

Delibera n. 39/2018

ILCONSIGLIO SNPA

VISTO

che, ai sensi dell'art.13 della Legge 132/2016 ed al fine di promuovere e indirizzare lo sviluppo coordinato delle attività del Sistema nazionale, è istituito il Consiglio del Sistema Nazionale (di seguito Consiglio SNPA), presieduto dal presidente dell'ISPRA e composto dai legali rappresentanti delle agenzie e dal direttore generale dell'ISPRA;

CONSIDERATO

che, ai sensi dell'art. 15 del DM 123/2010 ed al fine di promuovere lo sviluppo del sistema nazionale delle Agenzie e dei controlli in materia ambientale, ha operato presso ISPRA il Consiglio Federale presieduto dal Presidente dell'ISPRA e composto dal Direttore Generale dell'ISPRA e dai legali rappresentanti delle ARPA-APPA;

CONSIDERATO

che, ai fini di cui sopra, il Consiglio Federale ha formulato e attuato programmi pluriennali delle proprie attività, articolati in piani annuali, ha adottato atti di indirizzo e raccomandazioni, sollecitato e proposto soluzioni alle criticità per un migliore funzionamento del Sistema;

CONSIDERATO

che, all'interno del Sistema Nazionale per la Protezione dell'Ambiente, è emersa la necessità di adottare regole condivise per conseguire obiettivi di razionalizzazione, armonizzazione ed efficacia delle attività di diffusione delle informazioni ambientali;

VISTA

l'approvazione del Piano triennale delle attività interagenziali 2014-2016 nella seduta del Consiglio Federale del 30 giugno 2014, di cui fa parte l'Area 1 "Formazione del dato" coordinata da ISPRA e da ARPA Piemonte, comprendente l'attività del GdL 2 "Direttiva 2000/60/CE: Armonizzazione metodi di analisi sostanze prioritarie" coordinato da ARPA Piemonte;

RITENUTO

necessario nonché opportuno portare a compimento le attività del programma triennale 2014-2016 del Consiglio Federale fino a tutto il 2017, anche per congruità rispetto alla definizione del nuovo Programma Triennale da predisporre ai sensi dell'art. 10 della L. 132/16 "individuando le principali linee di intervento finalizzate ad assicurare il raggiungimento dei LEPTA nell'intero territorio nazionale";

El 8/

VISTO

il documento prodotto del GdL2 Area 1"Linea Guida per la scelta dei metodi di analisi di sostanze prioritarie ai sensi della Direttiva 2000/60/CE" allegato alla presente delibera di cui fa parte integrante, trasmesso dal Coordinatore del TIC VI nell'ambito del quale è stata inserita tale tematica, nelle more della definizione di una specifica procedura di validazione di prodotti tecnici;

RITENUTO

di adottare il documento come proposto dal predetto Gruppo di lavoro;

VISTO

l'art. 8 del Regolamento del Consiglio SNPA che definisce la rilevanza anche esterna delle deliberazioni del Consiglio, la loro immediata esecutività, fatta salva la possibilità di prevedere nel medesimo provvedimento una diversa efficacia temporale;

DELIBERA

- 1. Di approvare il documento "Linea Guida per la scelta dei metodi di analisi di sostanze prioritarie ai sensi della Direttiva 2000/60/CE", che è parte integrante della presente delibera;
- 2. di ritenere il presente atto, ai sensi dell'art. 8 del predetto Regolamento di funzionamento, immediatamente esecutivo; per il territorio delle Province Autonome di Trento e Bolzano è applicato nel rispetto delle disposizioni dello statuto di autonomia speciale, delle relative norme di attuazione e della sentenza 212/2017 della Corte Costituzionale;
- 3. di dare mandato ad ISPRA e alle Agenzie di pubblicare il predetto atto sui relativi siti istituzionali;
- 4. di dare altresì mandato ad ISPRA di trasmetterlo al Ministero dell'Ambiente e della Tutela del Territorio e del Mare nonché al Presidente della Conferenza delle Regioni e delle Province Autonome.

Roma, 3 ottobre 2018

Il Presidente Stefano Laporta

LINEA GUIDA PER LA SCELTA DEI METODI DI ANALISI DI SOSTANZE PRIORITARIE AI SENSI DELLA DIRETTIVA 2000/60/CE

Informazioni legali

L'Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), le Agenzie Regionali per la Protezione dell'Ambiente (ARPA), le Agenzie Provinciali per la Protezione dell'Ambiente (APPA) e le persone che agiscono per loro conto non sono responsabili per l'uso che può essere fatto delle informazioni contenute in questo manuale.

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 – 00144 Roma www.isprambiente.gov.it

Riproduzione autorizzata citando la fonte

Elaborazione grafica

Grafica di copertina: Franco Iozzoli (o altri dell'Ufficio Grafica)
Foto di copertina: **************
ISPRA – Area Comunicazione

Se on line (solo questo):

Coordinamento editoriale:

Daria Mazzella

ISPRA – Area Comunicazione

Se stampato:

Coordinamento tipografico:

Daria Mazzella

ISPRA - Area Comunicazione

Amministrazione:

Olimpia Girolamo

ISPRA – Area Comunicazione

Distribuzione:

Michelina Porcarelli

ISPRA – Area Comunicazione

(inserire data)

Times New Roman 11 pt, bold

Gruppo di Lavoro

Claudia Vanzetti (Coordinatrice) ARPA Piemonte Lucia Antoci ARPA Sicilia

Stefania Balzamo ISPRA

Donatella Bartoli
Marco Bruciati
ARPA Umbria
ARPAM Marche
Emanuel Crescenzi
ARTA Abruzzo
Jari Falomo
ARPA FVG
Stefano Lottici
ARPAL Liguria
Luciana Menegus
ARPAV Veneto

Marco Morelli, Ivan Scaroni ARPAE Emilia Romagna

Massimo Paolazzi APPA Trento

Referee (eventuali)

Ringraziamenti

Si ringraziano tutti coloro che a vario titolo hanno contribuito alla redazione di questo documento. In particolare si ringrazia per la preziosa collaborazione Nicoletta Gianoglio (*Arpa Piemonte*), Cristina Dalpiaz (*Appa Trento*) Fulvia Risso (*Arpal Liguria*), Riccardo Narizzano (*Arpal Liguria*), Alfredo Magherini (*Arpal Liguria*), Marta Ferro (*Arpal Liguria*), Christian Tiberiade (*Arpal Liguria*), Luca Amendola (*Arpa Lazio*), Patrizia Bolletti (*Arpat Toscana*).

Revisione e correzione dei testi per ISPRA (solo per le pubblicazioni che hanno revisori ISPRA)

Nome Cognome (sigla servizio/settore di appartenenza)

Testo: Times New Roman 11 pt – Interlinea esatta 12 pt – Giustificato

Citare questo documento come segue:

Vanzetti C., Antoci L., Balzamo S., Bartoli D., Bruciati M., Crescenzi E., Falomo J., Lottici S., Menegus L., Morelli M., Paolazzi M., Scaroni I.: "Linea guida per la scelta dei metodi di analisi di sostanze prioritarie ai sensi della direttiva 2000/60/CE" – ISPRA – Manuali e Linee Guida xx/2018.

INDICE

P	REMESSA		1
IN	TRODUZIO	NE	2
		ONI E ACRONIMI	
		O NORMATIVO	
		NE ANALITICA DELLE AGENZIE: SINTESI DELLE ELABORAZION	
ע		NUTI	
		CE ACQUA	
		CE BIOTA	
		CE SEDIMENTI	
4		ER LA SCELTA DEI METODI ANALITICI	
5	SELEZION	E DI METODI PER SOSTANZE PRIORITARIE E AFFINI	17
	5.1 MATRI	CE ACQUA	18
	5.1.1	METALLI	
	5.1.2	<i>IPA</i>	19
	5.1.3	<i>VOC</i>	
	5.1.4	PESTICIDI	22
	5.1.5	EPTACLORO, EPTACLOROEPOSSIDO	
	5.1.6	PFASs	
	5.1.7	DIFENILETERI BROMURATI (PBDE)	
	5.1.8	CLOROALCANI C10-C13	
	5.1.9	CLOROANILINE	
	5.1.10	CLORONITROTOLUENI E CLORONITROBENZENI	
	5.1.11	TRIBUTILSTAGNO E TRIFENILSTAGNO	
	5.1.12	FENOLI	
	5.1.13	NONILFENOLO, OTTILFENOLO	
	5.1.14	DEHP [Di (2-etilesil) ftalato]	
	5.1.15	PCB (Policlorobifenili)	
	5.1.16	PCDD/PCDF	
		CE BIOTA	
	5.2.1	METALLI	
	5.2.2	PESTICIDI	
	5.2.3	IPA	
	5.2.4	PCB (Policlorobifenili)	
	5.2.5	PCDD/PCDF (Policlorodibenzodiossine/Policlorodibenzofenoli)	
	5.2.6	PBDE	
		CE SEDIMENTI	
	5.3.1	METALLI	
	5.3.2	TRIBUTILSTAGNO	
	5.3.3	IPA	
	5.3.4	PESTICIDI	
	5.3.5	PCB (Policlorobifenili)	
	5.3.6	PCDD/PCDF (Policlorodibenzodiossine/Policlorodibenzofurani)	
		ATICHE APERTE E IPOTESI FUTURE SULLA APPLICAZIONE	
M	ETODI		
		ità dei dati analitici nel Distretto di Bacino	
		i singoli composti in una sommatoria	
	6.3 Sostanze	e con LOQ difficilmente (o non) raggiungibili	50
7	BIBLIOGR	AFIA	52
A	LLEGATO 1		54

PREMESSA

Il presente documento è frutto dell'operato del Gruppo di Lavoro n. 2 "Direttiva 2000/60/CE: Armonizzazione metodi di analisi sostanze prioritarie" istituito dal Sistema Nazionale per la Protezione Ambientale (SNPA). Il Gruppo di Lavoro (GdL) ha ricercato un percorso condiviso volto a standardizzare il più possibile le modalità da adottare per le attività analitiche inerenti il monitoraggio delle sostanze prioritarie, sia per garantire la corretta applicazione della Direttiva 2009/90/CE (recepita in Italia con il Decreto Legislativo 219/2010) riguardo ai requisiti minimi di prestazione per i metodi di analisi, che per assicurare intercomparabilità a livello di distretto idrografico dei dati di monitoraggio delle sostanze prioritarie e quindi dello stato di qualità dei corpi idrici (come previsto anche dalla Legge n. 167 del 2017).

La finalità di questa Linea Guida è pertanto quella di agevolare la razionalizzazione e l'armonizzazione dell'approccio analitico per il monitoraggio delle sostanze prioritarie nelle matrici acque interne, biota e sedimenti.

Scopo del presente documento è fornire indicazioni metodologiche e tecniche per la determinazione delle sostanze prioritarie in accordo con quanto previsto dalla Direttiva 2000/60/CE e s.m.i. (DQA), ponendosi come documento di riferimento per chi svolge queste attività.

La presente Linea Guida è costituita da capitoli così suddivisi (oltre a Premessa e Introduzione):

- Capitolo 1 Comprende le definizioni di alcuni concetti e il glossario relativo agli acronimi utilizzati.
- Capitolo 2 Espone il quadro normativo di riferimento nell'ambito del quale si inserisce l'attività analitica per le sostanze prioritarie.
- Capitolo 3 Descrive la situazione delle ARPA/APPA relativamente alla determinazione delle sostanze prioritarie mediante l'analisi e la sintesi dei questionari pervenuti.
- Capitolo 4 Definisce i criteri per la scelta dei metodi da utilizzare per la determinazione delle sostanze prioritarie ai sensi della DQA.
- Capitolo 5 Propone i metodi da utilizzare per la determinazione delle sostanze prioritarie ai sensi della DQA.
- Capitolo 6 Getta uno sguardo sul futuro con ipotesi di organizzazione delle attività analitiche di alcune sostanze "problematiche" per il monitoraggio ai sensi della DQA.

La presente linea guida potrà essere soggetta a revisione, nel caso in cui se ne ravvisi la necessità da parte del SNPA, per la naturale evoluzione nel tempo delle metodiche analitiche.

INTRODUZIONE

La Direttiva Quadro europea in materia di Acque 2000/60/CE (DQA) prevede la definizione e l'effettuazione di programmi di monitoraggio dello stato delle acque (art. 8). In particolare, per verificare lo stato chimico dei corpi idrici, richiede la determinazione della concentrazione di sostanze ritenute pericolose per gli ecosistemi e l'ambiente acquatico, per poi confrontarla con uno *standard di qualità ambientale*, definito come la concentrazione di un inquinante che non deve essere superata per tutelare la salute umana e l'ambiente.

Un primo elenco di queste sostanze prioritarie da monitorare viene fornito dalla DQA stessa (art. 16 par. 2 e 3, allegato X), poi modificato successivamente da normative europee, che hanno anche definito i requisiti minimi di qualità (*minimum performance criteria*) che devono avere i dati analitici risultanti dal monitoraggio effettuato ai sensi della DQA (es. Direttiva 2009/90/CE).

La DQA in Italia è stata recepita con il Decreto Legislativo n. 152/2006, il quale fornisce indicazioni sulla tutela delle acque dall'inquinamento nella parte terza, e che ha adottato l'elenco delle sostanze pericolose (art. 78) nell'Allegato 1 alla parte terza del D.Lgs. citato. In seguito tale elenco è stato rivisto dal Decreto Ministeriale 260/2010 e successivamente dal Decreto Legislativo 172/2015, in recepimento della Direttiva 2013/39/UE, la quale ha anche introdotto l'analisi sulla matrice biota per alcune sostanze in alternativa all'analisi sulla matrice acqua.

Pertanto le sostanze, e i metodi per determinarle, prese in considerazione in questa LG sono quelle definite dalle normative vigenti citate:

Tabella 1/A - Standard di qualità ambientale nella colonna d'acqua e nel biota per le sostanze dell'elenco di priorità;

Tabella 1/B - Standard di qualità ambientale nella colonna d'acqua per alcune delle sostanze non appartenenti all'elenco di priorità;

Tabella 2/A e 3/A - Standard di qualità ambientale nei sedimenti;

Tabella 3/B - Standard di qualità ambientale per altre sostanze nei sedimenti.

La scelta di estendere le sostanze da prendere in esame anche a quelle presenti nelle tabelle B è stata effettuata nell'ottica dell'armonizzazione delle attività analitiche per il monitoraggio ai sensi della DQA e s.m.i., che includono anche tali parametri, come peraltro previsto altresì dalla Legge 167/2017. Inoltre le sostanze prioritarie sono state definite per le acque superficiali, ma, analogamente, anche le acque sotterranee hanno standard di qualità ambientale o valori soglia per sostanze che spesso appartengono alle medesime classi di quelle esaminate per le acque superficiali. Per avere un quadro analitico più completo si è pertanto deciso di inserire anche quelle non comprese in quegli elenchi, ma presenti nel DM 30/2009 e DM 6/07/2016, dedicati alle acque sotterranee.

