati.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva Nitrati – recepita in Italia attraverso il D.Lgs. 152/99 e successivamente attraverso il D.Lgs. 152/2006 – si pone l'obiettivo di proteggere le acque dall'inquinamento prodotto dai nitrati di origine agricola attraverso l'attuazione, da parte degli Stati membri, di una serie di misure quali il monitoraggio delle acque (concentrazione di nitrati e stato trofico), l'individuazione delle acque inquinate o a rischio di inquinamento, la designazione delle zone vulnerabili (aree che scaricano in acque inquinate o a rischio di inquinamento se non si intervenga), l'elaborazione di codici di buona pratica agricola e di programmi di azione (una serie di misure intese a prevenire e a ridurre l'inquinamento da nitrati). I criteri per l'identificazione delle acque inquinate sono: un contenuto di nitrati superiore a 50 mg/l, ovvero la possibilità di superamento di tali limite gualora non si intervenga attraverso i programmi d'azione nelle acque sotterranee; un contenuto di nitrati superiore a 25 mg/l nelle acque dolci superficiali (limite definito dalla Direttiva 75/400/CEE sulla produzione di acque potabili, che può salire a 50 mg/l in caso di circostanze climatiche o geografiche eccezionali); processi di eutrofizzazione a carico di laghi naturali o altre acque dolci, estuari, acque marine-costiere o possibilità che possano diventare eutrofiche qualora non si intervenga. L'articolo 10 della Direttiva Nitrati prevede che, a decorrere dalla sua notifica, gli Stati membri presentino ogni 4 anni una relazione alla Commissione. La relazione contiene informazioni su: Codici di Buona Pratica Agricola: Designazione delle "Zone Vulnerabili (ZV)"; Risultati del monitoraggio; Sommario dei principali aspetti dei Programmi d'Azione elaborati per le ZV. Ai fini dell'elaborazione dei *report* quadriennali i risultati dei programmi di monitoraggio sono aggregati ed elaborati in classi di concentrazione corrispondenti a differenti livelli di contaminazione da nitrati (0-24,99 mg/l; 25-39,99 mg/l; 40-50 mg/l; 50 mg/l, per le acque sotterranee; 0-1,99 mg/l; 2-9,99 mg/l; 10-24,99 mg/l; >25 mg/l, per le acque superficiali), così come previsto dalle Linee Guida della Commissione Europea "Status and trends of acquatic environment and agricoltural practice. Development guide for Member State's report".

STATO E TREND

Il numero delle stazioni di monitoraggio è passato da 3.944 del 2008-2011 a 3.741 per il quadriennio successivo. Effettuando un confronto tra i due periodi, la situazione nazionale risulta sostanzialmente invariata rispetto al quadriennio 2008-2011. L'indice passa, infatti, da 0.985 a 0.984.

COMMENTI A TABELLE E FIGURE

Passando ad analizzare le acque superficiali con un maggior livello di dettaglio è possibile osservare che in dieci regioni/province autonome (Abruzzo, Basilicata, Campania, Emilia-Romagna, Lombardia, Puglia, Sardegna, Sicilia, Toscana, Molise) l'indice è migliorato; in cinque (Friuli-Venezia Giulia, Lazio, Liguria, Marche, Valle d'Aosta) ha subito dei peggioramenti. Per cinque regioni/province autonome (Bolzano, Piemonte, Trento, Umbria, Veneto) l'indice è rimasto stazionario nei due quadrienni. La Calabria non ha inviato dati nel quadriennio 2012-2015.

Tabella 9.22: Indice sintetico inquinamento da nitrati, acque superficiali (2008-2011)

Regione/Provincia	Camp	oioni per s	oglia di co	oncentraz	zione	P2*	P3**	P4***	Crunch	Crunch	Crunch	INDICE
autonoma	0-1,99	2-9,99	10-24,99	>25	TOTALE				(P2)	(P3)	(P4)	
	mg/I NO ₃	mg/I NO ₃	mg/I NO ₃	mg/l NO ₃								
			n.				%					
Abruzzo	27	66	28	2	123	53,66	22,76	1,63	5	2	0	0,974
Basilicata	6	16	8	4	34	47,06	23,53	11,76	5	2	1	0,874
Bolzano	10	11	0	0	21	52,38	0,00	0,00	5	0	0	0,994
Calabria	130	41	4	0	175	23,43	2,29	0,00	2	0	0	0,997
Campania	23	85	29	7	144	59,03	20,14	4,86	6	2	0	0,973
Emilia-Romagna	36	81	68	10	195	41,54	34,87	5,13	4	3	1	0,865
Friuli-Venezia Giulia	62	238	29	5	334	71,26	8,68	1,50	7	1	0	0,982
Lazio	80	48	22	3	153	31,37	14,38	1,96	3	1	0	0,986
Liguria	97	47	5	1	150	31,33	3,33	0,67	3	0	0	0,996
Lombardia	5	89	69	22	185	48,11	37,30	11,89	5	4	1	0,854
Marche	95	27	12	1	135	20,00	8,89	0,74	2	1	0	0,987
Molise	-	-	-	-	-	-	-	-	-	-	-	-
Piemonte	62	116	19	0	197	58,88	9,64	0,00	6	1	0	0,983
Puglia	48	27	3	0	78	34,62	3,85	0,00	3	0	0	0,996
Sardegna	322	161	39	6	528	30,49	7,39	1,14	3	1	0	0,986
Sicilia	120	118	82	103	423	27,90	19,39	24,35	3	2	2	0,776
Toscana	197	223	28	2	450	49,56	6,22	0,44	5	1	0	0,984
Trento	16	80	6	1	103	77,67	5,83	0,97	8	1	0	0,981
Umbria	8	45	14	0	67	67,16	20,90	0,00	7	2	0	0,972
Valle d'Aosta	44	14	0	0	58	24,14	0,00	0,00	2	0	0	0,997
Veneto	73	177	128	13	391	45,27	32,74	3,32	5	3	0	0,964
ITALIA	1.461	1.710	593	180	3.944	43,36	15,04	4,56	4	1	0	0,985

Legenda:

Nota:

^{*} Percentuale di campioni rientranti nella soglia di attenzione

^{**} Percentuale di campioni rientranti nella soglia di pericolo

^{***} Percentuale di campioni rientranti nella soglia di forte inquinamento

Tabella 9.23: Indice sintetico inquinamento da nitrati, acque superficiali (2012-2015)

Regione/Provincia	Camp	oioni per s	oglia di co	oncentraz	ione	P2*	P3**	P4***	Crunch	Crunch		INDICE
autonoma	0-1,99	2-9,99	10-24,99	>25	TOTALE				(P2)	(P3)	(P4)	
	mg/I NO ₃	mg/I NO ₃	mg/I NO ₃	mg/I NO ₃								
			n.				%					
Abruzzo	76	71	12	1	160	44,38	7,50	0,63	4	1	0	0,985
Basilicata	7	6	1	0	14	42,86	7,14	0,00	4	1	0	0,985
Bolzano	56	53	0	0	109	48,62	0,00	0,00	5	0	0	0,994
Calabria	0	0	0	0	0	-	-	-	-	-	-	-
Campania	92	116	50	8	266	43,61	18,80	3,01	4	2	0	0,975
Emilia-Romagna	77	122	63	14	276	44,20	22,83	5,07	4	2	0	0,975
Friuli-Venezia Giulia	34	234	31	5	304	76,97	10,20	1,64	8	1	0	0,981
Lazio	57	92	35	6	190	48,42	18,42	3,16	5	2	0	0,974
Liguria	95	76	5	3	179	42,46	2,79	1,68	4	0	0	0,995
Lombardia	9	104	71	22	206	50,49	34,47	10,68	5	3	1	0,864
Marche	23	30	19	10	82	36,59	23,17	12,20	4	2	1	0,875
Molise	14	0	0	0	14	-	-	-	-	-	-	-
Piemonte	91	204	28	0	323	63,16	8,67	0,00	6	1	0	0,983
Puglia	105	31	6	0	142	21,83	4,23	0,00	2	0	0	0,997
Sardegna	242	27	0	0	269	10,04	0,00	0,00	1	0	0	0,998
Sicilia	30	28	22	8	88	31,82	25,00	9,09	3	2	1	0,876
Toscana	155	206	13	2	376	54,79	3,46	0,53	5	0	0	0,994
Trento	22	144	9	1	176	81,82	5,11	0,57	8	1	0	0,981
Umbria	10	48	13	0	71	67,61	18,31	0,00	7	2	0	0,972
Valle d'Aosta	14	9	0	0	23	39,13	0,00	0,00	4	0	0	0,995
Veneto	85	233	144	11	473	49,26	30,44	2,33	5	3	0	0,964
ITALIA	1.294	1.834	522	91	3.741	49,02	13,95	2,43	5	1	0	0,984

Legenda:

Nota:

^{*} Percentuale di campioni rientranti nella soglia di attenzione

^{**} Percentuale di campioni rientranti nella soglia di pericolo

^{***} Percentuale di campioni rientranti nella soglia di forte inquinamento

INDICE SINTETICO INQUINAMENTO DA NITRATI DELLE ACQUE SOTTERRANEE (NO, STATUS)

DESCRIZIONE

L'indice fornisce in modo sintetico informazioni riguardo al livello d'inquinamento da nitrati delle acque sotterranee di un dato territorio. L'indice è un numero razionale compreso tra 0 e 1; esprime contemporaneamente le seguenti informazioni: lo stato generale delle acque, in un dato territorio, rispetto all'inquinamento da nitrati di origine agricola; la qualità dell'inquinamento, espresso in termini di classi percentuali di superamento delle soglie rispettivamente di "forte inquinamento", "pericolo" e "attenzione", così come definite a livello comunitario nell'ambito della Direttiva 91/676/CEE (Direttiva Nitrati) in maniera distinta per le acque superficiali e quelle sotterrane. Le classi di concentrazione per le acque sotterranee sono le seguenti: 0-24,99 mg/l; 25-39.99 mg/l (soglia di attenzione); 40-50 mg/l (soglia di pericolo); 50 mg/l (forte inquinamento). Tanto più l'indice si approssima all'unità quanto più lo stato complessivo delle acque di un dato territorio rispetto all'inquinamento da nitrati è migliore.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	
1	1	1	1

I dati di monitoraggio utilizzati come base informativa per il calcolo dell'indice sono raccolti ed elaborati da tutte le regioni con la medesima finalità di reporting nell'ambito della Direttiva Nitrati.

OBIETTIVI FISSATI DALLA NORMATIVA

La Direttiva Nitrati - recepita in Italia attraverso il D.Lgs. 152/99 e successivamente attraverso il D.Lgs. 152/2006 – si pone l'obiettivo di proteggere le acque dall'inquinamento prodotto dai nitrati di origine agricola attraverso l'attuazione, da parte degli Stati membri, di una serie di misure quali il monitoraggio delle acque (concentrazione di nitrati e stato trofico), l'individuazione delle acque inquinate o a rischio di inquinamento, la designazione delle zone vulnerabili (aree che scaricano in acque inquinate o a rischio di inquinamento se non si intervenga), l'elaborazione di codici di buona pratica agricola e di programmi di azione (una serie di misure intese a prevenire e a ridurre l'inquinamento da nitrati). I criteri per l'identificazione delle acque inquinate sono: un contenuto di nitrati superiore a 50 mg/l, ovvero la possibilità di superamento di tali limite qualora non si intervenga attraverso i programmi d'azione nelle acque sotterranee; un contenuto di nitrati superiore a 25 mg/l nelle acque dolci superficiali (limite definito dalla Direttiva 75/400/CEE sulla produzione di acque potabili, che può salire a 50 mg/l in caso di circostanze climatiche o geografiche eccezionali); processi di eutrofizzazione a carico di laghi naturali o altre acque dolci, estuari, acque marine-costiere o possibilità che possano diventare eutrofiche qualora non si intervenga. L'articolo 10 della Direttiva Nitrati prevede che, a decorrere dalla sua notifica, gli Stati membri presentino ogni 4 anni una relazione alla Commissione. La relazione contiene informazioni su: Codici di Buona Pratica Agricola; Designazione delle "Zone Vulnerabili (ZV)"; Risultati del monitoraggio; Sommario dei principali aspetti dei Programmi d'Azione elaborati per le ZV. Ai fini dell'elaborazione dei report quadriennali i risultati dei programmi di monitoraggio sono aggregati ed elaborati in classi di concentrazione corrispondenti a differenti livelli di contaminazione da nitrati (0-24,99 mg/l; 25-39,99 mg/l; 40-50 mg/l; 50 mg/l, per le acque sotterranee; 0-1,99 mg/l; 2-9,99 mg/l; 10-24,99 mg/l; >25 mg/l, per le acque superficiali), così come previsto dalle Linee Guida della Commissione Europea "Status and trends of acquatic environment and agricoltural practice. Development guide for Member State's report".

STATO E TREND

Il numero delle stazioni di monitoraggio è passato da 5.465 del 2008-2011 a 5.036 per il quadriennio successivo. Effettuando un confronto tra i due periodi, la situazione nazionale risulta migliorata rispetto al quadriennio 2008-2011, l'indice passa, infatti, da 0,888 a 0,898 segnale, questo, di un miglioramento per la soglia di pericolo.

COMMENTI A TABELLE E FIGURE

Passando ad analizzare le acque sotterranee con un maggior livello di dettaglio è possibile osservare che in sette regioni (Basilicata, Campania, Emilia-Romagna, Lazio, Piemonte, Veneto, Molise) l'indice è migliorato. Tale tendenza positiva si evidenzia, in particolare, nella riduzione della percentuale di stazioni di monitoraggio rientranti nella soglia di pericolo; miglioramenti più modesti sono stati registrati per le stazioni rientranti nella soglia di forte inquinamento. In tre regioni (Marche, Puglia, Sicilia) l'indice ha subito dei peggioramenti e in dieci regioni/province autonome (Abruzzo, Bolzano, Friuli-Venezia Giulia, Liguria, Lombardia, Sardegna, Toscana, Trento, Umbria, Valle d'Aosta) l'indice è rimasto stazionario nei due quadrienni. Mentre una regione, la Calabria, non ha inviato dati nel quadrienio 2012-2015.

Tabella 9.24: Indice sintetico inquinamento da nitrati, acque sotterranee (2008-2011)

Regione/Provincia	Camp	oioni per s	oglia di c	oncentraz	zione	P2*	P3**	P4***		Crunch		INDICE
autonoma	0-1,99	2-9,99	10-24,99	>25	TOTALE				(P2)	(P3)	(P4)	
	mg/I NO ₃	mg/I NO ₃	mg/I NO ₃	mg/I NO ₃								
			n.				%					
Abruzzo	241	28	12	60	341	8,21	3,52	17,60	1	0	2	0,798
Basilicata	71	16	7	33	127	12,60	5,51	25,98	1	1	3	0,688
Bolzano	32	1	0	0	33	3,03	0,00	0,00	0	0	0	0,999
Calabria	-	-	-	-	-	-	-	-	-	-	-	-
Campania	210	30	31	20	291	10,31	10,65	6,87	1	1	1	0,888
Emilia-Romagna	392	66	36	55	549	12,02	6,56	10,02	1	1	1	0,888
Friuli-Venezia Giulia	128	35	7	3	173	20,23	4,05	1,73	2	0	0	0,997
Lazio	84	8	3	16	111	7,21	2,70	14,41	1	0	1	0,898
Liguria	177	6	3	13	199	3,02	1,51	6,53	0	0	1	0,899
Lombardia	290	83	37	20	430	19,30	8,60	4,65	2	1	0	0,987
Marche	151	24	18	35	228	10,53	7,89	15,35	1	1	2	0,788
Molise	-	-	-	-	-	-	-	-	-	-	-	-
Piemonte	374	123	41	50	588	20,92	6,97	8,50	2	1	1	0,887
Puglia	207	89	41	112	449	19,82	9,13	24,94	2	1	2	0,787
Sardegna	210	48	33	97	388	12,37	8,51	25,00	1	1	2	0,788
Sicilia	301	45	16	62	424	10,61	3,77	14,62	1	0	1	0,898
Toscana	370	43	18	27	458	9,39	3,93	5,90	1	0	1	0,898
Trento	12	0	0	0	12	0,00	0,00	0,00	0	0	0	0,999
Umbria	137	58	17	64	276	21,01	6,16	23,19	2	1	2	0,787
Valle d'Aosta	47	0	0	0	47	0,00	0,00	0,00	0	0	0	0,999
Veneto	255	47	18	21	341	13,78	5,28	6,16	1	1	1	0,888
ITALIA	3689	750	338	688	5465	13,72	6,18	12,59	1	1	1	0,888

Legenda:

Nota:

^{*} Percentuale di campioni rientranti nella soglia di attenzione

^{**} Percentuale di campioni rientranti nella soglia di pericolo

^{***} Percentuale di campioni rientranti nella soglia di forte inquinamento

Tabella 9.25: Indice sintetico inquinamento da nitrati, acque sotterranee (2012-2015)

Regione/Provincia	Camp	oioni per s	oglia di c	oncentraz	ione	P2*	P3**	P4***	Crunch	Crunch	Crunch	INDICE
autonoma	0-1,99	2-9,99	10-25	>25	TOTALE				(P2)	(P3)	(P4)	
	mg/I NO ₃	mg/I NO ₃	mg/l NO ₃	mg/I NO ₃								
			n.				%					
Abruzzo	266	30	12	71	379	7,92	3,17	18,73	1	0	2	0,798
Basilicata	19	3	2	2	26	11,54	7,69	7,69	1	1	1	0,888
Bolzano	63	2	0	0	65	3,08	0,00	0,00	0	0	0	0,999
Calabria	23	1	0	0	24	-	-	-	-	-	-	-
Campania	161	12	6	26	205	5,85	2,93	12,68	1	0	1	0,898
Emilia-Romagna	415	62	25	61	563	11,01	4,44	10,83	1	0	1	0,898
Friuli-Venezia Giulia	136	32	6	1	175	18,29	3,43	0,57	2	0	0	0,997
Lazio	79	5	3	14	101	4,95	2,97	13,86	0	0	1	0,899
Liguria	194	9	1	12	216	4,17	0,46	5,56	0	0	1	0,899
Lombardia	297	90	24	14	425	21,18	5,65	3,29	2	1	0	0,987
Marche	35	21	15	37	108	19,44	13,89	34,26	2	1	3	0,687
Molise	40	0	0	0	40	-	-	-	-	-	-	-
Piemonte	424	102	29	38	593	17,20	4,89	6,41	2	0	1	0,897
Puglia	38	20	9	25	92	21,74	9,78	27,17	2	1	3	0,687
Sardegna	393	73	40	107	613	11,91	6,53	17,46	1	1	2	0,788
Sicilia	195	37	16	63	311	11,90	5,14	20,26	1	1	2	0,788
Toscana	323	37	19	22	401	9,23	4,74	5,49	1	0	1	0,898
Trento	32	0	0	0	32	0,00	0,00	0,00	0	0	0	0,999
Umbria	100	49	15	49	213	23,00	7,04	23,00	2	1	2	0,787
Valle d'Aosta	71	0	0	0	71	0,00	0,00	0,00	0	0	0	0,999
Veneto	321	39	11	12	383	10,18	2,87	3,13	1	0	0	0,998
ITALIA	3.625	624	233	554	5.036	12,39	4,63	11,00	1	0	1	0,898

Legenda:

Nota:

^{*} Percentuale di campioni rientranti nella soglia di attenzione

^{**} Percentuale di campioni rientranti nella soglia di pericolo

^{***} Percentuale di campioni rientranti nella soglia di forte inquinamento

9.4 STATO FISICO DEL MARE

La Temperatura delle acque marine è un indicatore di stato che descrive la variazione della temperatura superficiale. La temperatura delle acque marine oltre ad avere un'importante azione mitigatrice sul clima delle regioni costiere, influenza le caratteristiche chimiche e fisiche responsabili degli spostamenti verticali delle masse d'acqua. La temperatura diminuisce con la profondità, nei mari temperati sono identificabili tre strati sovrapposti: lo strato superficiale, lo strato termoclino e lo strato profondo: nello strato superficiale la temperatura delle acque marine è simile a quella in superficie e le relative variazioni nel tempo presentano periodicità giornaliera e stagionale.

L'Ondosità è un indicatore di stato che descrive la variazione dello stato di agitazione del mare. rappresentato in una scala convenzionale (scala Douglas). Il moto ondoso è causato dal vento e dalla sua azione sulla superficie del mare. Il moto ondoso risulta particolarmente intenso durante la stagione invernale e autunnale, con i valori più elevati presenti nel Mediterraneo occidentale, in particolare lungo le coste della Sardegna. Valori elevati di altezza significativa, nelle stesse stagioni dell'anno, si rilevano anche nel Canale di Sicilia e

nel Mar Ionio. Strutture analoghe si notano durante la primavera ma con valori ovungue inferiori. Il campo medio delle onde nel periodo estivo è significativamente più basso.

Utile per gli studi sui cambiamenti climatici, per il trasporto marittimo, per le attività legate alla pesca, per lo studio dell'erosione costiera e per la progettazione e il dimensionamento delle opere marittime nonché per il controllo della propagazione degli inquinanti in mare, è l'indicatore *Mareggiate*. Infine, utilizzando i dati provenienti dalle stazioni della Rete Mareografica Nazionale dell'ISPRA. sono state individuate le aree più favorevoli allo sviluppo dell'upwelling, attraverso il calcolo delle frequenze di eventi ventosi in direzione parallela alla costa.

Le boe strumentate rappresentano l'unico sistema in grado di fornire elementi diretti per la comprensione dei processi meteo-oceanografici in mare aperto. Esse costituiscono un riferimento essenziale per gli studi climatici e per quelli previsionali legati sia all'ambiente atmosferico sia a quello marino.

Nel quadro Q9.4 sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Q9.4: QUADRO DELLE CARATTERISTICHE INDICATORI STATO FISICO DEL MARE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Temperatura acque marine	Di interesse per le attività turistiche e per quelle legate alla pesca, nonché per lo studio dei cambiamenti clima- tici (considerata l'influenza della tem- peratura delle acque del mare sulla variazione del potenziale di umidità dell'atmosfera)	S	-
Ondosità	Di interesse per gli studi sui cambia- menti climatici, per il trasporto marit- timo, per le attività legate alla pesca, per lo studio dell'erosione costiera e per la progettazione delle opere ma- rittime nonché per il controllo della propagazione degli inquinanti in mare	S	-

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Mareggiate	Individuare il numero medio di ma- reggiate per anno	S	-
Upwelling	Individuare tratti di mare favorevoli al verificarsi del fenomeno e, quindi, dove è ragionevole attendersi una concentrazione maggiore di fauna ittica	S	-

BIBLIOGRAFIA

ISPRA. Annuario dei dati ambientali, anni vari

APAT, CD-ROM: Osservazioni delle reti Meteomarine fino al 2001. Sistema di visualizzazione ed elaborazione grafica del clima marino, Roma, 2004

APAT – Università degli Studi di Roma Tre, Atlante delle onde nei mari italiani, Roma, 2004

World Meteorological Organization, *Guide to wave analysis and forecasting*, WMO-No.702, Ginevra, 1998 M. Picone, F. Lagona, G. Nardone, *Missing value imputation in buoy networks for validation purposes* (2010) – Proceedings of 33 International Symposium on Remote Sensing of Environment – Vol. 2 – pagg. 825 - 828

M. Picone, F. Lagona, G. Nardone, M. Bencivenga, A latent-class approach to missing value imputation in incomplete multivariate wave metric datasets (2010) - Rapp. Comm. Int. Mer Medit. - Vol. 39 - page 160 Bakun A., 1973, Coastal upwelling indices, west coast of North America, 1946-71. U.S. Dep. Commer., NOAA Tech. Rep., NMFS SSRF-67

D'Ortenzio F., Iudicone D., De Boyer Montégut C., Testor P., Antoine D., Marullo S., Santoleri R., Madec G.,2005, Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophysical Research Letters, 32, L12605, doi:10.1029/2005 GL022463.

Ekman V.W. 1905. On the influence of the earth's rotation on ocean currents. Ark. Mat. Astron. Fys. 2(11):1-52.

Fong D. A. and Geyer W. R.: Response of a river plume during an upwelling favorable wind event, J. Geophys. Res., 106, 1067–1084, 2001. 4.

Inghilesi R., Ottolenghi L., Orasi A., Pizzi C., Bignami F., Santoleri R., Fate of river Tiber discharge investigated through numerical simulation and satellite monitoring, Ocean Sci., 8, 773-786, 2012.

Magaldi M. G., Özgökmen T. M., Griffa A., Rixen M., On the response of a turbulent coastal buoyant current to wind events: the case of the Western Adriatic Current, Ocean Dynamics, Volume 60, Number 1 (2010), 93-122.

Massetti L., 2004, *Identificazione e analisi degli upwelling in area mediterranea*, Tesi di Master in Meteorologia applicata, Facoltà di Agraria, Università degli studi di Firenze

Millot, C., Circulation in the Western Mediterranean Sea, Journal of Marine Systems, Volume 20, Issues 1–4, April 1999, Pages 423–442.

http://www.apat.gov.it/site/it-IT/Servizi_per_l'Ambiente/Dati_Meteo_Marini/

http://www.isprambiente.it/site/it-IT/Servizi_per_l'Ambiente/

TEMPERATURA ACQUE MARINE

DESCRIZIONE

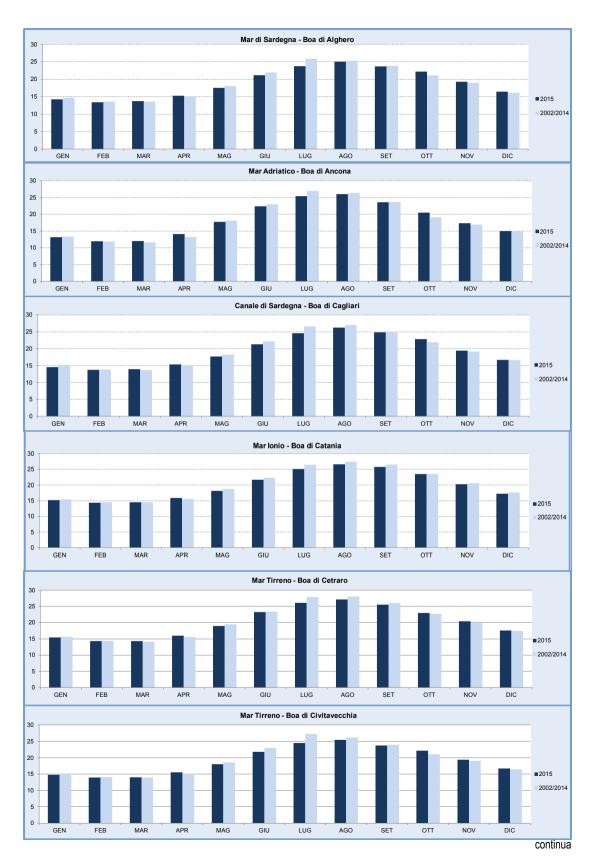
Il mare svolge una funzione termoregolatrice che influenza il clima su scala globale; la temperatura del mare, che dipende prevalentemente dall'energia termica che le acque ricevono dall'irraggiamento solare, è estremamente variabile nel tempo e nello spazio. La misura della temperatura superficiale dell'acqua del mare al mattino è eseguita direttamente dall'ISPRA secondo standard e procedure conformi alle norme WMO.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	1	1

L'indicatore è in grado di descrivere con sufficiente dettaglio spaziale e temporale lo stato fisico del mare. I dati sono comparabili e affidabili, in quanto il monitoraggio è condotto in maniera standardizzata e sono previste procedure di validazione. L'ambito temporale offre una serie storica ventennale per oltre la metà del campione e la copertura dei mari è completa.

OBIETTIVI FISSATI DALLA NORMATIVA


Non esistono obiettivi specifici fissati dalla normativa.

STATO E TREND

Le variazioni dell'indicatore assumono carattere di periodicità con un tipico andamento armonico che segue il ciclo stagionale: esso raggiunge valori elevati nei mesi estivi e subisce in generale una brusca caduta a fine estate, fino al minimo invernale.

COMMENTI A TABELLE E FIGURE

Nel corso del 2015, per i mari italiani, le temperature superficiali delle acque sono risultate sostanzialmente in linea con le temperature medie caratteristiche del periodo di osservazione precedente con aumenti di temperatura nei mesi autunnali e invernali e diminuzioni rispetto alla media nei mesi estivi

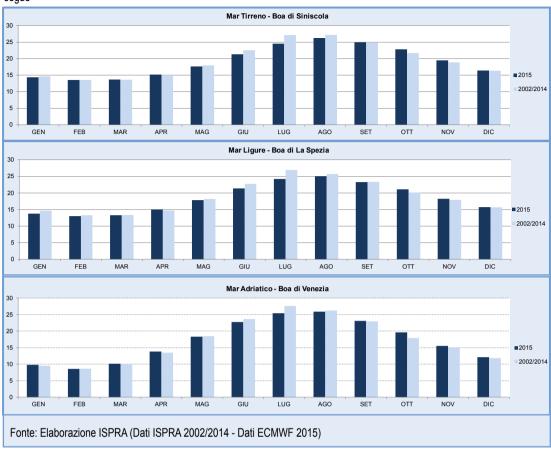


Figura 9.87: Temperature nei mari italiani

ONDOSITÀ

DESCRIZIONE

Il moto ondoso è provocato dalla spinta del vento sulla superficie marina. Le onde sono movimenti superficiali e irregolari che non producono spostamenti orizzontali di masse d'acqua, ma semplicemente un'oscillazione delle particelle lungo un'orbita circolare o ellittica (in prossimità della costa dove le onde si frangono). La misura del moto ondoso è eseguita direttamente dall'ISPRA secondo standard e procedure conformi alle norme WMO. I dati sono stati elaborati in funzione dell'ampiezza del moto ondoso. secondo una scala convenzionale per misurare la forza e lo stato del mare.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	1	1

L'indicatore è in grado di descrivere con sufficiente dettaglio spaziale e temporale lo stato fisico del mare. I dati sono comparabili e affidabili in quanto il monitoraggio è condotto in maniera standardizzata e sono previste procedure di validazione. L'ambito temporale offre una serie storica ventennale per oltre metà del campione e la copertura dei mari è completa.

OBIETTIVI FISSATI DALLA NORMATIVA

Non esistono obiettivi fissati dalla normativa.

STATO E TREND

Questo indicatore caratterizza uno stato, e non un trend. Non è tuttavia possibile definire una qualità dello stato a causa della natura stessa dell'indicatore che è strettamente quantitativo.

COMMENTI A TABELLE E FIGURE

L'ondosità, classificata come stato del mare in base all'altezza significativa dell'onda, nel corso del 2015, è stata in linea con le medie dei precedenti periodi di osservazione per tutti i mari italiani.

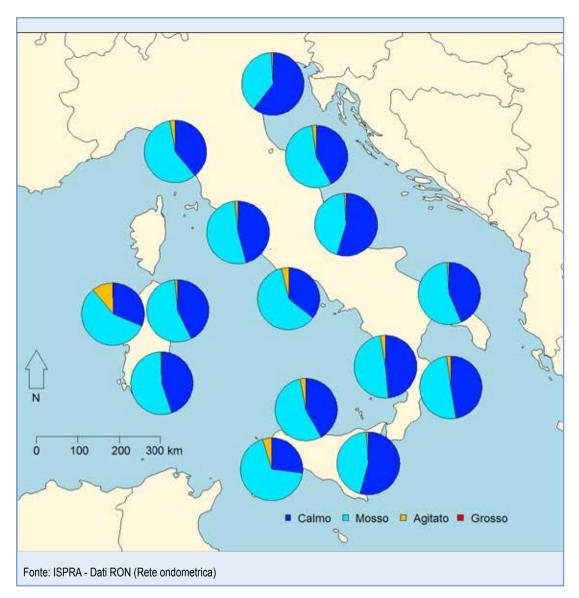


Figura 9.88: Ondosità nei mari italiani (2002-2014)

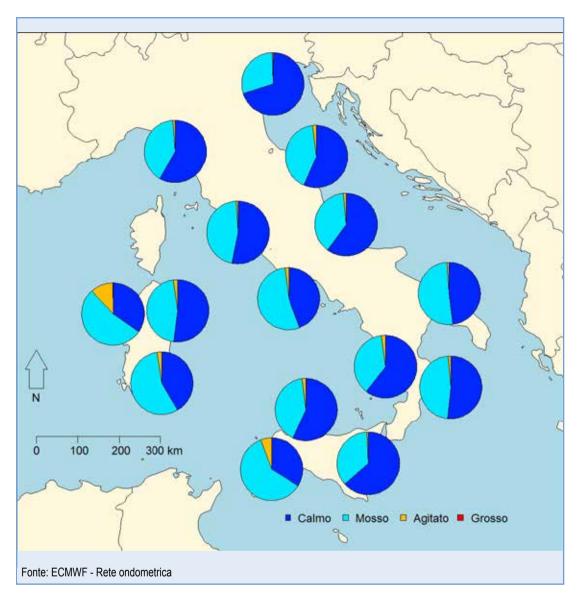


Figura 9.89: Ondosità nei mari italiani (2015)

MAREGGIATE

DESCRIZIONE

Le mareggiate sono originate da eventi anemometrici intensi e persistenti che agiscono su estese porzioni di mare aperto e generano impatti rilevanti sulle aree costiere.