L'approccio metodologico utilizzato dal GdL per fornire indicazioni sull'armonizzazione dei metodi analitici è consistito inizialmente nel valutare e confrontare l'esistente, prendendo in considerazione ed esaminando le metodologie attualmente utilizzate dalle ARPA/APPA, al fine di selezionare quelle ritenute più idonee ed integrarle con altre, ove necessario, seguendo le proposte individuate dagli esperti del GdL.

Il metodo di lavoro utilizzato e le attività svolte si possono riassumere nel prospetto seguente:

- a) predisposizione di un questionario per la raccolta delle informazioni e sua somministrazione a tutte le ARPA/APPA per la compilazione;
- b) ricezione dei questionari e disamina delle informazioni inserite per valutare la situazione attuale relativamente alle metodiche utilizzate e al rispetto dei requisiti richiesti dalla normativa;
- c) definizione dei criteri per la scelta del metodo analitico da utilizzare per le determinazioni di sostanze prioritarie nell'ambito del monitoraggio ai sensi della DQA;
- d) proposta da parte degli esperti del GdL di metodiche adeguate da utilizzare per la determinazione delle sostanze prioritarie su matrice acqua, biota e sedimenti.

1 DEFINIZIONI E ACRONIMI

Definizioni

LOQ (Limite di Quantificazione): un multiplo dichiarato del limite di rivelabilità a una concentrazione dell'analita che può ragionevolmente essere determinata con accettabile accuratezza e precisione. Il limite di quantificazione può essere calcolato servendosi di una norma o di un campione adeguati e può essere ottenuto dal punto di calibrazione più basso sulla curva di calibrazione, ad esclusione del bianco (*Dir* 2009/90/CE e D. Lgs. 152/2006).

LIMITE DI RIVELABILITÀ: il segnale in uscita o il valore di concentrazione al di sopra del quale si può affermare, con un livello di confidenza dichiarato, che un dato campione è diverso da un bianco che non contiene l'analita (*Dir 2009/90/CE e D. Lgs. 152/2006*).

INCERTEZZA DI MISURA: un parametro non negativo che caratterizza la dispersione dei valori quantitativi attribuiti a un misurando sulla base delle informazioni utilizzate (*Dir* 2009/90/CE).

SOSTANZE PERICOLOSE: le sostanze o gruppi di sostanze tossiche, persistenti e bio-accumulabili e altre sostanze o gruppi di sostanze che danno adito a preoccupazioni analoghe (*Dir 2000/60/CE e D. Lgs. 152/2006*).

SOSTANZE PRIORITARIE: le sostanze definite ai sensi dell'articolo 16, paragrafo 2 [della DQA], ed elencate nell'allegato X. Tra queste sostanze, vi sono «**sostanze pericolose prioritarie**» che sono quelle definite ai sensi dell'articolo 16, paragrafi 3 e 6, che devono essere oggetto di misure a norma dell'articolo 16, paragrafi 1 e 8 (*Dir* 2000/60/CE).

SOSTANZE PRIORITARIE E PERICOLOSE PRIORITARIE: le sostanze individuate con disposizioni comunitarie ai sensi dell'art 16 della Dir 2000/60/CE (*D. Lgs. 152/2006*).

STANDARD DI QUALITÀ AMBIENTALE (SQA): la concentrazione di un particolare inquinante o gruppo di inquinanti nelle acque, nei sedimenti e nel biota che non deve essere superata, per tutelare la salute umana e l'ambiente (*Dir 2000/60/CE e D. Lgs. 152/2006*).

Acronimi

ICP: Inductively coupled plasma (plasma accoppiato induttivamente)

OES: Optical emission spectroscopy (spettroscopia ad emissione ottica)

AAS: Atomic absorption spectrometry (spettrometria ad assorbimento atomico)

CV: Cold-Vapour (vapori freddi)

GC: Gas Chromatography (gascromatografia)

LC: Liquid Chromatography (cromatografia liquida)

MS: Mass Spectrometry (spettrometria di massa)

HR: High Resolution (alta risoluzione)

ECD: Electron Capture Detector (rivelatore a cattura di elettroni)

FID: Flame Ionization Detector (rivelatore a ionizzazione di fiamma)

SPE: Solid phase extraction (estrazione in fase solida)

SPME: Solid phase microextraction (microestrazione in fase solida)

LLE: Liquid-liquid extraction (estrazione liquido-liquido)

ASE: Accelerated solvent extraction (estrazione accelerata con solvente)

IPA: Idrocarburi policiclici aromatici

PBDE: Polibromodifenileteri

PCB: Policlorobifenili

VOC: Composti organici volatili

PCDD/PCDF: Policlorodibenzodiossine/Policlorodibenzofurani

PFAS: Sostanze perfluoroalchiliche

2 CONTESTO NORMATIVO

Il quadro normativo di riferimento all'interno del quale si inserisce l'attività analitica per la determinazione delle sostanze prioritarie prende origine dalla Direttiva Quadro europea in materia di acque, la Direttiva 2000/60/CE (DQA), che stabilisce per le risorse idriche degli obiettivi di qualità ambientale da raggiungere e richiede di predisporre un monitoraggio per verificare lo stato delle acque.

Per espletare questo monitoraggio prevede anche l'analisi chimica di alcune sostanze ritenute pericolose per l'ambiente acquatico, che definisce come *prioritarie*. Un primo elenco di queste sostanze viene fornito dalla DQA stessa, poi successivamente modificato dalla Direttiva 2008/105/CE che stabilisce standard di qualità ambientale. In seguito questo elenco è stato rivisto e modificato da norme successive, fra le quali è da segnalare la Direttiva 2013/39/UE che introduce l'analisi delle sostanze prioritarie anche su matrici differenti dall'acqua, come il biota.

Per quanto concerne la determinazione analitica di queste sostanze, sono state emanate delle normative riguardanti le specifiche tecniche dei metodi da adottare nei laboratori, quali ad es. la Direttiva 2009/90/CE, che indica i requisiti minimi di prestazione che devono avere le metodiche analitiche da utilizzare ai fini del monitoraggio.

In Italia la DQA è stata recepita con il Decreto Legislativo n. 152 del 2006, poi seguito da altri Decreti applicativi, mentre le specifiche tecniche dei metodi analitici sono state definite dal Decreto Legislativo n. 219 del 2010 che recepisce la Direttiva 2009/90/CE.

Oltre alla normativa cogente sono stati anche redatti documenti a supporto per l'implementazione della DQA, in particolare ve ne sono alcuni che riguardano l'analisi delle sostanze prioritarie ai fini del monitoraggio. Fra questi possiamo citare le Guidance europee (CIS), in particolare la n. 19 che riguarda il monitoraggio delle sostanze chimiche in acqua, nella quale si indicano le prestazioni dei metodi e si forniscono informazioni sulle molecole da analizzare. La Guidance n. 25 si occupa del monitoraggio delle sostanze chimiche nei sedimenti e nel biota, mentre la Guidance n. 33 riguarda i metodi analitici per il monitoraggio del biota.

Anche in Italia sono state prodotte Linee Guida (ISPRA) per l'implementazione della DQA e per il monitoraggio, ad esempio la LG 116/2014 che si occupa di progettazione del monitoraggio o la LG 146/2016 che si occupa di monitoraggio del biota.

Di seguito si propone un elenco, non esaustivo, delle principali norme di interesse.

NORMATIVA EUROPEA:

- **♣ Direttiva 2000/60/CE** del Parlamento Europeo e del Consiglio del 23 ottobre 2000 che istituisce un quadro per l'azione comunitaria in materia di acque;
- → Direttiva 2008/105/CE del Parlamento Europeo e del Consiglio del 16 dicembre 2008 relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive del Consiglio 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE e 86/280/CEE, nonché modifica della direttiva 2000/60/CE del Parlamento europeo e del Consiglio;
- ♣ **Direttiva 2009/90/CE** della Commissione del 31 luglio 2009 che stabilisce, conformemente alla direttiva 2000/60/CE del Parlamento europeo e del Consiglio, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque;
- → **Direttiva 2013/39/UE** del Parlamento Europeo e del Consiglio del 12 agosto 2013 che modifica le direttive 2000/60/CE e 2008/105/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque.

NORMATIVA NAZIONALE:

- → Decreto Legislativo 03/04/2006 n. 152 "Norme in materia ambientale" Parte terza Norme in materia di difesa del suolo e lotta alla desertificazione, di tutela delle acque dall'inquinamento e di gestione delle risorse idriche;
- ♣ Decreto Ministero Ambiente 8 novembre 2010, n. 260 "Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle

- norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo";
- ♣ Decreto Legislativo 10/12/2010, n. 219 "Attuazione della direttiva 2008/105/CE relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE, nonché modifica della direttiva 2000/60/CE e recepimento della direttiva 2009/90/CE che stabilisce, conformemente alla direttiva 2000/60/CE, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque";
- ♣ Decreto Legislativo 13/10/2015, n. 172 "Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque";
- **Decreto 6 luglio 2016** "Recepimento della direttiva 2014/80/UE della Commissione del 20 giugno 2014 che modifica l'allegato II della direttiva 2006/118/CE del Parlamento europeo e del Consiglio sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento";
- **Legge 20 novembre 2017, n. 167** "Disposizioni per l'adempimento degli obblighi derivanti dall'appartenenza dell'Italia all'Unione europea".

DOCUMENTAZIONE TECNICA:

Documentazione derivante dalla Common Implementation Strategy (CIS) per l'attuazione della Direttiva 2000/60/CE e s.m.i:

- ➤ CIS-WFD Guidance Document No. 19 on surface water Chemical Monitoring under the Water Framework Directive, Technical Report 2009-025;
- ➤ CIS-WFD Guidance Document No. 25 on chemical monitoring of sediment and biota under the Water Framework Directive, Technical Report 2010-041;
- ➤ CIS-WFD Guidance Document No. 33 on Analytical Methods for Biota Monitoring under the Water Framework Directive, Technical Report 2014-084.

3 SITUAZIONE ANALITICA DELLE AGENZIE: SINTESI DELLE ELABORAZIONI DEI DATI PERVENUTI

La prima attività del GdL è stata quella di condurre una ricognizione relativamente alle informazioni disponibili nelle Agenzie riguardo alle prestazioni analitiche svolte ai fini del monitoraggio ai sensi della DQA e s.m.i. nelle matrici Acqua, Biota e Sedimenti.

E' stato pertanto predisposto nel 2015 un questionario, in forma tabellare per facilitare la raccolta e la successiva elaborazione delle informazioni, da compilarsi a cura di tutte le ARPA/APPA.

Le informazioni richieste riguardavano i seguenti aspetti inerenti l'analisi delle sostanze:

- tecnica preparativa (con eventuale purificazione)
- tecnica analitica
- limite di quantificazione raggiunto
- incertezza di misura adottata
- metodo
- accreditamento o meno della prova analitica.

Le sostanze prese in esame per questa ricognizione sono quelle citate nel capitolo introduttivo, contemplate nel D. Lgs. 152/2006 e s.m.i. (Tabella 1/A e 1/B per le acque superficiali e il biota, Tabella 2/A, 3/A e 3/B per i sedimenti) e nel D. Lgs. 30/2009 e s.m.i. per le acque sotterranee.

I dati raccolti tramite i questionari sono stati sistematizzati ed elaborati per matrice e per classi di sostanze, valutando le metodiche analitiche utilizzate dalle varie ARPA/APPA, i LOQ raggiunti e l'incertezza applicata dai laboratori.

Questa ricognizione risulta importante in quanto mostra una fotografia (riferita al 2015) della situazione in essere per l'applicazione della DQA e s.m.i. ai monitoraggi delle acque relativamente alle determinazioni analitiche, facendo emergere sia le situazioni positive che le criticità.

Dalla ricognizione effettuata sono infatti emersi alcuni elementi importanti:

- complessivamente le tecniche preparative e analitiche per molte classi di sostanze sono le medesime in molti laboratori, anche se i risultati possono essere difformi in base alla strumentazione utilizzata, più o meno performante;
- riguardo ai metodi utilizzati è invece emersa una disomogeneità maggiore, con l'adozione di molti metodi differenti nei vari laboratori;
- non tutte le sostanze e le matrici previste dalla normativa sono analizzate da tutte le Agenzie, per scelta di programmazione o per difficoltà analitiche;
- alcune sostanze presentano criticità analitiche tali da far sì che non siano determinate oppure lo siano ma senza riuscire a raggiungere i requisiti richiesti dalla normativa.

Le Agenzie che hanno inviato i questionari compilati sono state 17 su 21.

Alcune Agenzie hanno compilato le tabelle esprimendo più laboratori all'interno della stessa Agenzia, evidenziando come in alcuni casi all'interno di una Agenzia, per l'analisi delle medesime sostanze, si utilizzino tecniche e metodi diversi. Questo porta talvolta a risultati difformi in quanto all'interno della stessa Agenzia vi sono laboratori che forniscono dati che rispettano i requisiti richiesti e altri laboratori no, con risultati disomogenei all'interno di una stessa Regione. Anche per questo motivo una armonizzazione delle metodiche analitiche è fortemente auspicabile.

Nei capitoli successivi sono presentati i risultati della ricognizione con maggiore dettaglio¹.

¹ Nel caso in cui non sia indicato l'anno del metodo è perché sono presenti più versioni

3.1 MATRICE ACQUA

Le elaborazioni dei dati sono state condotte valutando separatamente le tecniche di estrazione e purificazione del campione, le tecniche analitiche e i metodi applicati.

Le sostanze sono state esaminate raggruppandole per omogeneità di caratteristiche chimiche e analitiche, suddividendole in cinque classi: Metalli, VOC, IPA, Pesticidi e Altre sostanze.

Nelle elaborazioni dei dati il calcolo delle percentuali è stato effettuato considerando come unitaria la risposta dei singoli laboratori, e non delle singole Agenzie, per i motivi espressi precedentemente.

METALLI

Dalla ricognizione è emerso che in tutti i laboratori che hanno risposto al questionario vengono monitorati i metalli richiesti dalla normativa.

Per la matrice Acqua non si eseguono procedure di estrazione del campione nell'analisi di queste sostanze.

La tecnica analitica maggiormente utilizzata è ICP-MS (75% dei laboratori), seguita da ICP-OES (15%) e da AAS in minima parte (Figura 3.1).