Per mareggiata, in questo contesto, si intende il massimo della altezza d'onda significativa di un gruppo di dati persistenti sopra soglia e separati da un altro set di dati sopra soglia per almeno 48 ore. In questo modo vengono selezionati i massimi delle diverse mareggiate che possono essere considerate indipendenti. La misura del moto ondoso è eseguita direttamente dall'ISPRA secondo standard e procedure conformi alle norme WMO.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza		Comparabilità nello spazio
1	2	1	2

L'indicatore è in grado di descrivere con sufficiente dettaglio spaziale e temporale lo stato fisico del mare. I dati sono comparabili e affidabili in quanto il monitoraggio è condotto in maniera standardizzata e sono previste procedure di validazione. L'ambito temporale offre una serie storica ventennale per oltre metà del campione e la copertura dei mari è completa.

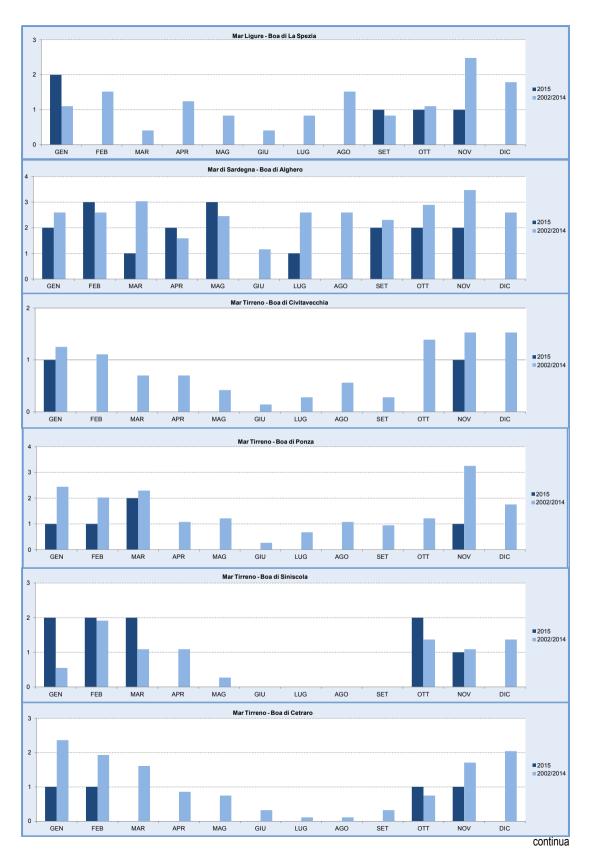
OBIETTIVI FISSATI DALLA NORMATIVA

Non esistono obiettivi fissati dalla normativa.

STATO E TREND

Il numero medio di mareggiate presenta nel 2015, rispetto all'analisi su tutto l'intero periodo, una chiara componente stagionale. I mesi invernali alla fine del 2015 presentano un numero di mareggiate inferiore alla media degli anni precedenti; in particolare, il mese di dicembre è caratterizzato dall'assenza di mareggiate in corrispondenza dei punti di osservazione. Non si assegna l'icona di Chernoff in quanto non è possibile definire una qualità dello

stato a causa della natura stessa dell'indicatore, strettamente quantitativo.


COMMENTI A TABELLE E FIGURE

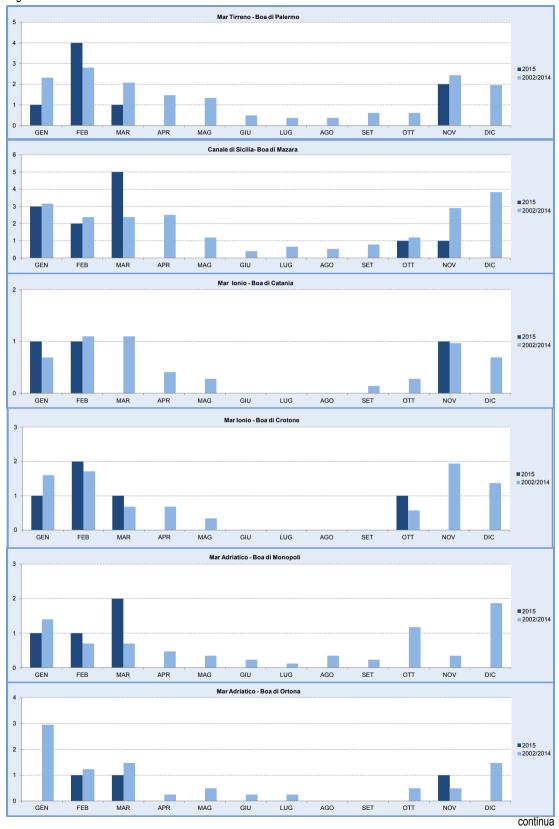

Il numero di mareggiate è influenzato dall'esposizione (fetch) e dalla stagionalità. Il fetch, infatti, rappresenta la superficie di mare aperto a disposizione del vento che spira con intensità e direzione costante e del moto ondoso per generarsi e continuare a propagarsi; maggiore è il fetch, maggiori potranno essere le mareggiate sia in termini di quantità sia di intensità dei fenomeni. A tale proposito, l'analisi dell'intero periodo di riferimento (Tabella 9.26) conferma che le boe nel Tirreno presentano un elevato numero di mareggiate. Per la natura stessa dei bacini considerati e dei diversi fetch, come ragionevole attendersi, nell'area adriatica viene registrato un minore numero di eventi.

Tabella 9.26: Mareggiate nei mari italiani

	333				•		•		•		•		•	
MARE	STAZIONE	ANNO	GEN	FEB	MAR	APR	MAG	CIU	FNG	AGO	SET	ОТТ	NOV	DIC
								i.						
Mar Ligure	La Spezia	2015	2,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	1,0	1,0	0,0
		2002/2014	1,1	1,5	4,0	1,2	8,0	0,4	8,0	1,5	0,8	1,1	2,2	1,8
Mar di Sardegna	Alghero	2015	2,0	3,0	1,0	2,0	3,0	0,0	1,0	0,0	2,0	2,0	2,0	0,0
		2002/2014	2,6	2,6	3,0	1,6	2,5	1,2	2,6	2,6	2,3	2,9	3,5	2,6
Mar Tirreno	Civitavecchia	2015	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0
		2002/2014	1,3	1,1	2,0	0,7	4'0	0,1	0,3	9'0	0,3	1,4	1,5	1,5
	Ponza	2015	1,0	1,0	2,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0
		2002/2014	2,4	2,0	2,3	1,1	1,2	0,3	2,0	1,1	1,0	1,2	3,3	1,8
	Siniscola	2015	2,0	2,0	2,0	0,0	0,0	0,0	0,0	0,0	0,0	2,0	1,0	0,0
		2002/2014	9,0	1,9	1,1	1,1	6,0	0,0	0,0	0,0	0,0	1,4	1,1	1,4
	Cetraro	2015	1,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	1,0	0,0
		2002/2014	2,4	1,9	1,6	6,0	8'0	0,3	0,1	1,0	6,0	0,8	1,7	2,0
	Palermo	2015	1,0	4,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,0	0,0
		2002/2014	2,3	2,8	2,1	1,5	1,3	0,5	4,0	0,4	9,0	9,0	2,4	2,0
Canale di Sicilia	Mazara del Vallo	2015	3,0	2,0	5,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	1,0	0,0
		2002/2014	3,2	2,4	2,4	2,5	1,2	0,4	2,0	0,5	0,8	1,2	2,9	3,8
Mar Ionio	Catania	2015	1,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0
		2002/2014	2,0	1,1	1,1	0,4	0,3	0,0	0,0	0,0	0,1	0,3	1,0	0,7
	Crotone	2015	1,0	2,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0
		2002/2014	1,6	1,7	0,7	2,0	0,3	0,0	0,0	0,0	0,0	9,0	1,9	1,4
Mar Adriatico	Monopoli	2015	1,0	1,0	2,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
		2002/2014	1,4	2,0	0,7	0,5	0,4	0,5	0,1	0,4	0,2	1,2	0,4	1,9
	Ortona	2015	0,0	1,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0
		2002/2014	3,0	1,2	1,5	0,3	0,5	0,3	0,3	0,0	0,0	0,5	9,0	1,5
	Ancona	2015	0,0	2,0	2,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	1,0	0,0
		2002/2014	2,4	2,0	2,4	8,0	6,0	0,3	0,0	0,0	9'0	0,3	2,4	2,7
														continua

MARE	STAZIONE	ANNO	GEN	EB	MAR	APR	MAG	GIU	DUL	AGO	SET	ОТТ	NOV	DIC
								'n.						
Mar Adriatico	Venezia - Chioggia	2015	0,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
		2002/2014	1,0	1,2	9'0	0,3	0,3	0,3	0,0	0,0	0,5	0,5	1,0	0,7
Canale di Sardegna Cagliari	Cagliari	2015	1,0	4,0	4,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	1,0	0,0
		2002/2014	9,0	0,2	9'0	0,2	0,0	0,0	0,0	0,0	0,0	0,2	6'0	0,5
Fonte: Elaborazione	Fonte: Elaborazione ISPRA su dati ISPRA 2002/2014	02/2014 - Dati ECMWF 2015	IWF 2015											

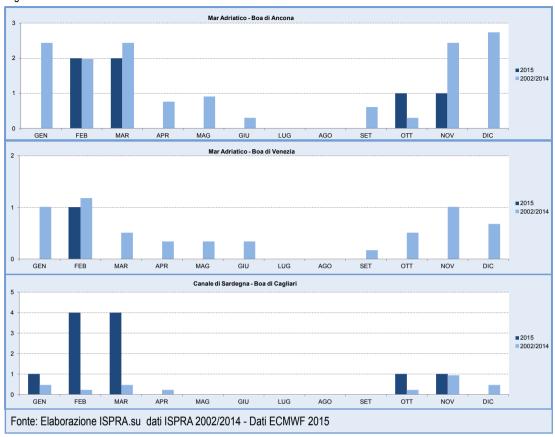


Figura 9.90: Mareggiate nei mari italiani

DESCRIZIONE

L'upwelling costiero è un fenomeno di corrente fortemente influenzato oltre che dalle correnti marine, anche dall'intensità e dalla direzione del vento lungo la costa. Nella fattispecie, il vento che spira in direzione parallela alla costa può avere l'effetto. sotto alcune condizioni, di generare una corrente che viene deviata per effetto della forza di Coriolis. in direzione ortogonale alla costa e verso il largo. L'upwelling è proprio il fenomeno di corrente verticale che sposta acque più profonde e fredde che vanno a rimpiazzare l'acqua superficiale trascinata dal vento verso il largo. La corrente portante, che si origina soprattutto per variazioni di salinità, tende guindi a far risalire acqua dal fondo, acqua che risulta più fredda di quella presente in prossimità della superficie e ricca di nutrienti. Questo fenomeno ha un notevole impatto sulla fauna ittica locale.

A causa della forte influenza del vento nella generazione del fenomeno di upwelling, l'individuazione delle aree più favorevoli allo sviluppo di tale processo è stata realizzata attraverso il calcolo delle freguenze di eventi ventosi in direzione parallela alla costa utilizzando i dati provenienti dalle stazioni mareografiche della Rete Mareografica Nazionale.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	2	1	2

L'indicatore è in grado di descrivere con sufficiente dettaglio spaziale e temporale il fenomeno di upwelling. I dati sono comparabili e affidabili in quanto il monitoraggio è condotto in maniera standardizzata e sono previste procedure di validazione.

OBIETTIVI FISSATI DALLA NORMATIVA

Non esistono obiettivi fissati dalla normativa.

STATO E TREND

L'indicatore permette la caratterizzazione delle aree favorevoli al verificarsi del fenomeno di upwelling. non indicandone, tuttavia, direttamente il numero. Pertanto, non essendo possibile esprimere una valutazione qualitativa, non viene assegnata l'icona di Chernoff

COMMENTI A TABELLE E FIGURE

Le stazioni considerate nell'area occidentale dei mari italiani presentano direzioni del vento favorevoli alla generazione di fenomeni di upwelling prevalentemente da Nord. Per ogni stazione sono stati selezionati i seguenti settori direzionali (gradi N):

Imperia 255° - 285° Genova 279° - 309° Livorno 345° - 15° Civitavecchia 303° - 333° Napoli 300° - 330° Salerno 300° - 330° Palinuro 279° - 309°

La frequenza di eventi per le stazioni di Imperia (Figura 9.99). Genova (Figura 9.98) e Livorno (Figura 100) sono rispettivamente pari a 0.4%. 2.7% e 0.38%.

Le frequenze invece per le località di Salerno e Palinuro sono rispettivamente pari a 2,13% e 1,8%.

L'aggiornamento dell'indicatore con i dati fino al 2015 non ha prodotto sostanziali differenze rispetto alla situazione descritta fino al 2013. Dalle percentuali si evince ancora come il tratto di costa intorno a Genova e quello del Tirreno Meridionale siano più esposte a fenomeni di upwelling.

L'area intorno a Civitavecchia (Figura 9.96) ha una freguenza pari a: 1,13% confermando i risultati noti in letteratura che descrivono il Mar Tirreno Settentrionale come una della aree più favorevoli al generarsi di fenomeni di upwelling (Massetti, 2004, Inghilesi et al., 2012).

Per la stazione di Napoli (Figura 9.102), relativamente al periodo considerato, la freguenza è pari allo 0.58%.

Il Mar Adriatico, nella parte settentrionale, è battuto dalla Bora, forte vento che soffia da Nord-Est e che genera upwelling lungo la linea costiera a Est del bacino.

Questo tratto di mare è inoltre interessato da un grande afflusso d'acqua fluviale proveniente dal Po e dagli altri maggiori fiumi dell'Italia Nord Orientale, che ha la caratteristica di avere temperatura e salinità inferiore rispetto al mare ed essere ricca di nutrienti. Come si evidenzia dalle rose dei venti le direzioni favorevoli al fenomeno dell'upwelling. provenienti da Sud, nelle stazioni dell'alto Adriatico sono:

Trieste 325° - 355° Venezia 210° - 240° mentre in prossimità del Po sono:

> Ancona 99° - 129° Ravenna 144° - 174° Ortona: 99° - 129°

La freguenza per Trieste (Figura 9.113) e Venezia (Figura 9.114) è rispettivamente pari a 0.75% e 2.56%. La freguenza per Ortona (Figura 9.103) e Ravenna (Figura 9.109) è rispettivamente pari a 1,1% e 4,66%. La freguenza per Ancona (Figura 9.91) è pari a 2,7%.

Le aree di Venezia, Ravenna e Ancona continuano a presentare alte percentuali di episodi favorevoli. Nel tratto di costa Adriatica meridionale la direzione prevalente di provenienza del vento favorevole all'upwelling può essere considerata quella da Sud-Est. In guesto tratto di mare sono stati analizzati i dati provenienti dalle seguenti stazioni nei settori direzionali indicati:

> Vieste: 90° - 120° Bari: 99° - 129° Otranto: 165° - 195°

Le frequenze calcolate sono rispettivamente pari a: Vieste 1,6% (Figura 9.115), Bari 5,61% (Figura 9.92) e Otranto 2,66% (Figura 9.104). Bari, nel tratto di costa dell'Adriatico meridionale, ha la frequenza più elevata e in generale una delle frequenza più elevate a livello nazionale, anche se presenta un lieve decremento rispetto alla percentuale calcolata con i dati fino al 2013 (6.59%).