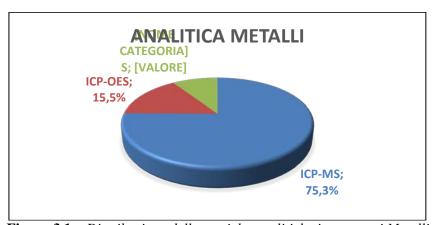
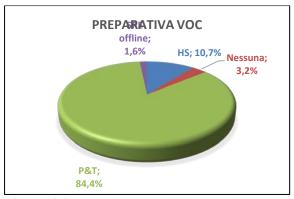
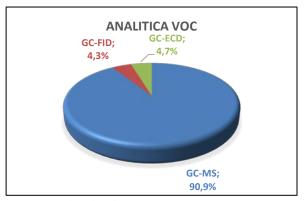


Figura 3.1 – Distribuzione delle tecniche analitiche in uso per i Metalli

Per quanto riguarda i metodi utilizzati per l'analisi dei Metalli emerge che la maggior parte dei laboratori (54%) utilizza UNI EN ISO 17294-2:2005. Il secondo metodo più utilizzato (16%) risulta essere EPA 200.8. Seguono poi svariati metodi impiegati da singoli laboratori.

Il Cromo esavalente e il Mercurio necessitano di un discorso a parte in quanto in molti laboratori sono determinati con tecniche analitiche dedicate e metodi specifici.


Mercurio: se non viene determinato insieme agli altri metalli con ICP-MS, la tecnica analitica utilizzata dalla maggior parte dei laboratori è CV-AAS abbinata al metodo APAT CNR-IRSA 3200 Man 29/2003, seguita dagli analizzatori dedicati abbinati al metodo EPA 7473:2007.


Cromo esavalente: la tecnica analitica più utilizzata risulta la spettrofotometria UV-VIS con il metodo APAT CNR IRSA 3150 C Man 29/2003; le altre due tecniche analitiche maggiormente usate sono ICP-MS con il metodo UNI EN ISO 17294-2:2005 e Cromatografia ionica con il metodo EPA 7199:1996.

VOC

Dalla valutazione dei dati pervenuti è emerso che in tutti i laboratori vengono determinati i VOC richiesti dalla normativa presenti nella tabella 1/A, mentre un numero minore di laboratori monitorano la classe dei clorobenzeni e clorotolueni, richiesti dalla tabella 1/B.

Questi inquinanti sono determinati con metodiche ampiamente condivise, infatti circa l'85% dei laboratori utilizza per l'estrazione dei principi attivi dai campioni acquosi la tecnica del Purge & Trap (Figura 3.2a), mentre il 90% dei laboratori utilizza come tecnica analitica strumentale GC-MS. Una piccola percentuale di laboratori utilizza ancora come rivelatori gascromatografici FID e ECD (Figura 3.2b).

Figura 3.2 - Distribuzione delle tecniche preparative (a) e analitiche (b) in uso per i VOC

Anche per quanto riguarda i metodi utilizzati si è rilevato che la maggior parte dei laboratori utilizza gli stessi metodi, in particolare EPA 5030C per l'estrazione e EPA 8260C per la parte analitica. Altri metodi condivisi dai più sono APAT CNR IRSA 5150 Man 29/2003 per i solventi organici clorurati e APAT CNR IRSA 5140 Man 29/2003 per i solventi organici aromatici. Come sempre vi sono poi altri metodi utilizzati da singoli laboratori.

IPA

Dalla ricognizione si è notato che gli IPA richiesti dalle normative citate vengono determinati in tutti i laboratori.

La tecnica di estrazione più utilizzata, da circa il 60% dei laboratori, è SPE offline, seguita dall'estrazione Liquido-Liquido che è in uso in circa il 30% dei laboratori (Figura 3.3a).

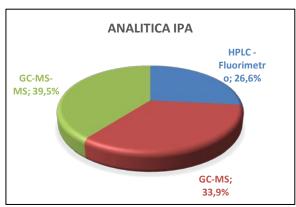


Figura 3.3 - Distribuzione delle tecniche preparative (a) e analitiche (b) in uso per gli IPA

Le tecniche analitiche utilizzate sono tre, distribuite in modo pressoché analogo nei vari laboratori: circa un terzo dei laboratori usa GC-MS, un terzo HPLC-fluorimetria e poco più di un terzo (circa il 40%) usa GC-MS-MS (Figura 3.3b).

Passando alla disamina dei metodi, emerge che quello utilizzato dalla maggior parte dei laboratori (58%) risulta essere APAT CNR IRSA 5080 Man 29/2003, mentre il secondo metodo più utilizzato (24%), risulta essere EPA 8270D. I restanti laboratori utilizzano vari altri metodi.

In queste elaborazioni non è stato considerato il **Naftalene** in quanto per le sue caratteristiche chemioanalitiche può essere analizzato sia impiegando le metodiche in uso per gli IPA che quelle per i VOC. Pertanto l'estrazione utilizzata è equamente suddivisa fra la tecnica SPE (40%) e la tecnica Purge&Trap (40%). I rimanenti laboratori utilizzano estrazione Liquido-Liquido (10%), SPME (microestrazione in fase solida) o SBSE (Stir Bar Sorptive Extraction) (10%).

Per quanto riguarda la tecnica analitica, quella preponderante è GC-MS, utilizzata dal 61% dei laboratori, seguita da GC-MS-MS (28%). Altre tecniche impiegate sono GC-FID (5.6%) e HPLC-Fluorimetro (5.6%).

PESTICIDI

Per questi inquinanti la situazione è piuttosto variegata sia per quanto riguarda le tecniche di estrazione ed analitiche che per i metodi impiegati. La varietà riscontrata è dovuta a vari fattori, fra i quali i principali sono la molteplicità e numerosità delle sostanze e le loro differenti caratteristiche chimiche e analitiche. Inoltre la scelta di quali pesticidi determinare in ogni laboratorio è anche legata al territorio, alle pressioni insistenti e ai riscontri avvenuti in passato.

Dalla ricognizione effettuata risulta che, per quanto riguarda la tecnica utilizzata per l'estrazione delle sostanze attive prioritarie, la maggior parte dei laboratori utilizza SPE offline (66%) mentre in percentuali decisamente minori sono distribuite le altre tecniche estrattive quali SPME, iniezione diretta o estrazione Liquido-Liquido (Figura 3.4a).

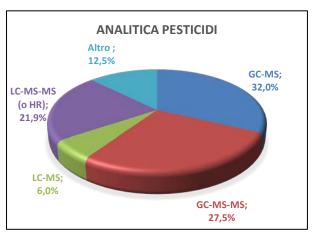


Figura 3.4 - Distribuzione delle tecniche preparative (a) e analitiche (b) in uso per i Pesticidi

Passando ad esaminare le tecniche analitiche utilizzate (Figura 3.4b), si nota come siano distribuite, in base alle caratteristiche chimiche e analitiche delle sostanze, fra GC-MS e/o GC-MS-MS (con cui circa il 60% dei laboratori analizza la maggior parte dei pesticidi) e LC-MS e/o LC-MS-MS per circa il 28% dei laboratori. Si osserva infine che, come rivelatore, oltre al più diffuso spettrometro di massa, permane ancora l'utilizzo da parte di alcuni laboratori di rivelatori quali ECD e NPD. Si evidenzia che il Sante/11813/2017, in continuazione anche con il precedente Sante/11945/2015 ed altri analoghi documenti più datati, al punto C13 riporta: "Nowadays, selective detectors for GC (ECD, FPD, PFPD, NPD) and LC (DAD, fluorescence) are less widely used as they offer only limited specificity. Their use, even in combination with different polarity columns, does not provide unambiguous identification. These limitations may be acceptable for frequently found pesticides, especially if some results are also confirmed using a more specific detection technique. In any case, such limitations in the degree of identification should be acknowledged when reporting the results". Per queste motivazioni, per eseguire analisi in campo ambientale, è opportuno l'utilizzo di tecnologie avanzate quali i detector di massa (GC-MS-MS, LC-MS-MS, HRMS) anche in considerazione delle prestazioni richieste dalla normativa vigente.

Per quanto riguarda i metodi analitici non si ravvisa un metodo prevalente utilizzato dalla maggioranza dei laboratori, come avviene per altre classi di sostanze, ma vi è un ventaglio molto ampio di metodi scelti dai laboratori, tanto che uno stesso metodo viene utilizzato da non più di 3 o 4 laboratori. Fra quelli più utilizzati si possono annoverare APAT CNR IRSA 5060 Man 29/2003, EPA 8270D:2007 e Rapporti ISTISAN 07/31 met. ISS. CAC.015 rev. 00.

Il **Glifosate**, pesticida fra i più utilizzati al mondo, necessita di considerazioni a parte: dalla ricognizione effettuata nel 2015 è emerso che ancora pochi laboratori effettuano questa determinazione in ragione della complessità analitica e della necessità di avere strumentazione dedicata.

Dalle informazioni pervenute tramite i questionari, questo parametro è determinato solo da due laboratori, entrambi con metodi che prevedono una derivatizzazione con FMOC e determinazione con HPLC-Fluorimetria/HPLC-HRMS; tuttavia altri laboratori hanno in previsione l'implementazione dell'analisi di questo pesticida anche mediante l'acquisto di strumentazione dedicata (es. LC-MS-triplo quadrupolo) o l'utilizzo di metodiche specifiche sviluppate dai produttori delle strumentazioni.

ALTRE SOSTANZE

In questo capitolo si prendono in esame le sostanze che non rientrano nelle categorie precedenti ma sono indicate fra le sostanze prioritarie dalla normativa vigente. Sono molecole molto diverse fra di loro, sia come impiego che come caratteristiche chimiche e analitiche, e dalla ricognizione effettuata emerge che molte di esse non vengono determinate in tutti i laboratori. Inoltre è da segnalare che la determinazione di alcune di queste sostanze presenta delle criticità, spesso dovute al limite di quantificazione molto basso richiesto dalla normativa vigente o alle loro peculiarità analitiche. A titolo di esempio si può citare l'Esabromociclododecano che non viene determinato da alcun laboratorio.

Come si può notare nella Figura 3.5 le sostanze analizzate sono di natura organica, pertanto molte tecniche preparative sono le medesime già viste per Pesticidi, VOC o IPA, quali SPE, Purge&Trap, estrazione Liquido-Liquido, a seconda delle caratteristiche chemio-analitiche della molecola.

Lo stesso discorso si può replicare per la tecnica analitica scelta, che spazia da GC-MS o GC-MS-MS a LC-MS o LC-MS-MS, oppure, in alcuni casi sporadici, utilizzo di detector quali ECD o DAD o Fluorimetro (Figura 3.6).

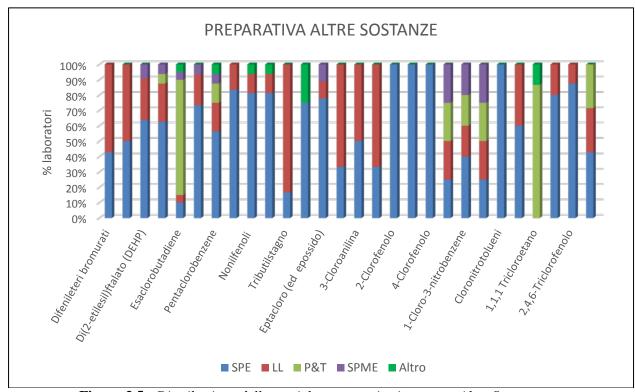
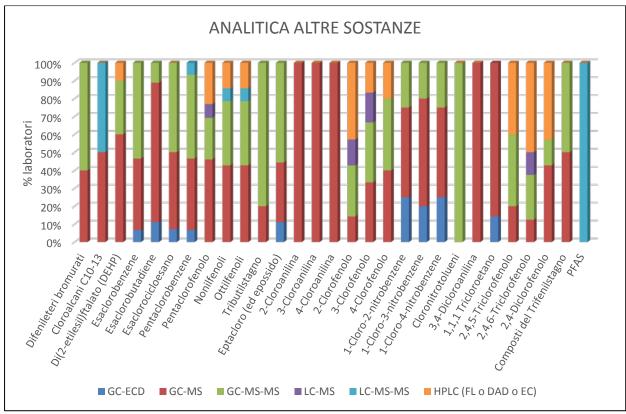



Figura 3.5 - Distribuzione delle tecniche preparative in uso per Altre Sostanze

Figura 3.6 - Distribuzione delle tecniche analitiche in uso per Altre Sostanze

LIMITI DI QUANTIFICAZIONE

Passando alla disamina dei requisiti stabiliti dalla normativa (*minimum performance criteria*), si può notare come i LOQ richiesti non sono rispettati da tutti i laboratori per tutte le molecole.

Infatti, come si può rilevare per la matrice acqua, nella Tabella 1 dell'Allegato 1 alla presente LG, per alcune molecole il 100% dei laboratori che le determina raggiunge il LOQ richiesto, ma in molti casi sono pochi i laboratori che le analizzano, mentre in altri casi il LOQ richiesto è raggiunto ma da una percentuale molto bassa di laboratori.

3.2 MATRICE BIOTA

Le analisi sulla matrice biota in campo ambientale sono di recente introduzione, con l'emissione della Direttiva 2013/39/UE, recepita in Italia con il D. Lgs. 172/2015, per cui i laboratori delle Agenzie si stanno ancora attrezzando per poter eseguire queste determinazioni e sono pochi quelli che effettivamente le effettuano.

Le elaborazioni dei dati sono state condotte valutando separatamente le tecniche di estrazione e purificazione del campione, le tecniche analitiche e i metodi applicati, considerando tutte le sostanze analizzate nel loro insieme.

Nelle elaborazioni dei dati il calcolo delle percentuali è stato effettuato considerando come unitaria la risposta dei singoli laboratori, e non delle singole Agenzie, per i motivi espressi precedentemente.

Come si può notare nella Figura 3.7 le tecniche di estrazione utilizzate sono molto diverse fra di loro, in quanto ogni laboratorio ha intrapreso una propria strada per arrivare all'estratto da utilizzare per la determinazione analitica.

Per quanto riguarda le tecniche analitiche invece, trattandosi di sostanze organiche, vengono utilizzate quelle già impiegate per la determinazione degli stessi analiti in acqua.

_ 11

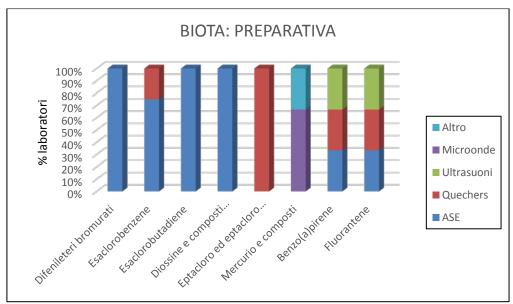


Figura 3.7 - Distribuzione delle tecniche preparative in uso per il Biota

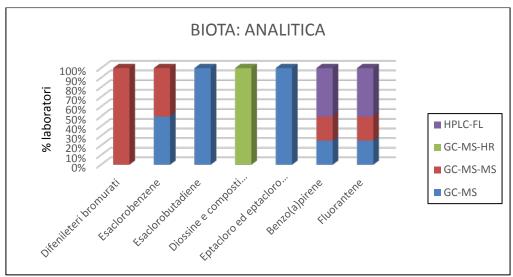


Figura 3.8 - Distribuzione delle tecniche analitiche in uso per il Biota

Il **mercurio** viene determinato con le tecniche analitiche già viste per le acque e i sedimenti: CV-AAS (60%) e ICP-MS (40%).

I metodi per la determinazione analitica sono in gran parte gli stessi che vengono usati per acque e sedimenti abbinati a diversi metodi di estrazione: i più usati sono EPA 8270D per IPA e altre sostanze organiche, EPA 1613:1994 per diossine, EPA 200.8 per il mercurio.

3.3 MATRICE SEDIMENTI

Dalla ricognizione effettuata nel 2015 è risultato che le analisi per questa matrice siano più consolidate rispetto a quelle sul biota.

Come per la matrice acque, i LOQ richiesti non sono rispettati da tutti i laboratori anche se quasi il 50% dei parametri previsti sui sedimenti raggiungono le prestazioni richieste in tutti i laboratori; il tributilstagno è risultato il parametro più problematico e analizzato solo da due laboratori.

Le elaborazioni dei dati sono state condotte valutando separatamente le tecniche di estrazione e purificazione del campione, le tecniche analitiche e i metodi applicati.

Le sostanze sono state esaminate raggruppandole per omogeneità di caratteristiche chimiche e analitiche, suddividendole in due classi: Metalli e Sostanze Organiche.

Nelle elaborazioni dei dati il calcolo delle percentuali è stato effettuato considerando come unitaria la risposta dei singoli laboratori, e non delle singole Agenzie, per i motivi espressi in precedenza.

METALLI

La determinazione dei metalli nei sedimenti viene eseguita nella maggior parte dei laboratori con digestione del campione mediante microonde mentre la tecnica analitica più utilizzata è ICP-MS, seguita da ICP-OES (Figura 3.9 e Figura 3.10).

Il metodo più utilizzato, analogamente alla matrice acqua, risulta essere UNI EN ISO 17294.

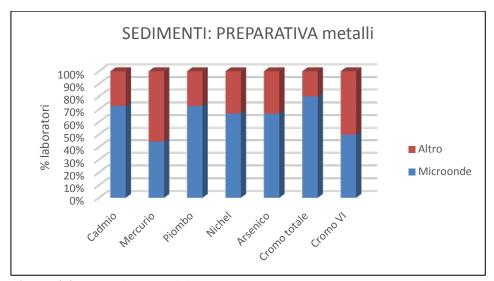


Figura 3.9 - Distribuzione delle tecniche preparative in uso per i Metalli

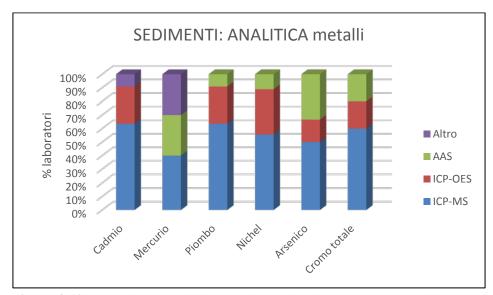


Figura 3.10 - Distribuzione delle tecniche analitiche in uso per i Metalli

Sostanze Organiche

Dalle elaborazioni effettuate si nota che la tecnica di estrazione più utilizzata per le Sostanze Organiche risulta essere ASE, mentre le tecniche analitiche più utilizzate sono GC-MS e GC-MS-MS (Figura 3.11 e Figura 3.12).

Il metodo impiegato dalla maggioranza dei laboratori per la determinazione delle Sostanze Organiche risulta essere EPA 8270D, abbinato a diversi metodi di estrazione, mentre per PCB e Diossine si utilizzano metodi EPA specifici e dedicati con GC-MS ad alta risoluzione, ovvero EPA 1668B:2008 per PCB totali e EPA 1613B:1994 per Diossine e Furani.

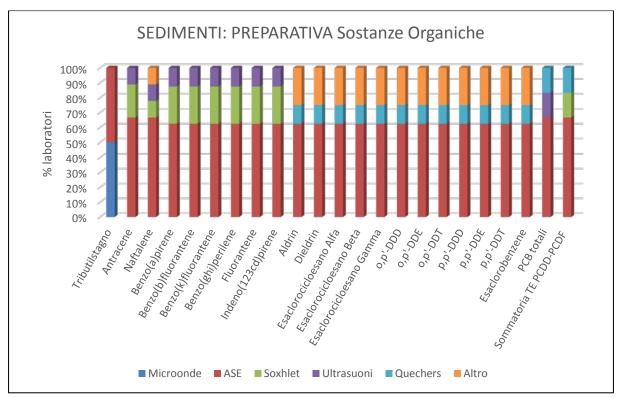


Figura 3.11 - Distribuzione delle tecniche preparative in uso per le Sostanze Organiche

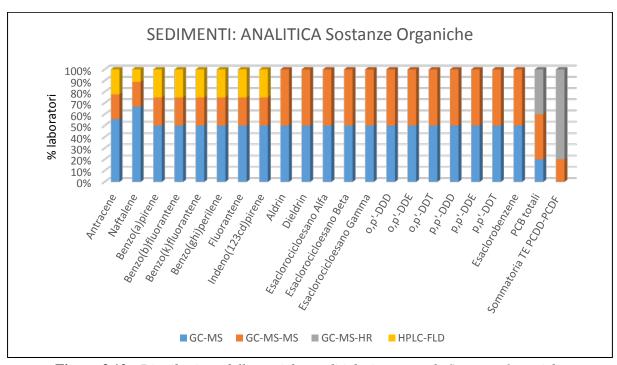


Figura 3.12 - Distribuzione delle tecniche analitiche in uso per le Sostanze Organiche

4 CRITERI PER LA SCELTA DEI METODI ANALITICI

La scelta del metodo analitico è un atto importante per il laboratorio in quanto vincola la determinazione delle sostanze ad una serie di procedure fissate e, soprattutto, a rispettare i criteri di prestazione previsti dai metodi stessi.

Il laboratorio, nella scelta della metodica analitica da utilizzare, deve anche tenere presente la propria dotazione strumentale, ipotizzando eventualmente un piano di acquisti in accordo con le risorse finanziarie e le priorità dell'Agenzia di cui fa parte.

Inoltre l'individuazione di una procedura analitica da adottare non può prescindere da vincoli e prescrizioni presenti nella normativa in vigore, ad esempio requisiti minimi di prestazione definiti da norme nazionali o europee, da linee guida etc.

Riuscire a conciliare tutte queste esigenze non è semplice ed è uno dei motivi per cui vi è un ventaglio così ampio di metodi impiegati dalle varie Agenzie nelle determinazioni analitiche delle medesime sostanze o classi di sostanze.

Inoltre questa Linea Guida si occupa in particolare dei metodi per la determinazione delle sostanze prioritarie come definite dalla DQA e s.m.i., pertanto non può prescindere dallo scopo per il quale si determinano, il monitoraggio dello stato delle acque, né dai vincoli che la norma medesima impone nella analisi delle sostanze.

I criteri da utilizzare per la scelta dei metodi vanno quindi visti anche in quest'ottica.

Partendo dai **requisiti normativi**, la Direttiva 2009/90/CE, recepita in Italia dal D. Lgs. n. 219 del 2010, fissa criteri minimi di efficienza (*minimum performance criteria*) per i metodi di analisi utilizzati per monitorare lo stato delle acque, dei sedimenti e del biota.

In particolare nell'art. 4 indica che "i criteri minimi di efficienza per tutti i metodi di analisi siano basati su un'incertezza di misura pari o inferiore al 50% (k=2) stimata al livello degli standard di qualità ambientale pertinenti e su un limite di quantificazione pari o inferiore al 30% rispetto agli standard di qualità ambientale pertinenti".

"In mancanza di standard di qualità ambientale per un dato parametro o di un metodo di analisi che rispetti i criteri minimi di efficienza [...] il monitoraggio sia svolto applicando le migliori tecniche disponibili che non comportino costi eccessivi".

Inoltre all'art. 3 puntualizza che "tutti i metodi di analisi [...] utilizzati ai fini dei programmi di monitoraggio chimico svolti a norma della direttiva 2000/60/CE, siano convalidati e documentati ai sensi della norma EN ISO/IEC – 17025 o [...] equivalenti". Questo implica anche la scelta di usare preferibilmente i metodi pubblicati nelle norme internazionali, nazionali o da organizzazioni tecniche rinomate.

Quindi i metodi scelti devono in primis necessariamente rispettare questi minimum performance criteria.

Un'altra considerazione riguarda la **finalità dell'utilizzo**, infatti poiché queste metodiche analitiche sono impiegate per la determinazione di sostanze all'interno di un programma di monitoraggio definito ai sensi della DQA, dovrebbero consentire l'esecuzione di un **numero elevato di campioni in routine**.

Questo implica la scelta di tecnologie ad **elevata automazione** (compatibilmente con i risultati da raggiungere, es. recupero o precisione) e metodiche analitiche **multicomponente**, che permettano quindi la determinazione di diverse sostanze contemporaneamente, possibilmente modulabili per matrice, in modo da utilizzare la stessa tecnica analitica (e strumentazione) a fronte di diverse tecniche di estrazione dell'analita¹.

¹ Un esempio è il metodo EPA 8270 che prevede la determinazione in GC-MS di molti composti organici semivolatili quali ad es. clorofenoli, cloroaniline, cloronitrobenzeni, pesticidi, IPA... indicando diversi metodi di estrazione a seconda della matrice e prevedendo una analisi strumentale multicomponente.

Inoltre poiché le normative stanno evolvendo verso il monitoraggio di sempre nuove sostanze, in matrici differenti e con limiti ambientali sempre più bassi, occorrono tecnologie innovative ed evolute per poter ottemperare a queste richieste.

Una indicazione importante è anche quella relativa alla **sicurezza degli operatori**, ad esempio prediligere metodi che utilizzino meno solventi possibili (e sostituire quelli più dannosi per la salute con altri meno pericolosi).

Altre notazioni di cui tenere conto sono l'impiego di una quantità di risorse ragionevoli per l'esecuzione del metodo e con costi il più possibile contenuti, come indicato dalla normativa stessa.

Infine, essendo utilizzato da Agenzie per la protezione dell'ambiente, sarebbe utile prestare attenzione anche all'**impatto ambientale** del processo analitico nel suo complesso in modo da scegliere quello che abbia il più basso impatto possibile.

Una distinzione che si può effettuare per quanto riguarda la metodica analitica è anche fra il metodo inteso come insieme di procedure per effettuare una analisi (es. EPA, ISO, etc.) e la tecnica intesa come principio analitico con la strumentazione conseguente (es. gascromatografia con rivelatore di massa). Infatti una medesima tecnica analitica può essere ricompresa in più metodi e utilizzata per determinare sostanze differenti e quindi la proposta di metodi da utilizzare tiene conto anche di questa distinzione, fornendo indicazioni sia per quanto riguarda i metodi che le tecniche analitiche e strumentali.

Infine occorre anche tenere presente che la **strumentazione** di nuova generazione è sicuramente **più performante** rispetto a quella più datata, pertanto la stessa metodica analitica applicata con due strumentazioni differenti può dare risultati diversi, sia in termini di sensibilità (e quindi di LOQ) che di accuratezza e incertezza.

5 SELEZIONE DI METODI PER SOSTANZE PRIORITARIE E AFFINI

In letteratura e in alcune norme sono presenti indicazioni sui metodi da utilizzare per l'analisi delle sostanze prioritarie ma spesso sono meri elenchi senza informazioni relative alla fattibilità degli stessi applicata al monitoraggio ai sensi della DQA.

In questa LG si è deciso invece di partire da quanto già effettuato nei vari laboratori delle Agenzie in modo da fornire anche informazioni sulla reale fattibilità dei metodi e dei risultati raggiungibili.

Infatti i metodi sono stati proposti dagli esperti del GdL e corredati da dati di validazione, dai *minimum performance criteria* richiesti dalla normativa vigente e sovente da quei piccoli accorgimenti tecnici, non sempre indicati nei metodi, che possono migliorare i risultati ottenibili.

La finalità del lavoro è quella di cercare di rendere più omogenea la determinazione delle sostanze prioritarie svolta nelle varie ARPA/APPA per poter avere risultati confrontabili, sia a livello distrettuale che nazionale.

Tuttavia spesso non è tanto la scelta di un metodo piuttosto che un altro a fare la differenza quanto invece la **dotazione strumentale** che il laboratorio può impiegare per l'esecuzione del metodo scelto.

A tal proposito si è cercato di proporre più metodi, cercando di tenere in considerazione anche le dotazioni strumentali delle varie Agenzie, ove possibile, in modo da presentare scelte sia per chi ha strumenti più attuali e performanti, sia per chi ha strumentazione più datata. Si è cercato di indicare metodi normati (per ottemperare alla ISO 17025) che **rispettassero** i *minimum performance criteria* o, ove non possibile, le migliori tecniche che non comportino costi eccessivi, così come indicato nella Dir. 2009/90/CE.

I metodi sono stati raggruppati per matrice e per sostanza o classi di sostanze, suggerendo anche metodi multicomponente che permettono la determinazione di sostanze differenti ma analizzabili con la medesima tecnica analitica.

Nell'allegato 2 sono presentate le tabelle riassuntive con metodi e prestazioni, forniti dagli esperti del GdL. In particolare nella tabella 2.1 sono indicate le tecniche analitiche e nella tabella 2.2 sono indicate le prestazioni raggiungibili con i metodi proposti per la matrice acqua; analogamente nelle tabelle 2.3 e 2.4 sono indicate le tecniche analitiche e le prestazioni per la matrice biota e nelle tabelle 2.5 e 2.6 sono indicate le tecniche analitiche e le prestazioni per la matrice sedimenti.