Nel Mar Ionio, le due località analizzate sono Taranto e Crotone. Le classi di direzione individuate sono:

Taranto: 279° - 309° Crotone: 165° - 195°.

La frequenza per Crotone (Figura 9.97) è pari a 6.1% e per la stazione di Taranto (Figura 9.112) la frequenza è pari a 3,21%. La situazione rispetto al 2013 è sostanzialmente invariata, confermando come la zona sia particolarmente interessata dalla generazione di upwelling.

In Sicilia, Catania per la sua esposizione del lito-

rale presenta come classe direzionale favorevole alla generazione di upwelling quella compresa tra 186° - 216° ossia da Sud, Palermo (Figura 9.105) quella compresa tra 123° - 153° e Porto Empedocle (Figura 9.107) quella tra 300°-330°.

Le frequenze sono pari rispettivamente a 1,4% per Catania (Figura 9.95), 1.6% per Palermo e 5.74% Porto Empedocle.

Il canale di Sicilia ed in particolare la costa sud della Sicilia è interessata da venti prevalenti provenienti da ovest che soffiano paralleli alla linea di costa e tendono a spostare le masse d'acqua a sud.

Le misure registrate presso la stazione di Porto Empedocle dove forti venti spirano dalla direzione Nord-Ovest confermano che in Sicilia guesto è il tratto di costa maggiormente esposto al fenomeno dell'upwelling.

Lampedusa non consente una trattazione coerente con la metodologia finora utilizzata per la scarsa estensione territoriale di quest'isola.

Messina (Figura 9.101) presenta una freguenza di 0.46% nel settore direzionale compreso tra i 230° e i 260°.

Nello Stretto di Messina, merita particolare rilievo il tratto di costa prospiciente Reggio Calabria (Figura 9.110), dove, nel settore direzionale individuato (320°-350°), è stata ottenuta una freguenza pari a 6,02% di episodi favorevoli all'upwelling. Tutto questo tratto di mare rappresenta una zona interessata da forti fenomeni idrodinamici e, in particolare, lo Stretto di Messina è anche interessato fortemente da fenomeni di upwelling legati soprattutto alle correnti locali.

In Sardegna, infine, Cagliari (Figura 9.93) presenta una percentuale di eventi provenienti dal settore tra i 230° e i 260° pari allo 0,39%, Porto Torres (Figura 9.108) nel settore tra i 75° e i 105° pari al 1,53%, mentre Carloforte (Figura 9.94), con una frequenza dell'11,96, è ancora una volta in assoluto la stazione con il maggior numero di eventi favorevoli riscontrati nel settore direzionale selezionato, compreso tra i 345° - e i 15°.