Come considerazione finale occorre tenere presente, come indicato anche nella Guidance n. 19, che nell'adozione delle metodiche analitiche è utile lasciare al laboratorio la scelta fra un ventaglio di metodi, anche in considerazione del fatto che possano utilizzare un metodo già accreditato e accreditarne un altro è oneroso. Il processo di armonizzazione dei metodi all'interno del SNPA è infatti un cammino lungo e l'adozione di nuovi metodi richiede tempo.

Il criterio fondamentale da considerare è il rispetto dei requisiti richiesti dalla normativa, in questo caso LOQ e incertezza, oppure, dove ciò non sia possibile, optare per un metodo condiviso a livello di Distretto, in modo da garantire il medesimo LOQ nell'ottica di assicurare la medesima capacità di rilevare e quantificare le sostanze prioritarie e di conseguenza valutare se le misure intraprese possano portare effettivamente ad un miglioramento dello stato chimico del corpo idrico.

5.1 MATRICE ACQUA

5.1.1 METALLI

Metodo 1

Tecnica preparativa	Filtrazione del campione a 0,45 μ m e acidificazione all'1% v/v di HNO ₃ 65% (es. 1 mL HNO ₃ 65% in 100 mL di campione); l'aliquota per l'analisi del mercurio è acidificata all'1% di HNO ₃ 65% e 1% di HCl 35-37% (es. 0.25 mL HNO ₃ 65% e 0.25 mL di HCl 35-37% in 25 mL di campione).
Tecnica di identificazione e quantificazione	ICP-MS (quadrupolo analizzatore e cella di collisione/reazione per la riduzione delle interferenze poliatomiche).
Metodo	UNI EN ISO 17294-2:2016 Qualità dell'acqua - Applicazione della spettrometria di massa al plasma accoppiato induttivamente (ICP-MS) Parte 2 Determinazione di elementi selezionati, compresi gli isotopi dell'uranio.
LOQ	Adeguato.
Incertezza	Adeguata.
Note	Campioni con un contenuto di solidi disciolti superiore a 0,2% (m/v) devono essere opportunamente diluiti, mantenendo invariata la concentrazione di acido iniziale (1%). La taratura si esegue con il metodo dello standard interno per compensare effetti di deriva strumentale e di soppressione del segnale dovuto alla matrice.

Metodo 2

Tecnica preparativa	Filtrazione del campione a 0,45 μ m e acidificazione (es. con 0,4 mL di HNO3 65% in 20 mL di campione).
Tecnica di identificazione e quantificazione	ICP-MS.
Metodo	EPA 200.8 Revisione 5.4 - Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry.
LOQ	Adeguato.
Incertezza	Adeguata.
Note	Campioni con un contenuto di solidi disciolti superiore a 0,2% (m/v) devono essere opportunamente diluiti, mantenendo invariata la concentrazione di acido iniziale.

SOLUZIONI TECNICHE MIGLIORATIVE

Un miglioramento della sensibilità in matrici complesse potrebbe essere ottenuto:

- in campioni con elevati livelli di solidi disciolti evitando la diluizione manuale, utilizzando uno strumento ICP-MS dotato di un sistema di diluizione in linea dell'aerosol con gas argon;
- con sistemi di ultima generazione con tecnologia a triplo quadrupolo.

5.1.2 IPA

Metodo 1

Tecnica di estrazione	SPE contenente sia l'adsorbente C18 che l'adsorbente amminopropilico NH ₂ dedicato alla ritenzione degli acidi umici. Si parte da 1000 mL di campione. Al campione si aggiunge alcool isopropilico (fino ad una concentrazione di 10% v/v), si agita e si fa riposare. Si eluisce con diclorometano. Volume finale di 1 mL (eluato ripreso con acetonitrile).
Tecnica di identificazione e	HPLC con fluorimetro e PDA.
quantificazione	L'eluizione del campione viene monitorata a 254 nm con il rivelatore PDA (detector a serie di diodi), mentre il detector a fluorescenza è programmato per variare le lunghezze d'onda di eccitazione ed emissione in funzione del tempo di eluizione dei diversi IPA.
Metodo	APAT CNR IRSA 5080 Man 29/2003 - Idrocarburi policiclici aromatici.
LOQ	Adeguato (0,00005 μ g/L per il benzo(a)pirene e 0,0001 μ g/L per gli altri IPA).
Incertezza	Adeguata.
Note	Il campione è concentrato 1000 volte. Terminato il passaggio del campione su SPE, per recuperare gli analiti eventualmente adsorbiti sulle pareti, si lava la bottiglia con 10 mL di acetone che viene diluito a 100 mL con acqua e passato su SPE. La taratura ottenuta con il fluorimetro copre l'intervallo 0,00005-0,1 μg/L, mentre la taratura con il rivelatore PDA copre l'intervallo 0,01-1 μg/L.

Esempio di condizioni strumentali per HPLC:

Colonna cromatografica	Waters PAH 250 x 4.6 mm, 5 µm o equivalente.
Fasi mobili	acqua (fase A), acetonitrile (fase B).
Gradiente di eluizione	t = 0 min: 40% acqua, 60% acetonitrile;
	t = 12 min: 100% acetonitrile;
	t = 23 min: 100% acetonitrile;
	t = 28 min: 40% acqua, 60% acetonitrile.

Metodo 2

Trattasi di un metodo non ancora ben consolidato, ma ricco di potenzialità, che può essere passibile di miglioramenti, ad esempio utilizzando un GC-MS-MS.

Tecnica estrattiva	SPE-disk con fase adsorbente stirene/divinilbenzene. Il campione iniziale è di 1000 mL, acidificato a pH 2, addizionato con standard interno (IPA deuterati). L'estratto è anidrificato con sodio solfato, evaporato e ripreso con 200 µL di soluzione standard (1.2.3.4-tetracloronaftalene). Il campione è concentrato 5000 volte.
Tecnica di identificazione e quantificazione	GC-MS.
Metodo	UNI EN 16691:2015 Qualità dell'acqua - Determinazione di alcuni idrocarburi policiclici aromatici (IPA) in campioni di acqua tal quale - Metodo che utilizza estrazione in fase solida (SPE) con dischi SPE e gas-cromatografia con spettrometria di massa (GC-MS).
LOQ	Adeguato, tranne che per il benzo(a)pirene e il fluorantene.
Incertezza	Adeguata.
Note	Vantaggi del metodo: - estrazione del campione totale comprensivo del particolato fino ad una concentrazione di solidi sospesi di 500 mg/l; - tecnica estrattiva facilmente automatizzabile (può migliorare la precisione dei metodi di prova); - utilizzo di piccole quantità di solventi (migliora la sicurezza dell'operatore e la gestione dei rifiuti prodotti in laboratorio); - con lo stesso estratto si possono analizzare anche PBDE, Alchilfenoli, DEHP.

SOLUZIONI TECNICHE MIGLIORATIVE

Si potrebbe aumentare il Fattore di Concentrazione che risulta però già essere piuttosto elevato (FC = 1000 mL/0.2 mL = 5000 volte) o impiegare una tecnica strumentale più performante tipo GC-MS-MS. In merito a questo va comunque considerato che:

- concentrare maggiormente il campione comporterebbe poi un aumento dell'effetto matrice;
- lavorare alle basse concentrazioni richieste, prossime ai limiti strumentali della tecnologia impiegata, comporta spesso l'insorgere di falsi positivi (concentrazione dei bianchi prossima al LOQ richiesto).

Tecnica estrattiva	Micro-estrazione Liquido-Liquido.	
	Aggiunta standard di siringa PCB209, standard di processo mix	
	di IPA marcati. Il campione è concentrato 10000 volte.	
Tecnica di identificazione e quantificazione	GC-MS-MS.	
Metodo	Metodo interno ARPA Lazio rif. Manuale dei metodi analitici	
	per il controllo ambientale di acque e sedimenti della Laguna di	
	Venezia, pp. 182-183 (applicato alle acque dolci).	
LOQ	Adeguato.	
Incertezza Adeguata.		
Note	Per i dettagli vedi par. 5.1.4 Metodo 2.	
	Con lo stresso estratto è possibile analizzare anche	
	Pentaclorofenolo, Pesticidi, Cloroparaffine C10-C13,	
	Ottilfenolo, Nonilfenolo, DEHP, PCB, PBDE, Diossine e	
	Furani.	

Metodo alternativo	EPA 8270E:2017 (GC-MS) - Metodo multicomponente che
	contempla l'analisi di più categorie di sostanze (pesticidi, IPA,
	clorofenoli, cloroaniline, cloronitrobenzeni).

5.1.3 VOC

Metodo 1

Tecnica estrattiva	SPME – HS. Campione di partenza 5 mL addizionato di NaCl (es 1,5 g) per favorire l'allontanamento dei composti organici volatili.	
Tecnica di identificazione e quantificazione	GC-MS.	
Metodo	UNI 10899:2001 Qualità dell'acqua – Determinazione di idrocarburi volatili (VOC) e idrocarburi volatili alogenati (VOX) – Metodo per microestrazione su fase solida (SPME) e gascromatografia capillare.	
LOQ	Adeguato.	
Incertezza	Adeguata.	
Note		

Tecnica estrattiva	Purge&Trap.
Tecnica di identificazione e quantificazione	GC-MS.
Metodo	EPA 5030C:2003 (estrazione) + EPA 8260C:2006 (determinazione).
LOQ	Adeguato.
Incertezza	Adeguata.
Note	

5.1.4 PESTICIDI

Per l'elevato numero di sostanze attive impiegate in maniera diffusa in agricoltura, il metodo di analisi più utilizzato dai laboratori è quello multiresiduale con tecnica di misura in cromatografia liquida e gassosa.

Determinazione mediante gascromatografia

Metodo 1

Tecnica di estrazione	SPE o SPE-disk con fase adsorbente C18 o stirene/divinilbenzene In genere 500 mL di campione concentrato a 0,5 mL, ovvero con fattore di concentrazione 1000. Eluizione con solventi quali etile acetato, diclorometano.			
Tecnica di identificazione e quantificazione	GC-MS o GC-MS-MS (triplo quadrupolo).			
Metodo	APAT IRSA CNR 5060 Manuali e linee guida 29/2003 – Prodotti fitosanitari e/o APAT IRSA CNR 5090 Manuali e linee guida 29/2003 – Pesticidi clorurati.			
LOQ	Adeguato, ma non per tutte le sostanze.			
Incertezza	Adeguata.			
Note				

Esempio di condizioni strumentali per GC-MS:

Iniettore	split/splitless che opera in condizioni pulsed splitless.		
Temperatura iniettore	260 °C.		
Gas di trasporto	elio, con flusso costante.		
Programma di temperatura	70°C per 3 min; 25°C/min sino a 150°C; 5°C/min sino a 280°C; 280°C		
	per 30 min.		
Tipi di colonna	DB5.		
Temperatura della sorgente	230°C.		
Temperatura quadrupolo	150°C.		

Tecnica estrattiva	Micro-estrazione Liquido-Liquido. Il campione iniziale è di 2000 mL. Il campione è concentrato				
Tecnica di identificazione e quantificazione	10000 volte. Per i dettagli vedi " <i>Procedura di estrazione</i> ". GC-MS-MS.				
Metodo	Metodo interno ARPA Lazio rif. Manuale dei metodi analitici per il controllo ambientale di acque e sedimenti della Laguna di Venezia, pp. 182-183 (applicato alle acque dolci).				
LOQ	Adeguato.				
Incertezza	Adeguata. Il metodo è in fase di validazione per la valutazione dell'incertezza con approccio metrologico.				
Note	Il metodo, utilizzando Toluene come solvente di estrazione, permette di estrarre gran parte delle sostanze richieste. Le curve di calibrazione sono costruite su tre punti in matrice di cui il primo è alla concentrazione del LOQ richiesto, il secondo 2 volte il LOQ e il terzo 5 volte il LOQ. L'adeguatezza del metodo alle prestazioni richieste è confermata dalla risposta del primo punto della curva e dal controllo statistico dei risultati del terzo punto. Non sono presenti i dati di prestazione nell'allegato 2. Con lo stresso estratto è possibile analizzare anche Pentaclorofenolo, Pesticidi, Ottilfenolo, Nonilfenolo, DEHP,				

PCB, PBDE, PCDD/PCDF, Cloroparaffine C10-C13.

Il tributilstagno può essere analizzato sullo stesso estratto prima di concentrare sotto flusso di azoto seguendo le indicazioni riportate in Analytica Chimica Acta 975 (2017) 70-77.

Procedura di estrazione:

In un pallone da 2 L tarato con collo stretto si mette la prima aliquota da 1000 mL.

Aggiungere 2 mL Acido Cloridrico concentrato.

Aggiungere 32 µL di standard processo contenente PCB101M, PCB138M a 500 ppb.

Aggiungere 20 µL di standard IPA deuterati a 500 ppb.

Aggiungere 10 µL di Dicofol D8 dalla soluzione a 10 ppm.

Aggiungere la seconda aliquota di campione da 1000 mL ed ancoretta magnetica.

Aggiungere 7 mL di Toluene.

Estrarre per un'ora su agitatore magnetico.

Dopo l'estrazione lasciare riposare circa un quarto d'ora per far stratificare l'estratto.

Inoltre recuperare "le goccioline di estratto" con l'aiuto di un magnete.

NB: L'estratto si presenta quasi sempre emulsionato.

Aggiungere acqua per recuperare l'estratto. Poiché vi è quasi sempre forte emulsione si procede come segue:

- si recupera l'estratto emulsionato, prendendo anche l'acqua sottostante, e si trasferisce in tubo di vetro per centrifuga o Falcon;
- si centrifuga a 5500 giri per 10 minuti;
- si toglie l'acqua sottostante, lasciando un piccolo battente, e si aggiungono almeno tre cucchiai di Sodio Solfato anidro, che rompe l'emulsione ancora presente;
- si ricentrifuga per altri 10 minuti sempre a 5500 giri.

Si recupera, a questo punto, l'estratto centrifugato e si trasferisce su provetta.

Si aggiungono un paio di spatole di solfato di sodio anidro in provetta per eliminare eventuali residui (microgoccioline) di acqua; la provetta viene messa sul vortex.

Si recupera l'estratto, si trasferisce in una seconda provetta e si "lava" il Sodio Solfato con Toluene utilizzando una pasteur per garantire un recupero quantitativo.

Si concentra l'estratto a $40~^{\circ}$ C con l'utilizzo di flusso di azoto. Man mano che il volume diminuisce si aumenta la pressione.

Si concentra a piccolo volume (circa 100 µL), anche con l'aiuto del flusso di azoto (manualmente).

Si preparano le vial contenenti il microinserto da 250 μL , tarandole con Toluene a 200 μL , volume finale dell'estrazione, mediante micropipetta.

Si aggiungono standard interni:

- 20 μL di PCB 209 a 1 ppm (tale che la concentrazione sia 100 $\mu g/L$ su 200 μL di volume).
- 10µL di 6metilcrisene a 1 ppm.

Si porta volume a 200 µL.

Esempio di condizioni strumentali per GC-MS-MS:

Colonna	Zebron ZB-XLB 60m x 250 μm x 250 μm o equivalente (DB5, VX), precolonna inerte 50 cm.		
Tipo Iniettore	PTV, iniezione in solvent vent mode (raffreddamento ad aria). Si iniettano $5\text{-}10~\mu\text{L}$ di estratto.		
Condizioni solvent vent	70°C (0.6 min); 900°C/min fino a 300°C (9 min); 900°C/min fino a 70°C.		
Purge flow to split vent	100 mL/min at 2 min, vent 150 mL/min 0 PSI until 0.5 min, gas saver on 20 mL/min at 6 min.		
Programma di temperatura del forno (run time 75 min):	75°C (0.1 min); 80°C/min fino a 90°C (4.8 min); 40°C/min fino a 155°C (1 min); 9°C/min fino a 240°C (10.5 min); 2.8°C/min fino a 265°C (2 min); 2.8°C/min fino a 340°C (10 min).		
Rampa di flusso	1,1 mL/min (0.1 min); 20 mL/min/min fino a 3 mL/min (2 min); 20 mL/min/min fino a 1,5 mL/min		
Parametri MS-MS:	Almeno 2 transizioni per analita.		
Solvent delay	8 min.		
Delta EM	700 eV.		

Metodo alternativo	UNI EN 16693:2015 Qualità dell'acqua - Determinazione di pesticidi organoclorurati (OCP) in campioni di acqua tal quale - Metodo che utilizza estrazione in fase solida (SPE) con dischi SPE e gas-cromatografia con spettrometria di massa (GC-MS).				
Note	Metodo normato specifico per le sostanze organoclorurate previste dalla WFD.				
Metodo alternativo	EPA 8270E:2017 (GC-MS) - Metodo multicomponente che contempla l'analisi di più categorie di sostanze (pesticidi, IPA,				
Note	clorofenoli, cloroaniline, cloronitrobenzeni). Per raggiungere il LOQ di alcuni analiti il campione iniziale è di $1L$ e il volume finale è di $250~\mu L$. Per il DDT è utile utilizzare DDT marcato $13C$ poichè si verificano fenomeni di degradazione dell'analita a livello del liner, che portano a delle consistenti sottostime di tale inquinante. Fondamentale è la scelta della colonna GC per la completa separazione di tutti gli analiti, con particolare riferimento agli isomeri di DDT e DDD. Per esempio una colonna XLB è un'ottima scelta.				

Determinazione mediante cromatografia liquida

Tecnica di estrazione	SPE offline, SPE online o iniezione diretta (a seconda dello strumento disponibile).		
Tecnica di identificazione e quantificazione	LC-MS-MS (triplo quadrupolo).		
Metodo	BfR-IX-2005 - Fast multi residue screening of 300 pesticides in drinking water.		
LOQ	Adeguato, ma non per tutte le sostanze.		
Incertezza	Adeguata.		
Note			

Esempio di condizioni strumentali per LC-MS-MS:

	Esempio 1 UHPLC	Esempio 2 HPLC		
Colonna	Acquity HSS T3 1.8µm 2.1 x 100	Colonna HPLC in fase inversa del tipo		
	mm o equivalente.	C18 da 150 mm x 2,1 mm ID, granulometria 3-5 µm o equivalente.		
Temperatura del forno	40 °C (±2°C).	40°C.		
della colonna (°C)	10 6 (=2 6).	10 C.		
Fase mobile:				
Eluente A	Acqua con ammonio formiato 5 mM	Formiato di ammonio 5 mM in acqua.		
(fase mobile acquosa)	e 0.1% di acido formico.			
Eluente B	Metanolo con ammonio formiato 5	Formiato di ammonio 5 mM in		
(fase mobile organica)	mM e 0.1% di acido formico.	metanolo.		
Flusso (mL/min)	0,45.	1,75.		
Programmata di eluizione	vedi Esempio 1 di gradiente UHPLC.	Vedi esempio 2 di gradiente HPLC.		
Volume iniettato (μL)	100.	40.		

Esempio 1 di gradiente UHPLC:

Esempi	io 2 di	gradiente	HPLC:

Esemple 1 di giudiente e 111 E e.			Escimpio 2	ar gradiente	III LC.	
Tempo	Eluente A	Eluente B	Flusso	Tempo	Eluente A	Eluente B
(min)	%	%	ml/min	(min)		
0.00	80	20	0.45	0.00	50	50
0.60	80	20	0.45	1.00	50	50
12.60	0	100	0.45	20.00	5	95
13.60	0	100	0.45	27.00	5	95
16.00	80	20	0.45	27.05	50	50

36.00	50	50

Si possono fare alcune **considerazioni** in merito alle analisi ed al rispetto dei requisiti richiesti dalle normative, esaminando come esempio l'Alaclor, che ha come SQA-MA= $0.3 \mu g/L$ e LOQ (richiesto dalla normativa) pari a $0.3 \times 30/100 = 0.09 \mu g/L$.

Partendo da un volume A di campione pari a 500 mL, estratto con metodica SPE (C18, stirene divinilbenzene, ecc.) e portato a secco, ripreso con un volume B di solvente pari a 0.5 mL, il Fattore di Concentrazione (FC) è pari a A/B = 1000.

Iniettando 2 μ L di estratto si può arrivare ad un LOQ di 0,01 μ g/L con un GC-MS (anche non di ultima generazione) e a 0,001 μ g/L con un GC-MS-MS (di ultima generazione).

Nel caso specifico il LOQ sufficiente è $0.09~\mu g/L$ ma, qualora fosse necessario scendere di concentrazione, si può agire su A (aumentandolo) e/o B (diminuendolo) per migliorare il valore di FC, per esempio per avere un valore di FC = 10000. Aritmeticamente questo è possibile.

Nella pratica operativa si devono effettuare valutazioni oggettive dalle quali non si può prescindere:

- a. concentrando il campione si interviene anche sull'eventuale effetto matrice comunque presente;
- b. ogni sostanza attiva ha una sua diversa risposta strumentale (es.: DDT, ecc.);
- c. analizzare un numero rilevante di campioni potrebbe determinare situazioni critiche;
- d. la tecnica gascromatografica risente di fenomeni di attivazione nel sistema di trasferimento (liner) in particolare a livelli bassi di concentrazione;
- e. le basse concentrazioni richieste dalla normativa, in certi casi prossime alle performance della tecnologia, esaltano alcune difficoltà in particolare quello di avere campioni "bianchi" (rischio di falsi positivi).

Operare in routine, in condizioni di concentrazioni molto basse, con FC elevati (>1000), può apportare elementi di variabilità, limitando il conseguimento di risultati analitici in un ambito non sempre coerente per precisione, accuratezza ed incertezza di misura.

Di seguito, nella tabella 1.1, sono elencate le sostanze della tabella 1 A del D.Lgs. 172/2015 che presentano criticità malgrado si possa operare attraverso quanto specificato nel caso di cui sopra.

Tabel	Tabella 1.1 – Sostanza che presentano criticità per la loro determinazione						
	Sostanze attive	SQA-MA acque di superficie interne (µg/L)	LOQ richiesto (≤30% SQA-MA) (µg/L)	LOQ GC-triploQ (µg/L)			

Sostanze attive	acque di superficie interne (μg/L)	SQA-MA) (µg/L)	GC-triploQ (µg/L)
Dicofol	0,0013	0,00039	0,01
Cipermetrina	0,00008	0,00002	?
Eptacloro			
Eptacloro epossido cis	0,0000002	$6x10^{-8}$?
Eptacloro epossido trans			
Bifenox	0,012	0,0036	0,05
Cibutrina	0,0025	0,00075	0,01
Diclorvos	0,0006	0,00018	0,02

Le difficoltà analitiche riscontrate per queste ed altre sostanze sono state riconosciute anche in un documento pubblicato dall'Unione Europea (Analytical Methods for the new proposed Priority Substances of the European Water Framework Directive (WFD) - Revision of the Priority Substance List (2012) di R. Loos) che riporta per alcuni analiti la mancanza di metodi ufficiali che permettano di raggiungere il LOQ richiesto dalla normativa.

Per quanto riguarda la Cibutrina, ARPA Lazio ha messo a punto un metodo interno per la determinazione di pesticidi, il quale prevede l'estrazione mediante due dischi SPE accoppiati, analisi in UHPLC-MS-MS e permette di raggiungere il LOQ richiesto di $0,00075~\mu g/L$. Il metodo è ancora in fase di validazione.

Single Residues Methods: il Glifosato

Non tutte le sostanze attive possono rientrare nei metodi multiresiduali in quanto ogni principio attivo possiede caratteristiche chimiche e chimico-fisiche che ne differenziano il comportamento.

Il glifosato, ad esempio, pur essendo un pesticida molto usato in tutto il mondo, è solo limitatamente ricercato in Italia (insieme al suo principale metabolita Ampa), presumibilmente in quanto entrambi non possono essere analizzati con tecnica multiresiduale, ma necessitano di un metodo specifico, complesso, ed oneroso.

Le metodiche analitiche disponibili per la ricerca di Glifosato ed Ampa si possono così sintetizzare:

- derivatizzazione con Fmoc (Fluorenilmetilcloroformiato) ed analisi con sistema ad alta risoluzione HRMS (Es. Orbitrap);
- derivatizzazione con Fmoc ed analisi con sistema LC-MS-MS;
- iniezione diretta del campione di acqua in un cromatografo ionico accoppiato ad un sistema ad alta risoluzione HRMS (Es. Orbitrap);
- derivatizzazione con AccuTag (composti aminoacidici) ed analisi in LC-MS-MS di ultima generazione.

Nel 2014 è stato emesso un metodo normato "ISO 16308:2014, Water quality -- Determination of glyphosate and AMPA - Method using high performance liquid chromatography (HPLC) with tandem mass spectrometric detection" che prevede la derivatizzazione con Fmoc e successiva misura con LC-MS-MS.

Tutte le metodiche analitiche citate attestano la possibilità di rispettare le prestazioni richieste dalla normativa vigente (LOQ adeguato), ma evidenziano la necessità di una tecnologia all'avanguardia (LC-MS-MS e/o HRMS) non sempre disponibile in tutti i laboratori.

5.1.5 EPTACLORO, EPTACLOROEPOSSIDO

Metodo 1:

Tecnica estrattiva	SPE con fase C18. Es. campione di partenza 1000 mL. Si aggiunge metanolo (5 mL) e 0,1 mL di standard di processo (Trifenilfosfato 1 ppm). Eluizione con soluzione (1:1) etile acetato:diclorometano. L'estratto è evaporato in corrente di azoto a temperatura inferiore a 40°C. Il residuo si riprende con 0,5 mL di soluzione con standard interno (Difenile).
Tecnica di identificazione e quantificazione	GC-MS-MS.
Metodo	APAT CNR IRSA 5060 Man 29/2003.
LOQ	Non adeguato (LOQ = $0.005 \mu g/L$ invece di $0.000000067 \mu g/L$).
Incertezza	Adeguata.
Note	Il campione viene concentrato 2000 volte.
	Il metodo è applicabile ad un elevato numero di sostanze attive ed in un ampio intervallo di concentrazione partendo da $0,005~\mu g/L$.

Esempio di condizioni strumentali per GC-MS-MS (triplo quadrupolo):

Colonna	HP5MS Ultra Inert 30 m x 0,25 mm x 0,25 mm o equivalente.
Tipo Iniettore	Splitless, 280°C; pressione costante di 20 psi e volume di iniezione 2 μL.
Programma di temperatura del forno:	70°C (2 min); 25°C/min a 150°C (0 min); 3°C/min a 200°C (0 min); 8°C/min fino a 280°C (10 min).
Parametri Triplo quadrupolo:	
Temperatura sorgente	280°C.
Solvent delay	3.75 min.
Temperatura	transferline = 280° C.
He Gas Quench	2,25 mL/min.
N2 Gas di collisione	1,5 mL/min.
Gain	30.

SOLUZIONI TECNICHE MIGLIORATIVE

L'utilizzo di un iniettore PTV (vaporizzazione a temperatura programmata) invece dello Split/splitless potrebbe permettere un miglioramento dell'attuale LOQ (0,005 $\mu g/L$), anche se difficilmente si arriverebbe al LOQ richiesto dalla normativa (6,7E-8 $\mu g/L$). Il metodo utilizzato per la determinazione di Eptacloro ed eptacloroepossido è lo stesso di quello utilizzato per la classe pesticidi in GC-MS-MS, che pertanto potrebbero essere analizzati nella stessa corsa cromatografia nell'ottica del metodo multiresiduo.

Metodo 2:

Tecnica estrattiva	Micro-estrazione Liquido-Liquido.
Tecnica di identificazione e quantificazione	GC-MS-MS.
Metodo	Metodo interno ARPA Lazio rif. Manuale dei metodi analitici per il controllo ambientale di acque e sedimenti della Laguna di Venezia, pp. 182-183 (applicato alle acque dolci).
LOQ	Non adeguato. (LOQ = 0,00005 μ g/L, adeguato alla CMA). Si può ottenere un LOQ più basso estraendo volumi maggiori di acqua e iniettando volumi maggiori di estratto (10-20 μ L).
Incertezza	Adeguata.
Note	Per i dettagli vedi par. 5.1.4 Metodo 2.

5.1.6 **PFASs**

Tecnica estrattiva	SPE on line. Campione di partenza 5 mL.
Tecnica di identificazione e quantificazione	LC-MS-MS (triplo Quadrupolo).
Metodo	ISO 25101:2009 Water quality - Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) - Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry.
LOQ	Adeguato (0,2 ng/L PFOS; 5 ng/L altri PFAS).
Incertezza	Adeguata.
Note	Si usano standard interni marcati.

5.1.7 DIFENILETERI BROMURATI (PBDE)

Metodo 1

Tecnica estrattiva	SPE con fase adsorbente C18.
Tecnica di identificazione e quantificazione	NCI-GC-MS (GC-MS con ionizzazione chimica negativa).
Metodo	EPA 525.2 (estrazione) + UNI EN ISO 22032:2006 (determinazione).
LOQ	Adeguato.
Incertezza	Adeguata.
Note	La tecnica NCI ha una maggiore sensibilità rispetto alla EI (ionizzazione elettronica). Inoltre si può usare la stessa tipologia di colonna gascromatografica richiesta per la determinazione dei cloroalcani con metodica ISO 12010 sempre in NCI-GC-MS, nell'ottica di effettuare metodi multiresiduo e multicomponente. Per aumentare la sensibilità vengono effettuate le iniezioni al GC con tecnica large volume injection (LVI).
Metodo alternativo	EPA 1614 A:2010 - Brominated Diphenyl Ethers in Water, Soil, Sediment and Tissue by HRGC/HRMS.
Metodo alternativo	Metodo interno ARPA Lazio. Per i dettagli vedi par. 5.1.4 Metodo 2.