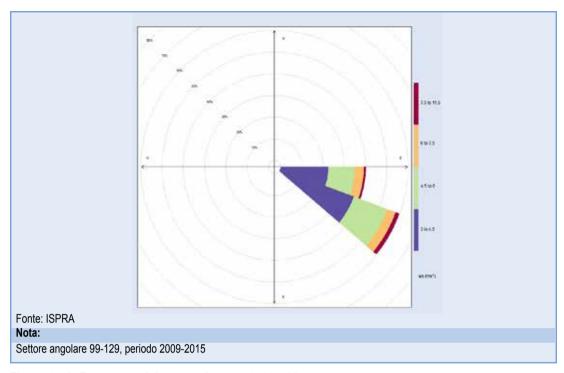


Figura 9.91: Frequenza del vento - Ancona 2009-2015

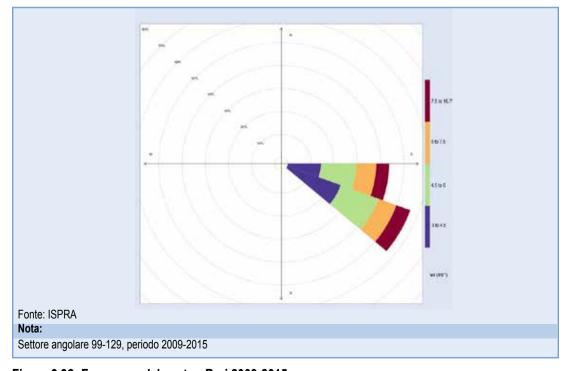


Figura 9.92: Frequenza del vento - Bari 2009-2015

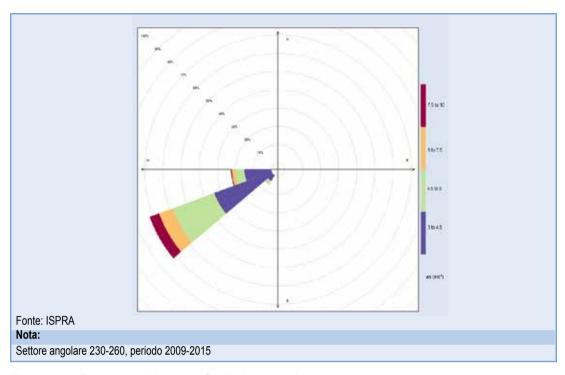


Figura 9.93: Frequenza del vento - Cagliari 2009-2015

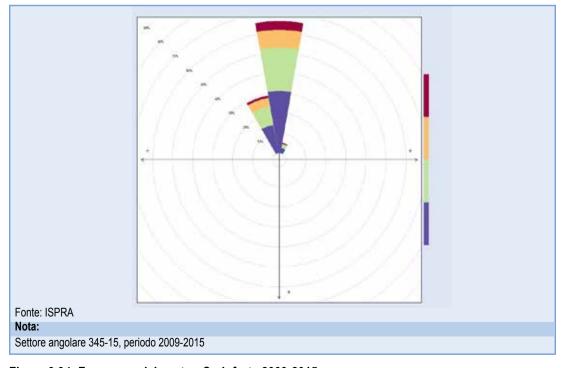


Figura 9.94: Frequenza del vento - Carloforte 2009-2015

Figura 9.95: Frequenza del vento - Catania 2009-2015

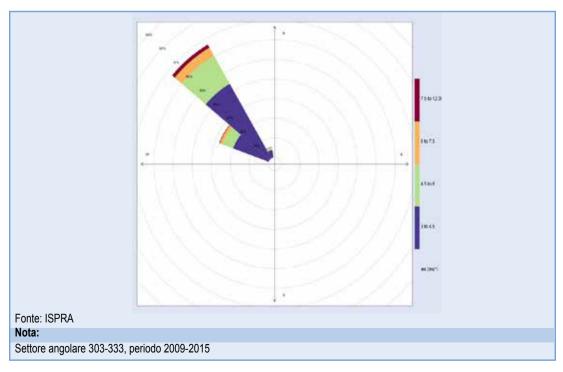


Figura 9.96: Frequenza del vento - Civitavecchia 2009-2015

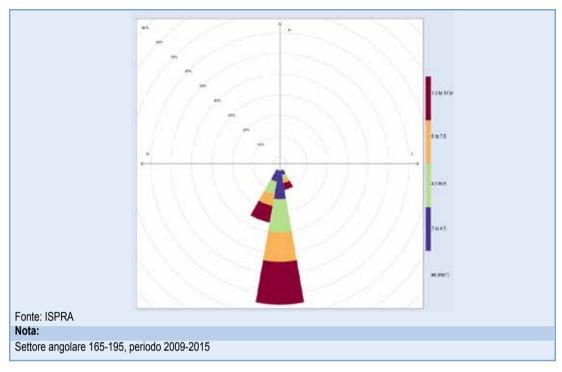


Figura 9.97: Frequenza del vento - Crotone 2009-2015

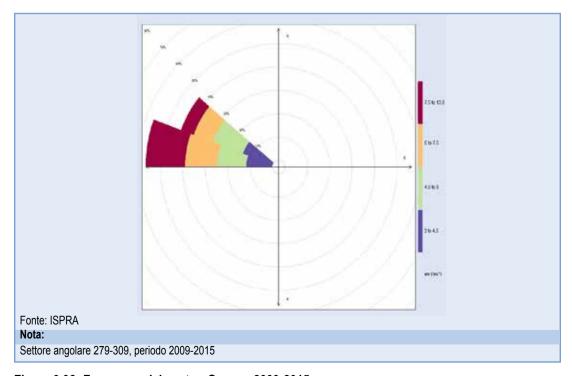


Figura 9.98: Frequenza del vento - Genova 2009-2015

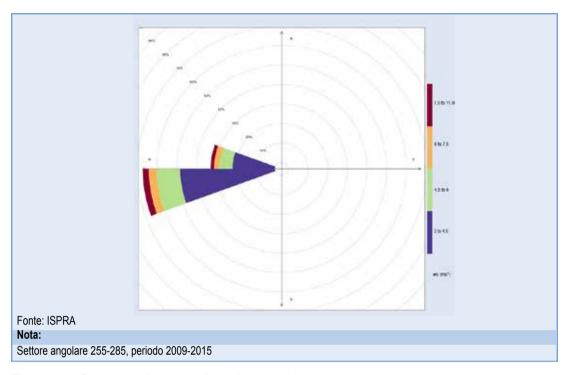


Figura 9.99: Frequenza del vento - Imperia 2009-2015

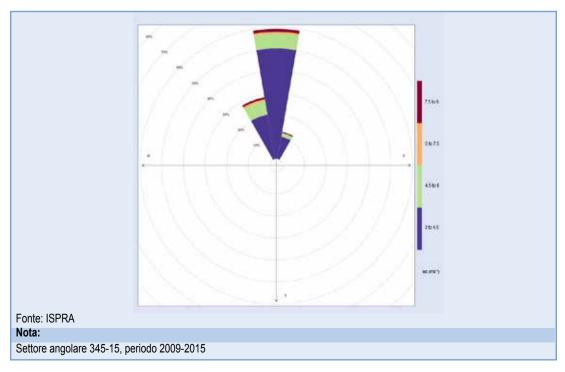


Figura 9.100: Frequenza del vento - Livorno 2009-2015

Figura 9.101: Frequenza del vento - Messina 2009-2015

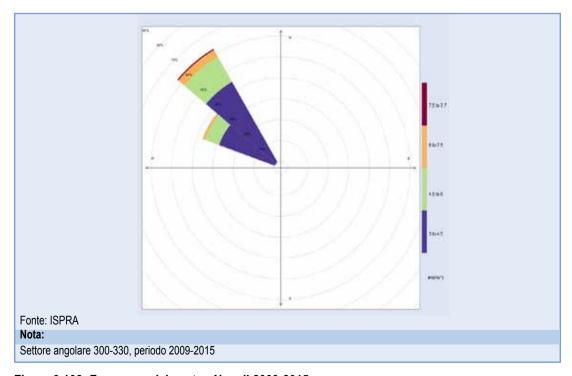


Figura 9.102: Frequenza del vento - Napoli 2009-2015

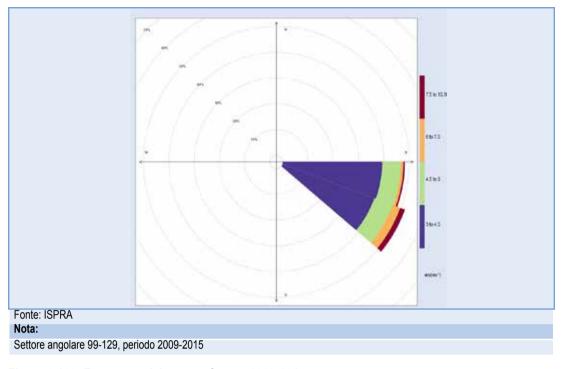


Figura 9.103: Frequenza del vento - Ortona 2009-2015

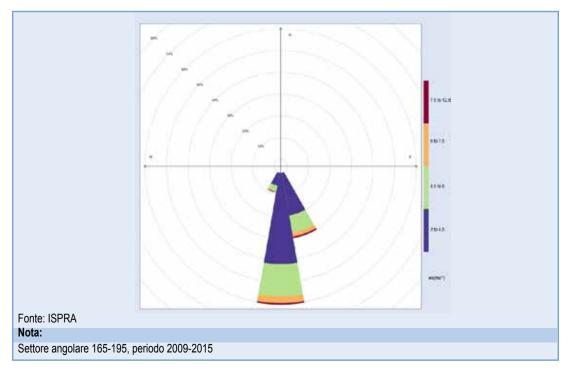


Figura 9.104: Frequenza del vento - Otranto 2009-2015

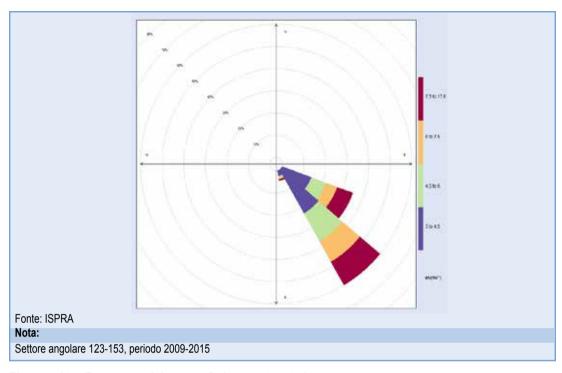


Figura 9.105: Frequenza del vento - Palermo 2009-2015

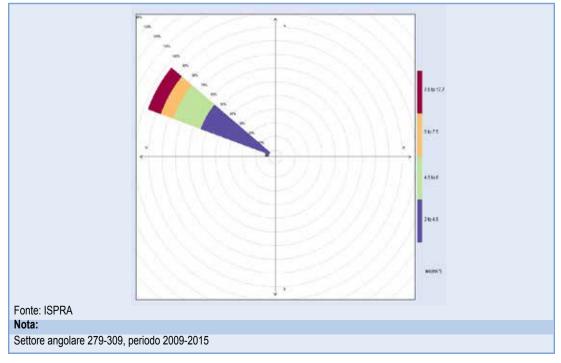


Figura 9.106: Frequenza del vento - Palinuro 2009-2015

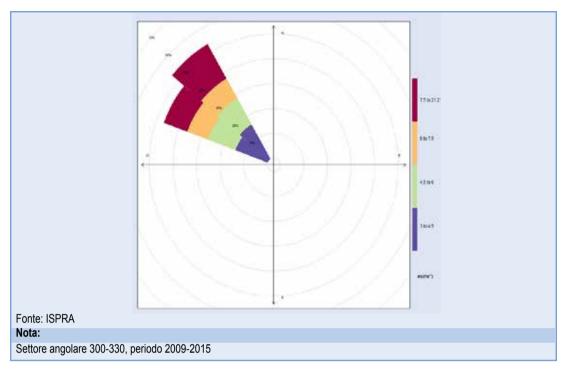


Figura 9.107: Frequenza del vento - Porto Empedocle 2009-2015

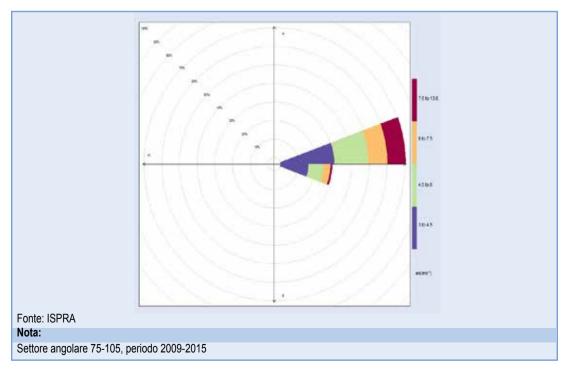


Figura 9.108: Frequenza del vento - Porto Torres 2009-2015

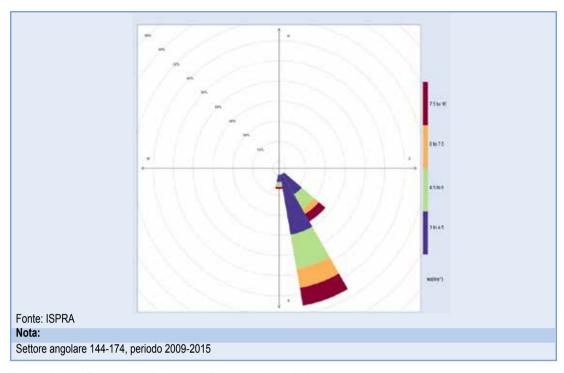


Figura 9.109: Frequenza del vento - Ravenna 2009-2015

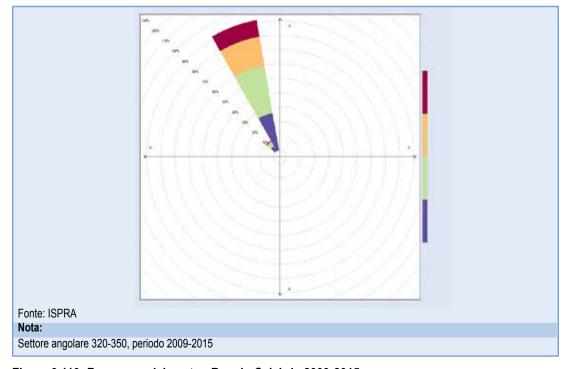


Figura 9.110: Frequenza del vento - Reggio Calabria 2009-2015

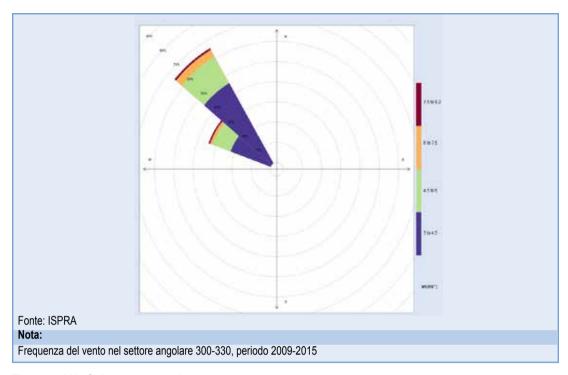


Figura 9.111: Salerno 2009-2015

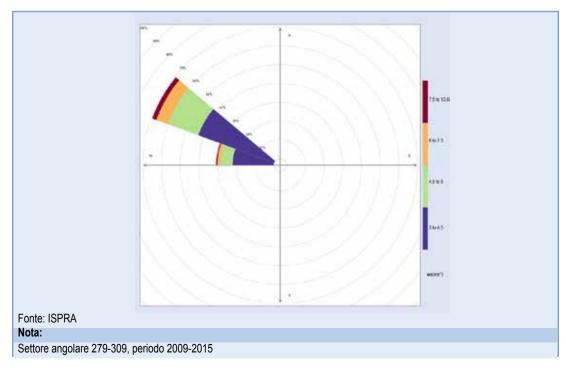


Figura 9.112: Frequenza del vento - Taranto 2009-2015

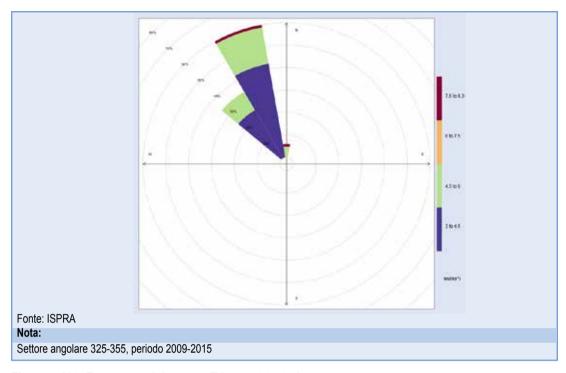


Figura 9.113: Frequenza del vento - Trieste 2009-2015

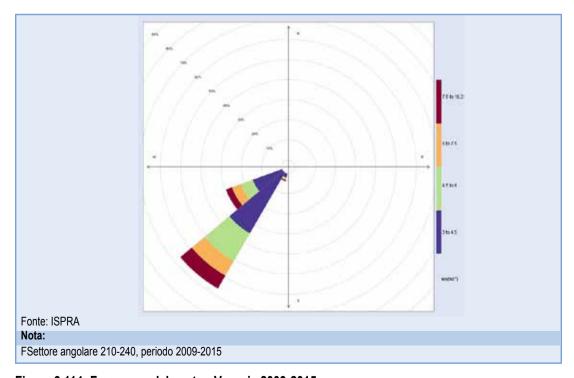


Figura 9.114: Frequenza del vento - Venezia 2009-2015

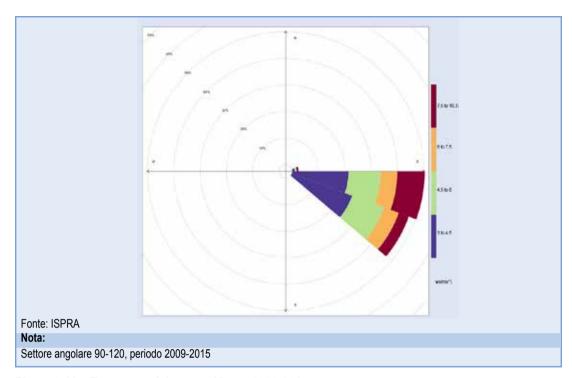


Figura 9.115: Frequenza del vento - Vieste 2009-2015

9.5 LAGUNA DI VENEZIA

Le coste settentrionali del Mare Adriatico. caratterizzate da un continuo alternarsi di cordoni litoranei, lagune e foci dei più importanti corsi d'acqua italiani, sono la più vasta fascia costiera a rischio di inondazioni del Paese. In particolare, la Laguna di Venezia, che si estende per 50.000 ettari, è la più grande e la più importante del nostro Paese. La sua evoluzione è il frutto di una molteplicità di fattori, naturali e antropici: l'abbassamento del suolo, naturale e indotto, le oscillazioni del livello del mare, di lungo e medio periodo, l'ap-

L'uomo ha sempre cercato di dominare questi fattori nella prospettiva di rendere il bacino lagunare compatibile con varie attività: la pesca, la navigazione, la difesa militare, lo scambio delle merci, i trasporti e, nell'ultimo secolo, anche la produzione industriale.

porto di sedimenti fluviali, la dinamica delle acque

marine lungo la costa.

Poderosi furono gli interventi della Serenissima per allontanare dal bacino lagunare le foci dei grandi fiumi (Piave, Brenta, Sile, Po), e per difendere il cordone litoraneo dalla forza erosiva del mare attraverso la costruzione dei cosiddetti "murazzi". imponenti opere di rinforzo longitudinale in massi lapidei presso l'isola di Pellestrina e il litorale di Sottomarina. Non meno importanti furono gli interventi del XX secolo: la zona industriale. l'aeroporto Marco Polo, lo sviluppo del porto commerciale, la sistemazione delle bocche portuali e il dragaggio dei grandi canali lagunari per adattare la laguna al transito del naviglio di maggiore pescaggio. Numerosi e complessi sono oggi i fattori di criticità del bacino lagunare: dal degrado morfologico causato dall'aumento dei volumi scambiati con il mare e dall'accrescimento della forza erosiva delle correnti di marea, all'appiattimento dei fondali ove la marea oggi assume caratteri del tutto simili a quelli propri del mare aperto; dalla qualità scadente delle acque e dei sedimenti lagunari, al rilascio di inquinanti provenienti dai siti contaminati dall'area industriale di Porto Marghera; dal moto ondoso dovuto al traffico acqueo che minaccia l'integrità del patrimonio storico-architettonico, alla pesca abusiva dei "vongolari". Infine, ma non meno importante, l'aumento della frequenza delle acque alte, connesso alla combinazione dei fenomeni di subsidenza, proprio dell'area veneziana, e di eustatismo, proprio di tutto il Pianeta.

Nel quadro Q9.5 sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Q9.5: QUADRO DELLE CARATTERISTICHE INDICATORI PER LAGUNA DI VENEZIA

Nome Indicatore	Finalità 	DPSIR	Riferimenti normativi
Crescita del livello medio del mare a Venezia (ICLMM)	Misurare le variazioni di medio/lungo termine del livello medio marino annuale	ı	-
Numero dei casi di alte maree	Monitorare i casi di allagamento dell'area urbana causati dai sovralzi di marea sopra i più elevati valori astronomici.	Р	-
Altezza della marea astronomica in Laguna di Venezia	Monitorare le variazioni dell'altezza di marea all'interno della Laguna di Venezia	S I	Direttiva 2000/60/CE – allegato II

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Ritardo di propagazione della marea nella Laguna di Venezia	Monitorare le variazioni nella propa- gazione della marea nella Laguna di Venezia	S I	Direttiva 2000/60/CE – allegato II
Climatologia lagunare	Monitorare le variazioni climatiche locali	S I	
MAQI Laguna di Venezia (Macrophyte Quality Index) ^a		S I	
^a Nella presente edizione, l'indic	atore non è stato aggiornato. La relativa sc	heda è coi	nsultabile nel DB http://annuario.isprambiente.it

BIBLIOGRAFIA

ISPRA, Annuario dei dati ambientali, vari anni ISPRA, 2010: un anno da ricordare per l'eccezionale crescita del livello medio del mare a Venezia e nel Nord Adriatico, Quaderni di Ricerca Marina 4/2012

CRESCITA DEL LIVELLO MEDIO DEL MARE A VENEZIA (ICLMM)

DESCRIZIONE

La crescita del livello medio del mare a Venezia è dovuta all'effetto combinato dei fenomeni dell'eustatismo (aumento globale del livello dei mari) e della subsidenza (abbassamento del piano di campagna a seguito del compattamento dei suoli) legata alla particolarità della geologia della costa alto adriatica italiana. L'indicatore si basa sui dati di marea rilevati presso la stazione di Venezia - Punta della Salute, appartenente alla Rete Mareografica della Laguna di Venezia e dell'arco costiero Nord Adriatico (RMLV), per la cui struttura, articolazione e funzionalità si rimanda al sito www.venezia.isprambiente.it.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'indicatore sintetizza bene l'andamento del livello medio del mare nel lungo periodo. I dati provengono dalla stessa stazione (Punta della Salute), pertanto la comparabilità è ottima. La stazione di Punta della Salute è stata gestita dall'Ufficio Idrografico del Magistrato alle Acque, sucessivamente dall'APAT e infine da ISPRA. Le procedure di spoglio, validazione, archiviazione del dato sono state mantenute nel tempo. Inoltre, nel corso del 2015 il processo di validazione dei dati mareografici della RMLV è stato inserito nel dominio di certificazione ISPRA UNI EN ISO 9001:2008. L'affidabilità è ottima. La copertura spaziale è limitata a Venezia centro storico, anche se può essere presa come riferimento per l'intera Laguna di Venezia, in virtù della sua posizione centrale. La metodologia di calcolo è valida nel tempo e nello spazio.

OBIETTIVI FISSATI DALLA NORMATIVA

L'indicatore non ha riferimenti diretti con specifici elementi normativi.

STATO E TREND

Il livello medio mare è in tendenziale aumento a Venezia sin dall'inizio delle rilevazioni (1872). Il valore massimo assoluto è da riferirsi al 2010, con 40,5 cm sullo Zero Mareografico di Punta della Salute, il secondo massimo è riferito all'anno 2014, con 39.5 cm. Va rilevato che il livello medio mare continua a mantenersi su livelli molto alti dal 2009. Gli ultimi 7 anni della serie storica risultano i più alti di sempre.

COMMENTI A TABELLE E FIGURE

Le misurazioni sistematiche della marea iniziano nel 1872. Il livello medio mare, pur con la variabilità insita nel fenomeno, registra un aumento tendenziale sin dall'inizio delle osservazioni (Tabella 9.27). In particolare, la rapida crescita registrata tra gli anni '50 e '60, ma già iniziata tra gli anni '20/'30 del secolo scorso, è stata messa in relazione con l'attività di emungimento delle falde presso la zona di Porto Marghera, a fini industriali. Successivamente alla chiusura dei pozzi, avvenuta agli inizi degli anni '70, la situazione si è stabilizzata sino alla prima metà degli anni '90, quando è ricominciata la salita del livello medio mare. Il ritmo di crescita ha subito un'ulteriore forte accelerazione a partire dal 2009. Infatti, gli ultimi sette anni hanno registrato i valori massimi del livello medio del mare dall'inizio delle registrazioni sistematiche della marea a Venezia (1872). Tutte le osservazioni sono riferite allo Zero Mareografico di Punta della Salute del 1897 (ZMPS).

Tabella 9.27: Livello medio mare annuale a Venezia - Punta della Salute

Anno/	0	1	2	3	4	5	6	7	8	9	Media
Decennio						cm					
1870			0,3	-1,5	-9,2	-9,0	-1,2	0,5	-0,4	4,5	-2,0
1880	-5,9	-1,5	-5,4	-4,3	-7,8	0,0	0,1	-3,6	-0,8	-0,4	-3,0
1890	-2,3	-2,2	3,2	-1,0	-3,2	7,2	-1,2	2,2	0,7	-2,7	0,1
1900	4,9	3,1	3,5	0,8	2,1	3,3	3,1	0,8	-2,5	6,3	2,5
1910	11,4	4,3	1,3	-0,6	8,1	15,5	13,9	5,6	4,1	9,5	7,3
1920	7,0	-3,5	3,3	6,8	3,7	4,4	7,9	7,6	5,6	0,8	4,4
1930	8,3	10,0	4,7	8,4	9,6	10,1	14,5	17,7	6,3	12,7	10,2
1940	13,7	15,7	10,9	6,2	11,4	11,0	12,9	15,3	10,7	5,0	11,3
1950	11,5	21,7	16,3	12,5	14,6	18,9	15,2	14,0	18,8	15,8	15,9
1960	25,1	21,2	20,3	22,9	14,5	21,5	24,9	19,5	21,9	26,8	21,9
1970	24,4	23,0	21,4	18,1	20,7	18,9	19,5	21,2	22,7	25,4	21,5
1980	22,7	22,9	21,7	20,3	24,4	21,9	23,1	25,8	22,1	16,5	22,1
1990	16,8	19,1	18,4	18,9	22,7	22,5	27,6	24,4	24,3	25,6	22,0
2000	25,8	28,2	27,7	23,8	27,6	25,4	25,7	24,1	27,8	33,4	26,9
2010	40,5	29,5	29,5	36,5	39,5	31,6					34,5
Fonte: ISPRA											
Nota:											
I livelli di marea	sono rifer	iti allo Zero	Mareogra	afico di Pur	nta Salute	(1897)					

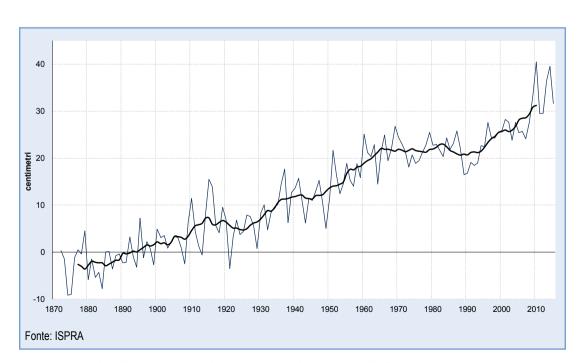


Figura 9.116 : Livello medio annuale mare a Venezia - Punta della Salute

NUMERO DEI CASI DI ALTE MAREE

DESCRIZIONE

Il numero di casi di massimi di marea, suddivisi per classi di altezza, risulta utile per rappresentare il numero di allagamenti del centro storico veneziano. I livelli sono riferiti allo Zero Mareografico di Punta Salute 1897 (ZMPS), piano adottato come riferimento convenzionale per la misura dei livelli di marea in tutta la Laguna di Venezia. L'indicatore si basa sui dati di marea rilevati presso la stazione di Venezia - Punta della Salute, appartenente alla Rete Mareografica della Laguna di Venezia e dell'arco costiero Nord Adriatico (RMLV), la cui struttura, articolazione e funzionalità sono descritte al sito www.venezia.isprambiente.it.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

Le elaborazioni sono effettuate sui livelli di marea osservati presso la stazione di Venezia - Punta della Salute. Il piano di riferimento adottato è lo Zero Mareografico di Punta Salute 1897 (ZMPS), solidale col suolo veneziano. Pertanto, pur in presenza di variazioni significative del livello medio del mare (vedi indicatore Crescita del livello medio del mare a Venezia), le zone soggette ad allagamento a una determinata quota sono le stesse anche a distanza di decenni: è la freguenza degli allagamenti alla medesima quota che varia negli anni. La rilevanza dell'indicatore è ottima. Le metodologie di rilievo del livello di marea, alla base del calcolo delle classi di freguenza delle altezze, sono mantenute nel tempo. Inoltre, nel corso del 2015 il processo di validazione dei dati mareografici della RMLV è stato inserito nel dominio di certificazione ISPRA UNI EN ISO 9001:2008. La comparabilità nel tempo è ottima, la comparabilità nello spazio è limitata al centro storico veneziano.