Tecnica estrattiva	SPE-disk con fase adsorbente stirene/divinilbenzene. Es. campione iniziale di 1000 mL, acidificato a pH 2, addizionato con standard interni marcati ¹³ C. L'estratto è anidrificato con sodio solfato, evaporato e ripreso con 200 µL di soluzione standard (dibromooctafluorobifenile).
Tecnica di identificazione e quantificazione	GC-MS-MS.
Metodo	UNI EN 16694:2015 Qualità dell'acqua - Determinazione di alcuni eteri difenili polibromurati (PBDE) in campioni di acqua tal quale - Metodo che utilizza estrazione in fase solida (SPE) con dischi SPE e gas-cromatografia con spettrometria di massa (GC-MS).
LOQ	Adeguato.
Incertezza	Adeguata.
Note	Vantaggi del metodo: vedi par 5.1.2 Metodo 2.

5.1.8 CLOROALCANI C10-C13

Tecnica estrattiva	Estrazione Liquido-Liquido.
Purificazione	Colonna di rame e magnesio silicato ed eventuale ulteriore purificazione con colonna di allumina.
Tecnica di identificazione e quantificazione	NCI-GC-MS.
Metodo	UNI EN ISO 12010:2014 Qualità dell'acqua - Determinazione di alcani policlorurati a catena corta in acqua - Metodo che utilizza la gas cromatografia - spettrometria di massa (GC-MS) e la ionizzazione chimica a ione negativo.
LOQ	Adeguato.
Incertezza	Non adeguata (0,3 µg/L invece di 0,2 µg/L) L'incertezza dichiarata nella metodica non rispetta i requisiti richiesti dalla norma. Eventualmente è possibile calcolare l'incertezza dai parametri di accettazione scegliendoli in maniera da ottenere un'incertezza adeguata.
Note	La curva di calibrazione multiparametrica si costruisce utilizzando tre diverse miscele a composizione differente (essendo i cloroalcani un mix di circa 8000 congeneri divisi in differenti miscele commerciali).

SOLUZIONI TECNICHE MIGLIORATIVE

Per aumentare la produttività del metodo, si può utilizzare come tecnica estrattiva SPE con fase adsorbente C18, visto l'alto numero di campioni da dover analizzare. Tale tecnica però non è prevista nella metodica, dove viene indicata esclusivamente un'estrazione Liquido-Liquido.

Metodo Alternativo	Metodo interno ARPA Lazio rif. Manuale dei metodi analitici
	per il controllo ambientale di acque e sedimenti della Laguna di
	Venezia, pp. 182-183 (applicato alle acque dolci).
	Per i dettagli vedi par. 5.1.4 Metodo 2.
	Il metodo permette di distinguere le paraffine C10-C13 da quelle
	C14-C17 in campioni fortificati a 0.4 ppb. La curva di
	calibrazione multiparametrica si costruisce utilizzando tre
	diverse miscele a composizione differente con miscela di
	cloroparaffine C10-C13 con cloro al 51.5 % e 63 %.

5.1.9 CLOROANILINE

Tecnica estrattiva	SPE con fase adsorbente C18.
Tecnica di identificazione e quantificazione	GC-MS.
Metodo	EPA 8270E:2017 - Semivolatile organic compounds by gas chromatography/mass spectrometry.
LOQ	Adeguato. Per questi composti non si hanno problemi a rispettare i LOQ previsti dalla normativa.
Incertezza	Adeguata.
Note	Per semplificare il lavoro questi composti possono venire estratti insieme ai Pesticidi ed agli IPA, e poi analizzati con una colonna 50% fenil 50% metilsiliconica. Per limitare perdite legate alle fasi di concentrazione dell'estratto, e per migliorare le prestazioni gascromatografiche, può essere utilizzata la derivatizzazione con un cloruro acido, trasformando tali analiti alle corrispondenti ammidi.

5.1.10 CLORONITROTOLUENI E CLORONITROBENZENI

Tecnica estrattiva	SPE con fase adsorbente C18.	
Tecnica di identificazione e quantificazione	GC-MS.	
Metodo	EPA 8270E:2017 - Semivolatile organic compounds by gas chromatography/mass spectrometry.	
LOQ	Adeguato. Per questi composti non si hanno problemi a rispettare i LOQ previsti dalla normativa.	
Incertezza	Adeguata.	
Note	Per semplificare il lavoro questi composti possono venire estratti insieme ai Pesticidi ed agli IPA, e poi analizzati con una colonna 5% fenil 95% metilsiliconica.	

5.1.11 TRIBUTILSTAGNO E TRIFENILSTAGNO

Tecnica estrattiva	Derivatizzazione con sodio tetraetilborato, poi estrazione
Tecnica estratuva	Liquido-Liquido con esano.
Tecnica di identificazione e quantificazione	GC-MS-MS.
LOQ	Adeguato.
Incertezza	Non adeguata.
Metodo	UNI EN ISO 17353:2006 Qualità dell'acqua - Determinazione di composti organici dello stagno, selezionati - Metodo gascromatografico.
Note	Preconcentrando l'estratto a 0,5 mL, iniettando in large volume almeno 25 µL ed utilizzando un GC-MS-MS si raggiungono i limiti di determinazione richiesti, però il rischio è di avere bianchi troppo elevati che non permettono di raggiungere i livelli di incertezza richiesti.
Metodo alternativo	Metodo interno (ARPA MARCHE).
Note	Derivatizzazione mediante sodio tetraetilborato, estrazione tramite tecnica SPME ed iniezione in GC-MS-MS.
25.2	M. 1. 1. (ADDATETOGGANA)
Metodo alternativo	Metodo interno (ARPAT TOSCANA).
Note	Utilizzando tetra(p-Fenil)borato, e portando a 100 μ L un estratto così derivatizzato, partendo da un volume di campione di 500 mL, in diluizione isotopica e GC/MS/MS si ha un LOQ pari a 0,0002 μ g/L, iniettando 3 μ L.
Metodo Alternativo	Metodo interno ARPA Lazio. Per i dettagli vedi par. 5.1.4 Metodo 2. Il tributilstagno può essere analizzato sullo stesso estratto prima di concentrare sotto flusso di azoto seguendo le indicazioni riportate in Analytica Chimica Acta 975 (2017) 70-77.

5.1.12 FENOLI

Metodo 1

Tecnica estrattiva	SPE con fase adsorbente stirene/divinilbenzene. Es. campione di partenza 2000 mL. Estratto finale ripreso con 500 µL di fase mobile. Per una migliore accuratezza del metodo si può aggiungere al campione acquoso uno standard di processo, come ad es. il 2-fluorofenolo, per il controllo del recupero.
Tecnica di identificazione e	HPLC accoppiato a due detector UV-DAD (determinazione
quantificazione	quantitativa) e MS a singolo quadrupolo (per la conferma).
LOQ	Adeguato, tranne che per il Pentaclorofenolo (0,25 μ g/L invece di 0,12 μ g/L).
Incertezza	Adeguata.
Metodo	APAT CNR IRSA 5070B Man 29/2003 - Determinazione mediante cromatografia liquida ad alta prestazione con rivelazione spettrofotometrica nell'ultravioletto (HPLC-UV).
Note	Il campione è concentrato 2000 volte. La concentrazione dell'estratto risulta essere lo stadio più critico dell'intero procedimento a causa della possibile perdita per evaporazione dei fenoli più volatili. Per minimizzare tale inconveniente, prima di eluire si può aggiungere nella provetta di eluizione 50 μ L di Na_2CO_3 1 M, in modo da formare gli ioni fenati la cui volatilità è molto bassa.

Esempio di condizioni strumentali per HPLC:

Escripio di condizioni sudmentan per 111 Ec.	
Colonna cromatografica	Eclipse XDB C18 3,5 μm 2,1x150mm o equivalente. Possibile uso di precolonna.
Temperatura colonna	30°C.
Fasi mobili	0,005% AcOH in soluzione acquosa (fase A), metanolo (fase B).
Volume d'iniezione	50 μL.
Flusso	0,4 mL/min.
Gradiente fase B	da 30% a 90% in 12 min; isocratica per 3 min; al 30% in 1 min; isocratica per 4 min.
Detector UV/DAD	λ = 280 nm (4nm), riferimento λ = 360 nm (80 nm) per la determinazione di fenoli mono e disostituiti. λ = 290 nm (4 nm), riferimento λ = 360 nm (80 nm) per la determinazione di fenoli trisostituiti e pentaclorofenolo.
Detector MS	In modalità SIM; ioni selezionati 127-129 (clorofenoli); 161-163 (diclorofenoli); 195-197 (triclorofenoli) 265-267 (pentaclorofenolo).

SOLUZIONI TECNICHE MIGLIORATIVE

L'utilizzo di LC-MS-MS con arricchimento in SPE-online può rappresentare un ottimo risparmio di tempo/uomo ed anche di materiale consumabile (cartucce SPE e solventi) oltre che permettere il miglioramento delle performance rispetto alle prescrizioni normative.

Metodo 2

Tecnica estrattiva	SPE-disk. Es. campione di partenza 1000 mL. Aggiungere 1 mL di HCL 37% e 5 ml di metanolo. Eluizione con diclorometano:acetone (3:1 v/v). Dopo aver evaporato il solvente si riprende con 0,5 mL di H ₂ O:CH ₃ OH (50:50 v/v). Il volume finale è pari a 0,5 mL.
Tecnica di identificazione e quantificazione	HPLC-DAD con colonna a fase inversa.
LOQ	Adeguato.
Incertezza	Adeguata.
Metodo	EPA 3535A - Solid-Phase Extraction (SPE) + EPA 604 Phenols (determinazione).
Note	

Esempio di condizioni strumentali per HPLC:

_			1.
Heam	min	dı	gradiente:
LOCH	ロカリ	uı	gradiente.

Colonna	Chrompack 250 – Inertsil 5 ODS-2 o equivalente.	Temp (min	
Temperatura del forno della colonna	25 °C (±2°C).	0	35
Fase mobile:		12.5	50
Eluente A	acido fosforico 0,05%.	25	85
Eluente B	Acetonitrile.	40	100
Flusso (mL/min)	0,8.	43	100
Programmata di eluizione	vedi a fianco "esempio di gradiente".	45	35
Volume iniettato (µl)	50.	50	35
Lunghezze d'onda (nm)	210 e 220.		

SOLUZIONI TECNICHE MIGLIORATIVE

L'utilizzo di un HPLC-MS al posto di un HPLC-DAD permetterebbe di migliorare i limiti di quantificazione.

5.1.13 NONILFENOLO, OTTILFENOLO

Metodo 1

Tecnica estrattiva	SPE con fase C18. Es. campione di partenza 1000 mL. Al campione si aggiunge metanolo (5 mL) e 0,1 mL di standard di processo (Trifenilfosfato 1 ppm). Eluizione con soluzione etile acetato:diclorometano (1:1). L'estratto è evaporato in corrente di azoto a T < 40°C. Il residuo si riprende con 0,5 mL di soluzione con standard interno (Difenile).
Tecnica di identificazione e quantificazione	GC-MS (modalità SIM).
Metodo	Metodo interno ARPA Umbria - rif. APAT CNR IRSA 5060 Man 29/2003 - Prodotti fitosanitari.
LOQ	Adeguato, tranne che per Ottilfenolo (LOQ = 0,05 μ g/L invece di 0,03 μ g/L).
Incertezza	Adeguata.
Note	Il campione viene concentrato 2000 volte. Il metodo è applicabile ad un elevato numero di sostanze attive ed in un ampio intervallo di concentrazioni.

Esempio di condizioni strumentali per GC-MS:

Colonna	HP5MS 30 m x 0,25 x 0,25 μm o equivalenti.
Tipo iniettore	split/splitless, 250°C; pressione costante di 15,5 psi e vol. di iniezione 2 μL.
Programma di temperatura del	70°C (2 min); 25°C/min a 150°C (0 min); 3°C/min a 200°C (0 min);
forno	8°C/min fino a 280°C (10 min).
Parametri MSD:	modalità SIM.
Voltaggio EM	200 rel.
Solvent delay	3.20 min.
Threshold	150.
Temperature	transferline= 280° C, MS quad = 150° C, sorgente MS = 230° C.

SOLUZIONI TECNICHE MIGLIORATIVE

Determinazione in LC-MS-MS con arricchimento SPE-online, stesso metodo applicabile per la classe fenoli, che potrebbe permettere il miglioramento delle performance rispetto alle prescrizioni normative.

Metodo 2

Tecnica estrattiva	SPE-disk con fase adsorbente stirene/divinilbenzene. Es. campione iniziale 1000 mL, acidificato a pH 2, addizionato con standard surrogato n-Nonilfenolo $^{13}C_6$. L'estratto è anidrificato con sodio solfato, evaporato e ripreso con 200 μL di soluzione con standard interno.		
Tecnica di identificazione e quantificazione	GC-MS.		
Metodo	EPA 3535A:2007 (estrazione) + EPA 8270E:2017 (determinazione).		
LOQ	Adeguato.		
Incertezza	Adeguata.		
Note	Vantaggi del metodo: vedi par. 5.1.2 Metodo 2.		
Metodo Alternativo	Metodo interno ARPA Lazio. Per i dettagli vedi par. 5.1.4 Metodo 2.		

5.1.14 DEHP [Di (2-etilesil) ftalato]

Metodo 1 (anche ottilfenolo, nonilfenolo e pentaclorofenolo)

Tecnica estrattiva	Estrazione Liquido-Liquido con Diclorometano. Es. campione di partenza 2000 mL, lo si acidifica con 1 mL di HCl 18.5%. Si estrae due volte con 50 mL di Diclorometano e si raccoglie la fase organica in una beuta anidrificando con Na ₂ SO ₄ . Dopo aver evaporato il solvente si riprende con 0,2 mL di H ₂ O:CH ₃ OH (50:50 v/v).
Tecnica di identificazione e quantificazione	HPLC-DAD con colonna a fase inversa.
Metodo	EPA 3510C (estrazione) e EPA 604 (determinazione).
LOQ	Adeguato.
Incertezza	Adeguata.
Note	

Esempio di condizioni strumentali per HPLC:

Esem	pio	di	gradiente:

Colonna	Chrompack 250 – Inertsil 5 ODS-2 o equivalente.		Tempo (min)	%B
Temp. del forno della colonna	25 °C (±2°C).		0	35
Fase mobile:			12.5	50
Eluente A	acido fosforico 0,05%.		25	85
Eluente B	acetonitrile.		40	100
Flusso (mL/min)	0,8.		43	100
Gradiente di eluizione	vedi a fianco.		45	35
Volume iniettato (µl)	50.		50	35
Lunghezze d'onda (nm)	210 e 220.] [

SOLUZIONI TECNICHE MIGLIORATIVE

L'utilizzo di un HPLC-MS al posto di un HPLC-DAD permetterebbe di migliorare i limiti di quantificazione.