OBIETTIVI FISSATI DALLA NORMATIVA

L'indicatore non ha riferimenti diretti con specifici elementi normativi.

STATO E TREND

Nel 2015 non si registra un numero rilevante di superamenti delle soglie più elevate, tuttavia rimane comunque evidente l'aumento tendenziale della freguenza dei casi di acqua alta per tutte le classi di altezza. L'anno 2014 è l'anno con la freguenza assoluta maggiore delle maree comprese tra 80-89 cm, seguito a breve distanza dal 2010, anno record in tutte le altre classi di altezza. La classe 80-89 rappresenta delle lievi perturbazioni della marea rispetto ai massimi valori che può assumere la marea astronomica. Se da una parte questa classe di maree medio-alte è sostanzialmente non avvertibile nel centro storico veneziano (ad eccezione per l'area marciana, che viene allagata già a queste altezze), il fenomeno desta comunque preoccupazione, perché è collegato al rapido crescere del livello medio del mare degli ultimi anni. La maggiore permanenza della marea a quote sostenute, inoltre, favorisce l'infiltrazione salina sia sugli edifici che nel terreno e ne accelera il degrado.

COMMENTI A TABELLE E FIGURE

L'aumento della frequenza dei casi di acqua alta è evidente per tutte le classi di altezza. Nel 2010 si registra il record per le classi di altezza medioalta e alta (90-99 cm; 100-109 cm; ≥ 110 cm), mentre il 2014 supera tutti gli anni precedenti per la classe 80-89 cm. A partire dal 2009, si riscontra una notevole crescita della frequenza delle maree comprese tra 80-89 cm, con massimi assoluti nel 2014 (primo caso), 2010 (secondo caso) e 2013 (terzo caso). L'aumento della freguenza delle maree medio-alte, se da un lato non ha effetti evidenti sulla vita quotidiana nel centro storico veneziano (a parte un parziale allagamento di Piazza San Marco). dall'altro comporta degli impatti ambientali rilevanti: l'accresciuta frequenza di superamento di quote superiori a 80 cm determina una più intensa erosione dei litorali, delle barene interne alla laguna, nonché una risalita del cuneo salino, quest'ultimo in grado di ridurre la compattezza e la resistenza all'erosione dei terreni. Tale andamento risulta in netta crescita dalla metà degli anni '90 e negli ultimi sei anni il fenomeno si è acuito. Per le altre classi di altezza, meno ragguardevoli per il numero di superamenti in

valore assoluto, s delle frequenze.	si segnala	comunque ur	n aumento

Tabella 9.28: Frequenza assoluta dei casi di acqua alta per anno e per classe di altezza

Anno				Centimetri			
	80-89	90-99	100-109	110-119	120-129	130-139	>140
1924	0	0	0	0	0	0	0
1925	3	3	0	0	0	0	0
1926	10	5	0	0	0	0	0
1927	5	2	3	1	0	0	0
1928	5	5	0	1	0	0	0
1929	2	1	0	0	0	0	0
1930	6	1	1	0	0	0	0
1931	5	4	1	0	0	0	0
1932	0	0	0	0	0	0	0
1933	14	0	3	1	1	0	0
1934	9	3	0	2	0	0	0
1935	15	2	3	1	0	0	0
1936	7	2	0	0	0	0	1
1937	22	8	5	1	0	0	0
1938	4	1	0	1	0	0	0
1939	6	0	0	0	0	0	0
1940	12	7	2	0	0	0	0
1941	12	6	0	0	0	0	0
1942	4	2	0	0	0	0	0
1943	2	1	0	0	0	0	0
1944	8	3	1	0	0	0	0
1945	7	1	2	0	0	0	0
1946	7	1	4	0	0	1	0
1947	9	7	2	0	1	0	0
1948	5	2	2	1	1	1	0
1949	5	3	4	0	0	0	0
1950	13	2	0	1	0	0	0
1951	18	12	4	2	0	0	1
1952	8	5	2	1	0	0	0
1953	14	4	2	0	0	0	0
1954	6	4	1	1	0	0	0
1955	15	9	0	0	0	0	0
1956	7	3	0	0	0	0	0
1957	13	7	2	1	0	0	0
1958	19	9	5	3	1	0	0
1959	20	10	4	2	0	0	0
1960	40	9	8	3	2	0	1
1961	20	8	4	0	1	0	0

continua

Anno				Centimetri			
	80-89	90-99	100-109	110-119	120-129	130-139	>140
1962	28	12	4	2	0	0	0
1963	35	13	8	5	0	0	0
1964	12	5	5	0	0	0	0
1965	26	7	6	1	0	0	0
1966	42	23	4	0	2	0	1
1967	23	6	2	2	0	1	0
1968	14	15	7	2	1	1	1
1969	36	19	7	2	1	1	0
1970	27	14	2	1	2	0	0
1971	35	11	5	2	1	0	0
1972	30	5	0	3	1	0	0
1973	16	8	0	2	0	0	0
1974	20	7	0	0	0	0	0
1975	18	2	5	1	1	0	0
1976	23	15	7	1	2	0	0
1977	18	8	2	0	1	0	0
1978	29	15	6	2	0	1	0
1979	36	18	12	5	1	2	2
1980	36	11	6	2	0	1	0
1981	27	14	8	2	1	3	0
1982	30	8	4	5	1	1	0
1983	17	13	4	0	1	0	0
1984	32	17	9	4	0	0	0
1985	37	11	2	0	1	0	0
1986	31	11	1	1	0	0	1
1987	37	15	4	1	0	2	0
1988	24	3	1	0	0	0	0
1989	16	6	1	0	0	0	0
1990	25	8	2	4	1	0	0
1991	19	8	4	0	1	0	0
1992	22	14	7	3	2	1	1
1993	24	9	3	3	1	0	0
1994	22	9	1	1	0	0	0
1995	35	4	4	1	0	0	0
1996	56	20	13	6	0	2	0
1997	45	18	7	5	3	0	0
1998	30	11	5	3	1	0	0
1999	32	9	10	4	1	0	0
2000	39	27	10	5	1	0	1

continua

segue

Anno				Centimetri			
	80-89	90-99	100-109	110-119	120-129	130-139	>140
2001	45	18	7	4	1	0	0
2002	57	24	8	6	5	0	1
2003	40	18	5	0	0	0	0
2004	41	15	15	3	2	1	0
2005	38	16	1	0	0	1	0
2006	39	11	2	1	0	0	0
2007	42	8	1	0	0	0	0
2008	40	15	11	5	0	0	1
2009	64	25	17	9	3	2	2
2010	101	46	30	12	4	1	1
2011	48	5	2	1	0	0	0
2012	58	16	14	1	3	1	2
2013	76	43	27	2	2	0	1
2014	114	35	25	10	5	0	0
2015	48	24	8	6	2	0	0
Fonte: ISPRA							

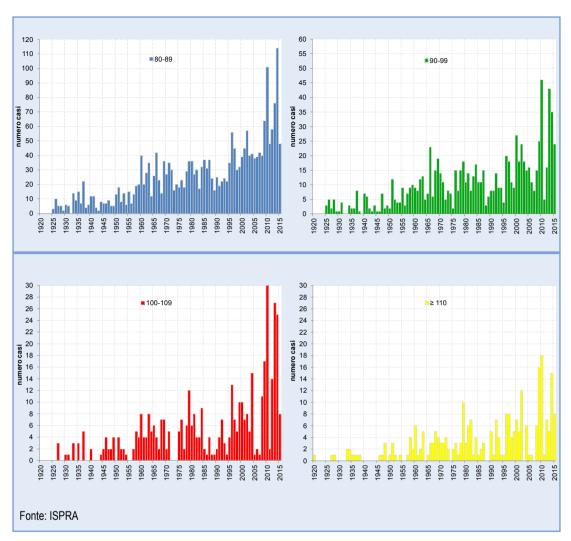


Figura 9.117: Frequenza dei casi di acqua alta a Venezia per classi di altezza

ALTEZZA DELLA MAREA ASTRONOMICA IN LAGUNA DI VENEZIA

DESCRIZIONE

L'escursione di marea astronomica è quel movimento oscillatorio delle acque libere derivato dal moto di rotazione della terra attorno al proprio asse e dalle forze di attrazione gravitazionale del sistema terra-luna-sole. Si manifesta con intensità variabili nei diversi mari e oceani, e trova nel Mare Adriatico una delle escursioni maggiori di tutto il bacino del Mediterraneo, L'onda di marea, risalendo l'Adriatico in senso antiorario, entra in laguna attraverso le sue tre bocche di porto (Lido, Malamocco, Chioggia) e si propaga al suo interno in modo diverso rispetto al comportamento in mare, adattandosi alla conformazione tortuosa e a fondo variabile dei canali. Questa configurazione morfologica, tipica delle lagune costiere, è in grado di rallentare l'avanzata e smorzare l'ampiezza dell'onda di marea. Il presente indicatore misura le variazioni dell'altezza della marea astronomica nel tempo in diversi siti della laguna.

L'indicatore si basa sui dati di marea rilevati presso le stazioni della Rete Mareografica della Laguna di Venezia, per la cui struttura, articolazione e funzionalità si rimanda al sito www.venezia.isprambiente.it.

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'indicatore presenta una buona rilevanza per la misura delle caratteristiche di propagazione della marea in laguna, in particolare per monitorarne l'andamento nel lungo periodo a fronte di modifiche morfologiche della laguna. L'affidabilità è ottima. Le rilevazioni mareografiche sono dell'Ufficio Idrografico del Magistrato alle Acque, successivamente dell'APAT e infine di ISPRA. La procedura di spoglio, archiviazione, validazione del dato è comune a tutte le stazioni. Il processo di validazione dei dati di marea raccolti dalla Rete Mareografica della Laguna di Venezia è stato inserito, nel corso del 2015, nel dominio di certificazione ISPRA UNI EN ISO 9001:2008. Sono state selezionate le serie temporali con la maggiore copertura e continuità

nel tempo per garantire la migliore completezza dell'informazione. La comparabilità spaziale è ottima: l'affidabilità delle procedure è confermata dalla coerenza interna dei risultati.

OBIETTIVI FISSATI DALLA NORMATIVA

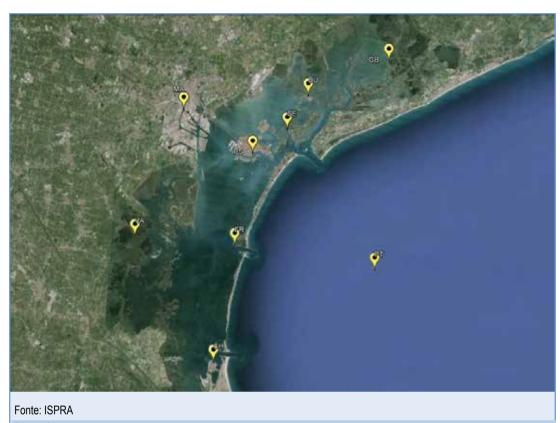
L'indicatore risponde alle esigenze conoscitive fissate nell'allegato II della Direttiva 2000/60/CE in materia di acque costiere e acque di transizione.

STATO E TREND

La Laguna di Venezia è storicamente un ambiente in naturale equilibrio instabile, essendo esposta sia al rischio di interramento, dovuto all'apporto dei sedimenti fluviali, sia al rischio di trasformarsi in un braccio di mare, perdendo la specificità di ambiente di transizione. Per ovviare al rischio di progressivo interramento della laguna, sono stati condotti nei secoli scorsi poderosi interventi di ingegneria fluviale, che hanno portato alla deviazione dei maggiori fiumi che sversavano originariamente al suo interno o comunque in prossimità delle bocche di porto (Piave, Sile, Brenta, Adige, Po). L'altro pericolo, proveniente dal mare, è stato gestito rinforzando parte dei litorali sabbiosi che separano la Laguna di Venezia dal Mare Adriatico (i cosiddetti "murazzi" del Lido e di Pellestrina). Le bocche di porto sono state protette da lunghe dighe foranee al fine di garantirne la navigabilità e scongiurare la formazione di barre costiere, di ostacolo alla navigazione. Recenti, infine, sono i lavori alle bocche di porto per le opere fisse delle costruende barriere contro le inondazioni da alta marea (il cosiddetto "Mo.S.E."). Fatta questa premessa di carattere generale, è necessario definire una condizione standard di riferimento, alla quale sia possibile ricondursi per effettuare confronti nel tempo. Tale condizione viene identificata nella marea registrata presso la stazione Piattaforma Acqua Alta, situata a 8 miglia marine al largo delle coste veneziane. Tale punto di monitoraggio ha il pregio di condividere le caratteristiche generali del bacino del Nord Adriatico e di essere al contempo esente dagli effetti degli interventi in laguna e delle opere alle bocche di por-

to. Rispetto all'andamento sostanzialmente stabile della marea astronomica registrata a Piattaforma, notevoli sono invece le variazioni che si riscontrano all'interno della Laguna di Venezia, con risposte differenziate nei vari siti proposti nell'analisi. La marea entra in laguna attraverso le tre bocche di porto di Lido. Malamocco e Chioggia, inoltrandosi nei maggiori canali navigabili. Successivamente, l'onda di marea si propaga attraverso un complesso sistema di canali naturali meandriformi, interagendo con i bassi fondali, le velme e le barene, tipiche di un sistema lagunare complesso. Maggiore è la lunghezza del percorso dell'onda di marea, maggiori sono gli effetti sull'ampiezza e sulla fase dell'onda stessa. Nel caso dei canali artificiali, dal corso rettificato, gli effetti inerziali prevalgono su quelli dissipativi e gli smorzamenti sono minimi o assenti, mentre il contrario avviene sui bassifondi e lungo i piccoli canali che solcano le aree di velma o di barena, dove la propagazione dell'onda di marea è ostacolata dagli effetti dell'attrito sul fondo. Per rendere conto di tale complessità, sono stati scelti dei siti di monitoraggio molto diversi per le condizioni naturali/artificiali di cui sono rappresentativi. Si è cercato inoltre di dare una copertura omogenea all'intero specchio lagunare, monitorando sia stazioni situate appena all'interno delle bocche di porto, sia stazioni più interne alla laguna, fino al contermine lagunare. La sostanziale stabilità della marea astronomica dall'inizio degli anni '90 viene interrotta in tutte le stazioni della laguna a partire dal biennio 2003-2004. Nei successivi dieci anni, tutte le stazioni lagunari perdono dai 5 agli 8 cm di altezza di marea astronomica. La stazione di controllo (Piattaforma Acqua Alta) rimane stabile nello stesso periodo di osservazione. La diminuzione dell'altezza della marea, registrata pur con intensità lievemente diverse, è comune a tutte le stazioni lagunari. Tale variazione è depurata dell'effetto della crescita del livello medio del mare, di cui si riferisce in un altro indicatore. La modifica osservata nell'onda di marea ha conseguenze sulla circolazione delle correnti all'interno dell'intera laguna. Essa ha conseguenze anche sulla qualità delle acque, rendendo, ad esempio, più lunghi i tempi di residenza dell'acqua nel bacino, e penalizzare il ricambio delle acque lagunari. La panoramica così ottenuta porta a valutare il trend negativamente, in quanto le modifiche emerse non sono omogenee all'interno della laguna e sottendono modifiche rilevanti agli assetti idraulici: ogni variazione idraulica ha infatti impatti su numerosi ambiti (velocità delle correnti, processi erosivi, influenza sul bilancio dei sedimenti lagunari, perdita di specificità tipica degli ambienti di transizione), che meriterebbero un monitoraggio continuo e approfondimenti specifici.

COMMENTI A TABELLE E FIGURE


Le stazioni selezionate presentano una buona continuità e affidabilità nel tempo dei dati disponibili, oltre a un'omogenea copertura del bacino lagunare (Figura 9.118). Le serie partono generalmente dall'inizio degli anni '90. Gli andamenti della marea astronomica sono sostanzialmente in armonia tra di loro (Figura 9.119). A partire dal 2003-2004 si rileva una decisa flessione dell'ampiezza della marea, più decisa nella laguna centrale e meridionale rispetto a quella settentrionale (stazioni di Burano e Grassabò). Per agevolare la lettura dell'indicatore. si propone anche la valutazione degli smorzamenti relativi dell'ampiezza della marea, espressi come rapporto tra l'altezza annuale delle singole stazioni e quella di Piattaforma Acqua Alta, considerata rappresentativa del bacino dell'Adriatico settentrionale. In tale modo la serie di Piattaforma viene tenuta fissa pari a 1 e si evidenziano le variazioni relative registrate dalle stazioni interne (Figura 9.120). Tale approccio ha il vantaggio di evidenziare chiaramente la risposta della Laguna di Venezia ai profondi interventi che ne hanno modificato in maniera rigida la morfologia delle bocche di porto. Gli interventi sono consistiti nel restringimento dell'ampiezza delle bocche e riduzione a quota fissa della sezione del fondale, opere preliminari all'installazione dei cassoni e delle paratie mobili del Mo.S.E.

Pur con alcune differenze, l'altezza della marea varia in tutte le stazioni considerate (Tabella 9.29). Gli interventi hanno modificato il flusso d'acqua in entrata e in uscita da ciascuna bocca di porto, modificando così le aree lagunari di rispettiva influenza. La porzione settentrionale (Burano e Grassabò), pur registrando diminuzioni dell'altezza della marea astronomica, subisce in maniera minore gli effetti di tale variazione rispetto ad altre aree, che vedono ridurre significativamente l'onda di marea negli anni. Alcune stazioni rispondono in maniera più netta rispetto alle altre: Faro Rocchetta, ubicata appena all'interno della bocca di porto di Malamocco, Punta Salute e Marghera, ubicate in laguna centrale, l'una in centro storico, l'altra in

zona industriale, a fianco di canali marginati. La Laguna di Venezia risponde, rispetto al Golfo di Venezia (stazione di Piattaforma Acqua Alta), in maniera differenziata alle diverse sollecitazioni e modifiche morfologiche di tutte le bocche di porto (Lido, Malamocco e Chioggia) nell'ultimo decennio. Tali variazioni si possono riflettere nello spostamento delle fasce di partiacque dei diversi sottobacini e nel mutato comportamento delle correnti mareali all'interno dello specchio lagunare stesso.

က္ပ
.=
╒
5
ĕ
ᅙ
드
ᇙ
ä
æ
ä
ニ
ā
E
_
≌
ᇴ
ŏ
æ
ñ
7
9
₹
⋖
∴
ౙ
Ŋ
တ
æ
=
9
흁

	i																								
Stazione	1989	1990	1989 1990 1991 1992 1993	1992		1994	1995	1996	1 266	1 866	666	1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	001 2	002 20	003 20	004 20	05 20	06 20	07 2008	08 20	2009 2010 2011 2012 2013	0 201	1 201	2 201	3 2014
													E												
PT	74	74	74	74		74	74	74	9/	75	75	72	22	74	75	75	74	74	. 22	74	75 7	74 7	75 7	73 73	3 73
SE								73			73	72	74	73	73	73	. 22	72	72	70	20 6	2 29	9 02	89 89	9 67
PS	75	75	75	75	92	92	92	77	78	77	92	75	22	77	28	78	. 92	92	. 22	73	73 7	71 7	73 7	72 71	1 71
MA		72	9/	92	74	78	74	79	80	78	78	75	78	78	26	62	. 82		. 22	92	76 7	73 7	75 7	74 73	3 73
BU					99	29	29	9	29	29	89	99	69	29		89	92	92	92	63	64	63 6	64 6	62 62	2 62
GB					28	29	29	29	29	28	28	28	61	61	09	61	22	25	25	22	28	57 5	56 5	57 57	7 56
H	73	74	75	75	92	92	74	75	9/	22	9/		75	75	75	22	73	73	74	72	72 7	70 7	71 7	20 02	69 6
W	69	72	71	71	72	75	75	75			74	73	92	75	92	77	74	74	73	71	72 7	71 7	72 7	71 71	1 70
СН	74	72	73	73	74	73	73	73	74	73	72	72	74	73	74	74	72	72	72	71	71 6	69	71 6	69 69	9 70
Fonte: ISPRA																									
Legenda:																									
Sigle stazioni: PT: Piattaforma Acqua Alta BU: Burano CH: Chioggia Vigo FR: Faro Rocchetta GB: Grassabò MA: Marghera SE: Sant'Erasmo PS: Punta Salute VA: Valle Averto	cqua Al Chioggik ta	a Vigo																							

Legenda:

Sigle stazioni:

PT: Piattaforma Acqua Alta

BU: Burano

CH: Chioggia Vigo

FR: Faro Rocchetta

GB: Grassabò MA: Marghera

SE: Sant'Erasmo

PS: Punta Salute VA: Valle Averto

Figura 9.118: Mappa delle stazioni della Rete Mareografica della Laguna di Venezia

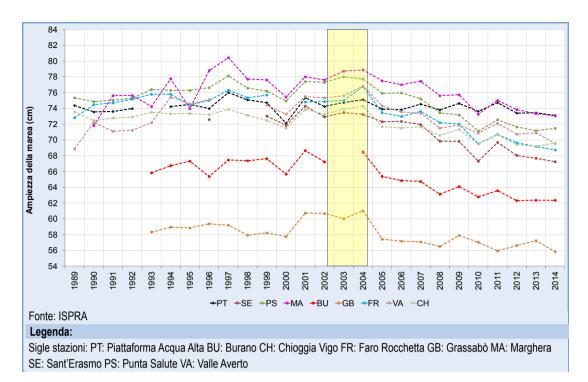


Figura 9.119: Altezza della marea astronomica

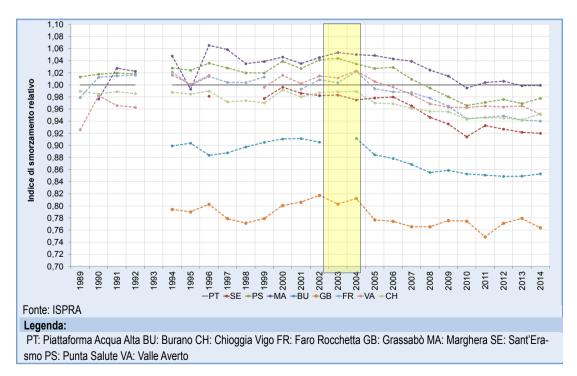


Figura 9.120: Smorzamento relativo della marea

RITARDO DI PROPAGAZIONE DELLA MAREA **NELLA LAGUNA DI VENEZIA**

DESCRIZIONE

L'escursione di marea astronomica è quel movimento oscillatorio delle acque libere derivato dal moto di rotazione della terra attorno al proprio asse e dalle forze di attrazione gravitazionale del sistema terra-luna-sole. Si manifesta con intensità variabili nei diversi mari e oceani e trova nel Mare Adriatico una delle escursioni maggiori di tutto il bacino del Mediterraneo. L'onda di marea, risalendo l'Adriatico in senso antiorario, entra in laguna attraverso le sue tre bocche di porto (Lido, Malamocco, Chioggia) e si propaga al suo interno in maniera differenziata rispetto al suo comportamento in mare: la conformazione tortuosa e a fondo variabile dei canali è in grado di rallentarne l'avanzata e di smorzarne l'ampiezza. Questo indicatore misura le variazioni annuali dei ritardi medi di propagazione della marea in diversi siti all'interno della Laguna di Venezia. L'indicatore è calcolato a partire dai dati di marea rilevati presso le stazioni della Rete Mareografica della Laguna di Venezia, la cui struttura, organizzazione e funzionalità è descritta nel sito www.venezia.isprambiente.it.

QUALITÀ DELL'INFORMAZIONE

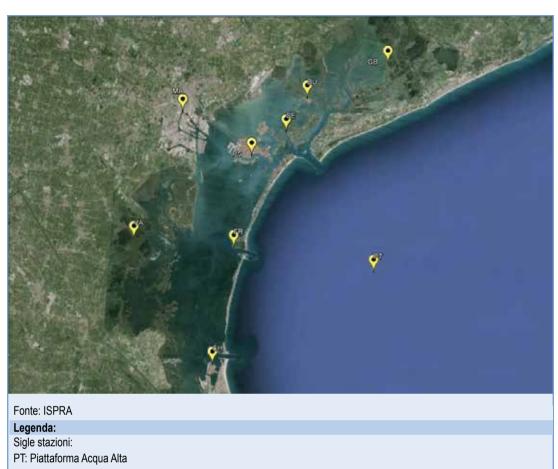
Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'indicatore presenta una buona rilevanza per la misura delle caratteristiche di propagazione della marea in laguna, in particolare per monitorarne l'andamento nel lungo periodo a fronte di modifiche morfologiche della laguna. L'affidabilità è ottima. Le rilevazioni mareografiche sono dell'Ufficio Idrografico del Magistrato alle Acque, successivamente dell'APAT e infine di ISPRA. La procedura di spoglio, archiviazione, validazione del dato è comune a tutte le stazioni. Il processo di validazione dei dati di marea raccolti dalla Rete Mareografica della Laguna di Venezia è stato inserito, nel corso del 2015, nel dominio di certificazione ISPRA UNI EN ISO 9001:2008. Sono state selezionate le serie temporali con la maggiore copertura e continuità nel tempo per garantire la migliore completezza dell'informazione. La comparabilità spaziale è ottima: l'affidabilità delle procedure è confermata dalla coerenza interna dei risultati

OBIETTIVI FISSATI DALLA NORMATIVA

L'indicatore risponde alle esigenze conoscitive fissate nell'allegato II della Direttiva 2000/60/CE in materia di acque costiere e acque di transizione.

STATO E TREND


La Laguna di Venezia è storicamente un ambiente in naturale equilibrio instabile, essendo esposta sia al rischio di interramento, dovuto all'apporto dei sedimenti fluviali, sia al rischio di trasformarsi in un braccio di mare, perdendo la specificità di ambiente di transizione. Per ovviare al rischio di progressivo interramento della Laguna, sono stati condotti nei secoli scorsi poderosi interventi di ingegneria fluviale, che hanno portato alla deviazione dei maggiori fiumi che sversavano originariamente al suo interno o comunque in prossimità delle bocche di porto (Piave, Sile, Brenta, Adige, Po). L'altro pericolo, proveniente dal mare, è stato gestito rinforzando parte dei litorali sabbiosi che separano la Laguna di Venezia dal Mare Adriatico (i cosiddetti "murazzi" del Lido e di Pellestrina). Le bocche di porto sono state protette da lunghe dighe foranee al fine di garantirne la navigabilità e scongiurare la formazione di barre costiere, di ostacolo alla navigazione. Recenti, infine, sono i lavori alle bocche di porto per le opere fisse delle costruende barriere contro le inondazioni da alta marea (il cosiddetto "Mo.S.E."). Fatta questa premessa di carattere generale, è necessario definire una condizione standard di riferimento, alla quale sia possibile ricondursi per effettuare confronti nel tempo. Tale condizione standard viene identificata nella Piattaforma Acqua Alta, stazione situata a 8 miglia marine al largo delle coste veneziane. Tale punto di monitoraggio ha il pregio di condividere le caratteristiche generali del bacino del Nord Adriatico e di essere al contempo esente da tutte le opere alle bocche di porto. Rispetto all'andamento sostanzialmente stabile della marea astronomica registrata a Piattaforma, notevoli sono invece le modifiche all'interno della Laguna di Venezia, con risposte differenziate nei vari siti proposti nell'analisi. La marea entra infatti in Laguna attraverso le tre bocche di porto di Lido, Malamocco e Chioggia. Successivamente l'onda di marea si propaga attraverso un articolato sistema di canali naturali meandriformi, interagendo con i bassi fondali. le velme e le barene, tipiche di un sistema lagunare complesso. Maggiore è il percorso che l'onda di marea percorre, maggiori sono gli attriti che subisce, vedendo così modificarsi la sua ampiezza e rallentando progressivamente il suo avanzare. Nel caso dei canali artificiali, dal corso rettificato, tale capacità inerziale viene sostanzialmente soppressa. Per rendere conto di tale complessità, sono stati scelti dei siti di monitoraggio molto diversi sia per le condizioni naturali/ artificiali di cui sono rappresentativi. Si è cercato inoltre di dare una copertura omogenea all'intero specchio lagunare, monitorando sia stazioni appena all'interno delle bocche di porto, sia stazioni più interne alla laguna, fino al contermine lagunare. Nella valutazione del *trend*, pesano negativamente le variazioni dei ritardi di propagazione della marea a partire dal 2003-2004, sintomo di un equilibrio idraulico instabile. Inoltre, come descritto nei commenti, l'entità di tali variazioni non è omogenea in laguna. Le modifiche ai ritardi di propagazione hanno inevitabilmente un impatto rilevante sull'intensità delle correnti di marea.

COMMENTI A TABELLE E FIGURE

La sostanziale stabilità dei ritardi di propagazione dell'onda di marea astronomica dall'inizio degli anni '90 viene interrotta in tutte le stazioni della laguna a partire dal biennio 2003/2004: è apprezzabile un aumento dei ritardi di propagazione della marea all'interno della laguna rispetto alla stazione di Piattaforma, presa come riferimento della marea in mare e i cui ritardi rimangono stabili nel tempo (Figura 9.121). L'aumento dei tempi di propagazione si distribuisce in maniera eterogenea all'interno della laguna: l'onda di marea ritarda di 20 minuti circa la propria avanzata in Laguna Nord (Burano, Grassabò) e in Laguna Sud (Chioggia) alla fine del periodo di osservazione rispetto al biennio 2003/2004. Il centro storico di Venezia ha un ritardo lievemente minore, di 15 minuti (Sant'Erasmo, Punta Salute). All'interno della Laguna Centrale aumenta significativamente il tempo di transito dell'onda di marea: a Faro Rocchetta il ritardo aumenta in circa dieci anni di ben 30 minuti e a Valle Averto di 35 minuti, rispetto al passaggio dell'onda di marea in mare aperto (Piattaforma) (Figura 9.122). Tali risultati, eterogenei tra di loro, portano a fare alcune considerazioni di carattere generale: tutta la Laguna di Venezia ha subito, nel suo complesso, variazioni significative dell'assetto mareale (Tabella 9.30). La non omogeneità di tali variazioni suggerisce che l'idrodinamica lagunare sia mutata in modo rilevante, e si siano modificati i limiti delle aree soggette all'influsso di una bocca di porto rispetto un'altra (fasce di partiacque). In particolare, in base a tali evidenze, la bocca di Lido ha ampliato la sua area di influenza e si è invece ridotta quella governata dalla bocca di Malamocco. Questi risultati implicano anche modifiche all'assetto delle correnti di marea, consequendone un'intensificazione delle correnti governate dalla bocca di Lido rispetto a quelle governate dalla bocca di Malamocco. La configurazione della bocca di Lido ha subito numerosi interventi, in particolare: la creazione dell'isola artificiale che di fatto separa nettamente i flussi diretti verso l'estrema laguna settentrionale (Burano, Grassabò) rispetto all'area della città storica (Sant'Erasmo, Punta Salute). È inoltre da ricordare la realizzazione della lunata di protezione della bocca di porto dalle mareggiate di scirocco (intervento replicato anche nelle altre bocche di porto). Per quanto riguarda la bocca di Malamocco, invece, è stata ridotta l'ampiezza per permettere la costruzione della conca di navigazione, progettata per permettere la funzionalità del porto commerciale anche in caso di chiusura delle paratoie mobili. La modifica degli assetti idraulici lagunari comporta conseguenze sulla morfologia della laguna stessa. a partire dalla maggiore/minore energia locale in gioco che determina l'erosione e la sospensione dei sedimenti e conseguente progressiva perdita delle specifiche caratteristiche proprie degli ambienti di transizione, tipiche di uno specchio lagunare.

Tabella 9.30: Ritardo di propagazione della marea

Stazione	1989	1990	1989 1990 1991 1992 1993	1992		1994	1995	9661	1 1	998 1	999 2	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	101 20	02 20	03 20	04 20	05 20	pe 20	07 20	08 20	09 20	10 20	11 20	12 20	13 2014	4
													Ę												-	
PT	74	74	74	74		74	74	74	92	22	75	72	75	74	75	75	74	74	75	74	75	74	75	73	73	73
SE								73			73	72	74	73	73	73	72	72	72	20	20	29	20	89	89	67
PS	75	75	75	75	9/	9/	9/	11	78	22	9/	75	77	22	78	78	92	92	75	73	73	71	73	72	11	71
MA		72	9/	9/	74	78	74	79	80	78	78	75	28	78	79	62	78	2.2	77	92	92	73	75	74	73	73
BU					99	29	29	65	29	29	89	99	69	29		89	65	65	65	63	64	63	64	62	62	62
GB					28	29	29	29	29	28	28	28	61	61	09	61	22	22	22	22	28	22	26	22	22	29
Æ	73	74	75	75	92	9/	74	75	92	75	9/		75	75	75	77	73	73	74	72	72	20	71	20	69	69
W	69	72	11	71	72	75	75	75			74	73	92	75	9/	22	74	74	73	71	72	71	72	71	71	70
СН	74	72	73	73	74	73	73	73	74	73	72	72	74	73	74	74	72	72	72	71	71	69	71	69	69	70
Fonte: ISPRA																										
Legenda:																										
Sigle stazioni:	i																									
P I: Piattatorma Acqua Alta	dua Alt	m																								
BU: Burano																										
CH: Chioggia Vigo																										
FR: Faro Rocchetta	g																									
GB: Grassabò																										
MA: Marghera																										
SE: Sant'Erasmo																										
PS: Punta Salute																										
VA: Valle Averto																										

BU: Burano

CH: Chioggia Vigo

FR: Faro Rocchetta

GB: Grassabò

MA: Marghera

SE: Sant'Erasmo

PS: Punta Salute

VA: Valle Averto

Figura 9.121: Stazioni della Rete Mareografica della Laguna di Venezia

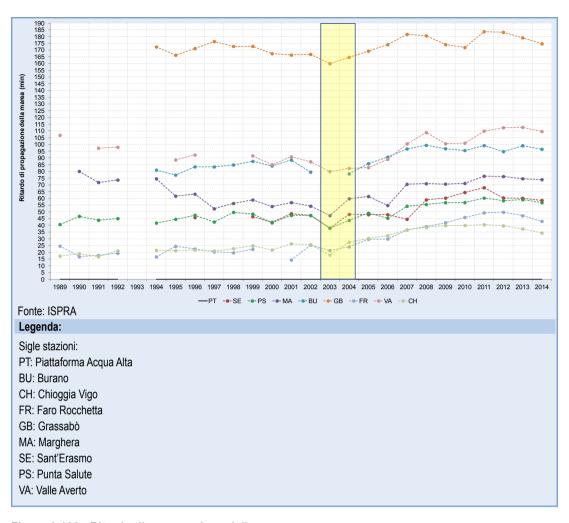


Figura 9.122 : Ritardo di propagazione della marea

CLIMATOLOGIA LAGUNARE

DESCRIZIONE

L'indicatore si propone di monitorare le variazioni annuali della pressione media, dell'ammontare totale delle precipitazioni, del numero dei giorni piovosi e delle anomalie delle temperature medie massime e minime, quali espressione locale dei cambiamenti climatici in atto.

La Laguna di Venezia è un'area estremamente importante non solo per il patrimonio storico-culturale (Sito UNESCO dal 1987), ma anche perché è uno specifico sito di interesse nazionale per la flora e la fauna presente: gran parte della Laguna è area SIC (Sito di Importanza Comunitaria) e ZPS (Zona di Protezione Speciale). La Laguna è uno dei più importanti siti europei di passo e nidificazione per l'avifauna migratrice, tutelati dalle specifiche direttive 92/43/CEE (Direttiva Habitat) e 2009/147/CE (Direttiva "Uccelli"). Infine, parte della Laguna di Venezia è inserita nella lista delle zone umide di importanza internazionale ai sensi della Convenzione di Ramsar (1971).

QUALITÀ DELL'INFORMAZIONE

Rilevanza	Accuratezza	Comparabilità nel tempo	Comparabilità nello spazio
1	1	1	1

L'indicatore descrive le variazioni annuali della pressione, delle precipitazioni e delle anomalie termiche in Laguna di Venezia. Essendo la Laguna un ambiente di transizione, esso è caratterizzato da un microclima costiero specifico. L'indicatore pertanto è rappresentativo dell'ambiente lagunare e dell'antistante fascia litoranea. La continuità delle osservazioni ne garantiscono la comparabilità nel tempo. Le metodologie di rilevazione sono del tutto coerenti le prescrizioni WMO, pertanto risulta ottima la comparabilità nello spazio.

OBIETTIVI FISSATI DALLA NORMATIVA

Nessun obiettivo specifico fissato dalla normativa nazionale.

STATO E TREND

Le grandezze fisiche considerate mostrano (nel caso della pressione media annuale, dell'ammontare delle precipitazioni annue e nel numero dei giorni piovosi) un netto aumento della variabilità a partire dalla metà degli anni '90, con una tendenza all'estremizzazione dei fenomeni. Per quanto riguarda le temperature, le anomalie calcolate sul periodo 1986-2015 si presentano in costante aumento, tanto da far misurare per le temperature minime uno scostamento di ben 3° C tra l'inizio e la fine del periodo considerato. Tutte le indicazioni emerse concordano nel definire "negativo" il trend in atto.

COMMENTI A TABELLE E FIGURE

La pressione atmosferica media annua è strettamente associata al regime piovoso: a una bassa pressione atmosferica corrisponde un tendenziale aumento delle precipitazioni e viceversa (Figura 9.123). Nel corso del periodo di riferimento è da evidenziare una netta diminuzione barometrica media e un contemporaneo aumento della variabilità nei regimi pressori stessi. Notevoli sono infatti le violente oscillazioni dei campi di pressione media, i quali hanno una evidente ricaduta sull'ammontare totale delle precipitazioni: si veda, a solo titolo di esempio. l'eccezionale variazione pressoria tra l'anno 2010 e 2011 e ancora tra il 2014 e il 2015. L'andamento annuale delle precipitazioni totali e dei giorni piovosi (Figura 9.124) evidenzia un primo periodo (1986-1994) sostanzialmente costante per l'ammontare delle precipitazioni e il numero di giorni piovosi (mediamente 790 mm e 76 giorni piovosi per anno). Dal 1995 in poi, l'equilibrio diventa progressivamente instabile con forti variazioni tra anni più piovosi (2004, 2008, 2010, 2013, 2014) e anni maggiormente secchi (1997, 1998, 2000, 2003, 2011, 2012 e 2015). In particolare, il 2015 (con il 2011) rappresenta l'anno più secco dell'intera serie storica, con il 34% di pioggia caduta in meno rispetto alla media dell'intero periodo di riferimento (833 mm).

La maggiore variabilità registrata nelle precipitazioni totali annuali si riflette anche sul numero di giorni piovosi, i quali evidenziano un andamento molto stabile tra la fine degli anni '80 e la prima metà degli anni '90. Successivamente, fino ai primi anni 2000. aumentano le oscillazioni interannuali. Ma è dal 2003 che le variazioni diventano violente e a volte nemmeno allineate tra i valori di pioggia totale e di giorni piovosi, mostrando spesso un ammontare di precipitazioni molto alto in un numero di giorni piovosi relativamente basso, correlazione che tende a spiegare il manifestarsi di fenomeni meteorologici sempre più severi.

Oltre che alle precipitazioni, le variazioni di pressione (registrate nel periodo in esame) sono correlate anche alle variazioni del livello del mare e al numero di casi di acqua alta, come descritto nei relativi indicatori

Parallelamente alle variazioni pressorie e delle precipitazioni, appare significativo il netto trend presentato dall'andamento delle temperature: l'anomalia, calcolata come differenza tra le medie annuali e la media dell'intero periodo di osservazione (1986-2015), mostra un aumento tendenziale delle temperature massime e minime (Figura 9.125, Figura 9.126). Di notevole rilevanza il trend in crescita registrato sia dalle temperature massime sia dalle minime. Dalle due figure emerge una evidente discontinuità tra gli anni '90 e 2000, momento della decisa variazione delle temperature medie nel corso dell'ultimo trentennio. Particolarmente significative sono le anomalie delle temperature minime, costantemente positive dal 2000, ad eccezione del solo anno 2005. In particolare, il 2015 si attesta come uno degli anni mediamente più caldi di tutto il periodo in analisi, con circa +1,5°C rispetto alla media sia per le temperature massime sia per quelle minime.

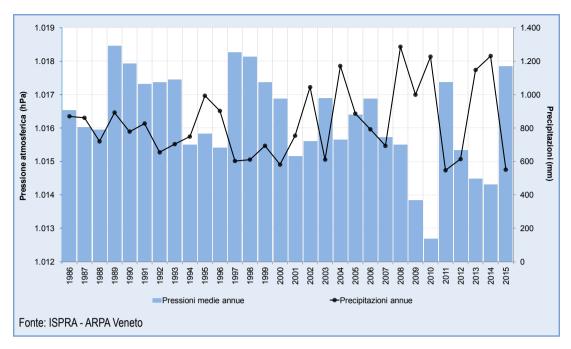


Figura 9.123: Confronto annuale tra pressione atmosferica media e precipitazioni totali

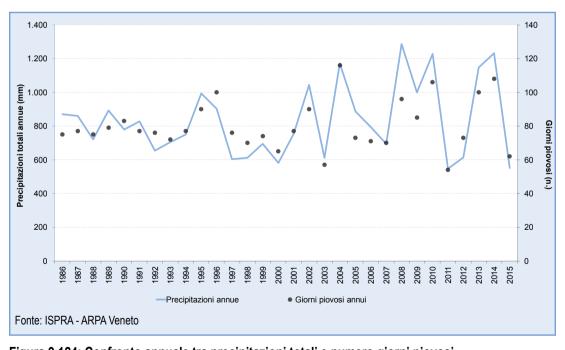


Figura 9.124: Confronto annuale tra precipitazioni totali e numero giorni piovosi

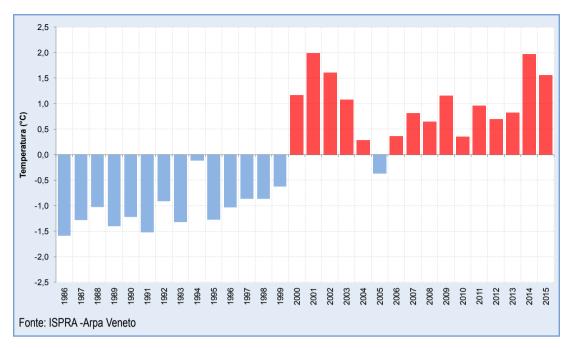


Figura 9.125: Andamento delle anomalie termiche delle temperature minime

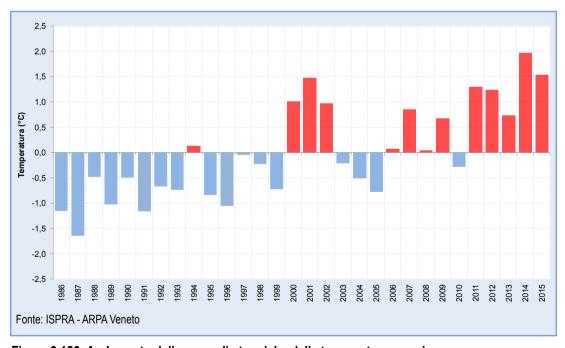


Figura 9.126: Andamento delle anomalie termiche delle temperature massime

9.6 COSTE

Il tema Coste è descritto dai seguenti 6 indicatori: Dinamica litoranea, Costa protetta, (che sostituisce Opere di difesa costiera ADA edizione 2007). Sabbie relitte dragate ai fini di ripascimenti (ADA edizione 2012), Costa artificializzata con opere marittime e di difesa. Urbanizzazione costiera nei 300 m dalla riva (ADA edizione 2013), Rischio costiero (ADA edizione 2007). L'indicatore Piani di gestione regionale (coste) è trasferito nel capitolo "Strumenti per la pianificazione". Gli indicatori scelti consentono di valutare le azioni subite dalla costa sia a opera del mare, quale principale responsabile della dinamica dei litorali, sia a opera di attività antropiche, quali pressioni determinate da fattori urbanistici, demografici e di sviluppo. l'artificializzazione della costa, le strategie e gli

oneri di protezione della zona costiera. Gli indicatori sono stati calcolati sulla base di dati territoriali a scala nazionale. La loro revisione è quinquennale, che è un intervallo di tempo sufficiente per monitorare nuovi assestamenti e morfologie dei litorali, eludendo tipiche modificazioni stagionali, anche in conseguenza di nuove strutture marittime e di protezione da fenomeni erosivi, e secondo la disponibilità di nuovi rilievi aerofotogrammetrici del territorio nazionale e la successiva elaborazione cartografica delle informazioni di base.

Nel quadro Q9.6 sono riportati per gli indicatori la finalità, la classificazione nel modello DPSIR e i principali riferimenti normativi.

Q 9.6: QUADRO DELLE CARATTERISTICHE INDICATORI COSTE

Nome Indicatore	Finalità	DPSIR	Riferimenti normativi
Dinamica litoraneaª	Disporre di informazioni sintetiche che siano di supporto alla definizione di strategie nazionali per la tutela delle coste e di piani di gestione in linea con la direttiva europea sulla gestione integrata delle zone costiere	P/S	L 979/82 D.Lgs. 112/98 Raccomandazione del Parlamento Europeo n. 2002/413/CE del 30/05/02
Urbanizzazione costiera nei 300 m dalla rivaª	Valutare sia le dirette azioni di pres- sione sul paesaggio costiero sia dei beni direttamente esposti al rischio conseguente ai fenomeni di erosione e inondazione costiera	P/S/I	D.Lgs. 112/98, art. 89 D.Lgs. 490/99 L 179/02 art. 31 D.Lgs. 42/04
Costa artificializzata con opere marittime e di difesaª	Valutare gli interventi diretti dell'uomo che modificano strutturalmente l'interfaccia terra-mare	P/S/R	D.Lgs. 112/98, art. 89 L 179/02 art. 31
Costa protettaª	Individuare le aree territoriali che hanno richiesto maggiori interventi e investimenti economici per la prote- zione dei litorali, per essere di sup- porto alla definizione di nuove strate- gie e piani di protezione dei litorali a livello nazionale e regionale	P/S/R	D.Lgs. 112/98 Raccomandazione del Parlamento Europeo n. 2002/413/CE del 30/05/02
Rischio costieroª	Definire una gerarchia di comuni costieri, al fine di programmare una strategia di intervento a difesa delle coste e destinare razionalmente gli investimenti relativi	D/S/I	-
Sabbie relitte dragate ai fini di ripascimento ^a	Fornire informazioni relative alla quantità di sabbie relitte dragate ai fini di ripascimento lungo la piatta-forma continentale italiana. Fornire, inoltre, indicazioni indirette sui fenomeni erosivi agenti nelle regioni italiane considerate	Р	DM 24 gennaio 1996; L 179/2002; D.Lgs. 152/2006 D.Lgs. 4/2008

Nella presente edizione, l'indicatore non è stato aggiornato. La relativa scheda e consultabile nel DB http://annuario.isprambiente.it

APAT-MATTM, Gli eventi preparatori della Conferenza. Conferenza Nazionale sui Cambiamenti Climatici, Roma 2007

Directorate General Environment European Commission, Living with coastal erosion in Europe: Sediment and Space for sustainability, 29 Maggio 2004

European Environment Agency, *Report on the use of the ICZM indicators from the WG-ID*, Settembre 2006 Istituto Nazionale per la gestione delle coste e del mare del Ministero dei Trasporti, Lavori Pubblici e Gestione delle Acque dell'Olanda, *Progetto EUROSION (ENV.B.3/SER/2001/0030)*, 2001-2004

ISPRA. Annuario dei dati ambientali, anni vari

ISTAT Progetto Census 2000 – Aggiornamento delle basi territoriali, dicembre 2005

ISTAT Atlante di geografia statistica e amministrativa, anni vari

ISTAT Atlante statistico dei comuni, anni vari

Mazzetti Ernesto, Abitati costieri, Università "Federico II" di Napoli

http://www.eurosion.org

http://www.mais.sinanet.apat.it