Metodo 2

Tecnica estrattiva	SPE-disk con fase adsorbente stirene/divinilbenzene. Es. campione iniziale 1000 mL, acidificato a pH 2, addizionato con standard surrogato DEHP_D4. L'estratto è anidrificato con sodio solfato, evaporato e ripreso con 200 µL di soluzione con standard interno.		
Tecnica di identificazione e quantificazione	GC-MS		
Metodo	EPA 3535A: 2007 (estrazione) + EPA 8270E:2017 (determinazione).		
LOQ	Adeguato.		
Incertezza	Adeguata.		
Note	Vantaggi del metodo: vedi par. 5.1.2 Metodo 2.		
Metodo Alternativo	Metodo interno ARPA Lazio. Per i dettagli vedi par. 5.1.4 Metodo 2.		

5.1.15 PCB (Policlorobifenili)

Metodo 1

Tecnica di estrazione	Estrazione Liquido-Liquido.	
Tecnica di purificazione	Colonna multistrato e/o power prep.	
Tecnica di identificazione e quantificazione	HRGC-HRMS.	
Metodo	EPA 1668 C:2010 - Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS.	
LOQ	Adeguato.	
Incertezza	Adeguata.	
Note		

Metodo 2

Tecnica di estrazione	SPE-disk (divinilbenzene). Volume iniziale di campione 2000 mL.		
Tecnica di purificazione	Se necessario si effettua mediante colonna multistrato, costituita dai seguenti strati partendo dal fondo: NaHCO3/gel di silice/celite acida/gel di silice.		
Tecnica di identificazione e	GC-MS tandem a bassa risoluzione.		
quantificazione	Iniettore PTV (Vaporizzazione a Temperatura Programmata).		
Metodo	Interno ARPAL Liguria (non si conoscono attualmente metodi		
	normati per analisi di PCB in GC-MS tandem).		
LOQ	Adeguato: 0,0001 μg/L (singolo congenere); 0,003 μg/L (totale).		
Incertezza	Adeguata.		
Note	È preferibile calcolare l'incertezza direttamente sulla somma		
	ottenuta dai congeneri analizzati anziché come combinazione		
	delle incertezze dei singoli congeneri (somma di varianze) per		
	poter introdurre il contributo dovuto alla correlazione.		

Esempio di condizioni strumentali per GC-MS:

Esemplo di condizioni stramentani per de 1415.			
Colonna	DB-5MS (30 m x 0,25 mm x 0,25 μm) o equivalente.		
Tipo Iniettore	PTV (volume di iniezione 5 μ L) o PTV alti volumi (volume di iniezione 20 μ L).		
Parametri Trappola ionica: q _z excitation time excitation voltage (V)	0,45. 15 msec. 0,18 x numero atomi di cloro +1,52.		

Metodo Alternativo	Metodo interno ARPA Lazio. Per i dettagli vedi par. 5.1.4	
	Metodo 2.	ı

5.1.16 PCDD/PCDF

Metodo 1

Tecnica di estrazione	Estrazione Liquido-Liquido.		
Tecnica di purificazione	Colonna multistrato e/o power prep.		
Tecnica di identificazione e quantificazione	HRGC-HRMS.		
Metodo	EPA 1613:1994 - Tetra- through Octa-Chlorinated Dioxins and		
	Furans by Isotope.		
LOQ	Quasi adeguato (0.00000149 µg/L invece di 0.0000012 µg/L).		
Incertezza	Adeguata.		
Note			
	Adeguata.		

Metodo Alternativo	Metodo interno ARPA Lazio. Per i dettagli vedi par. 5.1.4	ı
	Metodo 2.	ı

5.2 MATRICE BIOTA

Alcune sostanze indicate nel D. Lgs. 172/2015 hanno LOQ molto bassi nella matrice acqua, pertanto difficili da raggiungere, mentre hanno LOQ analiticamente più favorevoli nella matrice biota, che tuttavia presenta altre criticità per la determinazione delle sostanze rispetto alla matrice acqua, una fra tutte l'estrazione.

Le analisi sul biota sono ancora in fase di studio e approfondimento. Alcune Agenzie hanno già iniziato le determinazioni delle sostanze prioritarie su questa matrice, in particolare sui mitili, mentre un numero più esiguo ha effettuato prove anche sui pesci.

La normativa tecnica recente che si può prendere come riferimento per questa tematica è:

- ✓ "Linea Guida ISPRA 143/2016 Linee guida per il monitoraggio delle sostanze prioritarie (secondo D. Lgs. 172/2015)" nella quale sono fornite indicazioni sulla selezione del biota e del tessuto per l'analisi del contaminante;
- ✓ "CIS-WFD Guidance n. 33" che fornisce indicazioni sui metodi analitici per il monitoraggio del biota ai sensi della DQA.

Nella Guidance n. 33 sono enunciati i principi per l'estrazione e l'analisi del biota (cap. 2.1), i quali, per le sostanze organiche, annoverano tecniche estrattive quali Soxhlet, PLE (estrazione con liquidi pressurizzati), SFE (estrazione con fluidi supercritici), estrazione con ultrasuoni, digestione alcalina seguita da estrazione liquido-liquido con solvente organico.

L'estrazione è seguita dalla purificazione con colonnine di allumina disattivata, silice, Florisil o con GPC (cromatografia di gel permeazione).

La determinazione è poi eseguita utilizzando gascromatografia o cromatografia liquida con rivelatori di massa, meglio se ad alta risoluzione. Alternative valide alla GC-HRMS sono anche l'uso della trappola ionica o il TOF.

L'analisi di metalli comprende omogeneizzazione, essiccamento, digestione, dissoluzione del campione e determinazione con ICP-MS o AAS o simili.

Infine propone un metodo multiresiduo per l'analisi dei POPs (inquinanti organici persistenti) nel biota.

Di seguito sono segnalati alcuni metodi indicati nella Guidance n. 33 che soddisfano i requisiti della DQA:

Analita	Metodo	Estrazione	Determinazione
PBDE	EPA 1614	Soxhlet	GC-HRMS
PCDD/PCDF	EPA 1613	Soxhlet	HRGC-HRMS
PESTICIDI	EPA 1699	Soxhlet	HRGC-HRMS
PCB	EPA 1668	Soxhlet	HRGC-HRMS
TBT	EPA 8323	Soxhlet	LC-ES-ITMS

Come si può notare sono tutti metodi che richiedono strumentazione ad alta risoluzione piuttosto costosa.

5.2.1 METALLI

Tecnica estrattiva	Mineralizzazione con microonde.
Tecnica di purificazione	Eventuale filtrazione.
Tecnica di identificazione e quantificazione	ICP-MS.
Metodo	EPA 3051A:2007 + EPA 200.8
LOQ	Adeguato.
Incertezza	Nd.
Note	

5.2.2 PESTICIDI

Metodo 1: su Mullus surmuletus e Scorpaena porcus

Tecnica estrattiva	QuEChERS non buffered.
	Campione di partenza: 5g di pesce intero omogeneizzato.
Tecnica di purificazione	Il surnatante si pone a -20°C per 3h e poi si tratta con CaCl ₂ anidro per rimuovere la componente lipidica. In seguito si purifica con dSPE (PSA/C18/MgSO ₄).
Tecnica di identificazione e quantificazione	GCxGC-TOF (gascromatografia bidimensionale accoppiata ad analizzatore di massa a tempo di volo). La calibrazione si effettua mediante diluizione isotopica.
Metodo	Metodo Interno ARPA Sicilia - Rif. European EN 15662.
LOQ	Adeguato (10-25 $\mu g/Kg$) tranne che per Eptaclorepossido ed Esaclorobenzene.
Incertezza	Nd.
Note	La procedura estrattiva è dettagliata sotto. La metodica permette la determinazione di 48 pesticidi. Recupero degli analiti 70-120%. CV<15%.

Procedura estrattiva (Pesticidi, PCB, IPA):

\sim	•	•	1 1		• .	/ =>
Omoger	16177	271AN	മ ദമ	nesce	intero	(n-5)
Omogei	ICIZZ	azion	c uci	Desce	IIIICIO	(11-5).

5 g di omogeneizzato di pesce vengono trasferiti in una provetta da 50 Ml.

Addizione Standard Interno.

Aggiungere 5 mL di acqua, vortex, 10 mL di acetonitrile e mescolare energicamente.

Aggiungere Sali (4g MgSO₄, 1 g NaCl).

Centrifugare per 10 min a 5000 rpm.

Trasferire 6 mL del surnatante in una provetta da 15 mL e riporre a -20°C per 3 ore.

Centrifugare per 10 min a 5000 rpm (-4°C)

Trasferire il surnatante in una provetta contenente 1 g di CaCl₂

Centrifugare per 10 min a 5000 rpm

Trasferire il surnatante nella provetta di purificazione dSPE (PSA/C18/MgSO4)

Evaporare il surnatante sotto un leggero flusso di N_2 , ricostituire con 250 μL di isoottano contenente gli standard di siringa

Analisi gascromatografica

Metodo 2: su Mitili

Tecnica estrattiva	QuEChERS non buffered. Al campione omogeneizzato (5 g) vengono aggiunti 10 mL di acqua milliQ e 100 μ L di I.S. (PCB 104) a 1,0 ppm. Il campione viene estratto con 10 mL di acetonitrile; una successiva estrazione viene effettuata dopo aggiunta di solfato di magnesio, cloruro di sodio e sodio citrato come tampone.
Tecnica di purificazione	Un'aliquota (1 mL) della fase organica viene purificata in fase solida dispersiva (D-SPE) utilizzando il solfato di magnesio e PSA. Successivamente 0,5 mL di estratto vengono posti in apposita vial e si aggiungono 4 mL di una soluzione 0,1 M di sodio bicarbonato.
Tecnica di identificazione e quantificazione	SPME - GC-MS (modalità SIM)
Metodo	Metodo Interno ARPA FVG - Rif. UNI EN 15662:2009 + EPA 8272
LOQ	Adeguato (0,5 μg/Kg) tranne che per Eptaclorepossido.
Incertezza	Nd.
Note	

Esempio di condizioni strumentali per SPME:

Fibra	PDMS.
Temperatura di incubazione	70°C.
Tempo di incubazione	5 min.
Tempo di estrazione	30 min.

Metodo alternativo	EPA 1699:2007 Pesticides in Water, Soil, Sediment, Biosolids,
	and Tissue by HRGC/HRMS.

5.2.3 IPA

Metodo 1: su mitili

Tecnica estrattiva	Ultrasuoni. Il campione viene liofilizzato. Il campione iniziale è di 2 g e viene addizionato con standard Benzo(a)pirene-D12. Estrazione in ultrasuoni con miscela Diclorometano:Esano (1:1). L'estratto è ridotto a piccolo volume.
Tecnica di purificazione	Colonna in gel di silice. Volume finale 500 µL.
Tecnica di identificazione e quantificazione	GC-MS.
Metodo	Interno ARPAE Emilia Romagna.
LOQ	Adeguato.
Incertezza	Adeguata.
Note	Con lo stesso estratto si possono analizzare anche PBDE.

<u>SOLUZIONI TECNICHE MIGLIORATIVE</u> Si potrebbe provare a sostituire il Diclorometano come solvente di estrazione con altri solventi a minore tossicità, ad esempio acetone.

Metodo 2: su Mullus surmuletus e Scorpaena porcus

Nictodo 2. su manus surmaneus e Scorpaena porcus		
Tecnica estrattiva	QuEChERS non buffered.	
	Campione di partenza: 5g di pesce intero omogeneizzato.	
Tecnica di purificazione	Il surnatante si pone a -20°C per 3h e poi si tratta con CaCl ₂	
	anidro per rimuovere la componente lipidica. In seguito si	
	purifica con dSPE ((PSA/C18/MgSO ₄).	
Tecnica di identificazione e	GC-MS-MS.	
quantificazione	La calibrazione si effettua mediante diluizione isotopica.	
Metodo	Metodo Interno ARPA Sicilia - Rif. European EN 15662.	
LOQ	Adeguato ma non per tutti gli IPA (5-10 µg/Kg).	
Incertezza	Nd.	
Note	La procedura estrattiva è dettagliata nel paragrafo 5.2.2 Pesticidi.	
	La metodica permette la determinazione di 23 IPA.	
	Recupero degli analiti 70-120%. CV<15%.	
	Con la stessa metodica si possono analizzare anche PCB.	
M-4- J144	Estracione con mismo ando (EDA 2546), musificacione con	
Metodo alternativo	Estrazione con microonde (EPA 3546); purificazione con	
	allumina (EPA 3610B) e gel di silice (EPA 3630);	
	determinazione con GC-MS (EPA 8270E).	

5.2.4 PCB (Policlorobifenili)

Metodo: su Mullus surmuletus e Scorpaena porcus

Tecnica estrattiva	QuEChERS non buffered.
	Campione di partenza: 5g di pesce intero omogeneizzato.
Tecnica di purificazione	Il surnatante si pone a -20°C per 3h e poi si tratta con CaCl ₂ anidro per rimuovere la componente lipidica. In seguito si purifica con dSPE (PSA/C18/MgSO ₄).
Tecnica di identificazione e	GC-MS-MS.
quantificazione	La calibrazione si effettua mediante diluizione isotopica.
Metodo	Metodo Interno ARPA Sicilia - Rif. European EN 15662.
LOQ	1-5 μg/Kg.
Incertezza	Nd.
Note	La procedura estrattiva è dettagliata nel paragrafo 5.2.2 Pesticidi.
	La metodica permette la determinazione di 29 PCB.
	Recupero degli analiti 70-120%. CV<15%.
	Con la stessa metodica si possono analizzare anche IPA.

$5.2.5 \quad PCDD/PCDF \ (Policlorodibenzo dios sine/Policlorodibenzo furani)$

	a 11
Tecnica estrattiva	Soxhlet.
Tecnica di purificazione	Colonnina con gel di silice o equivalenti.
Tecnica di identificazione e quantificazione	HRGC-HRMS.
Metodo	EPA 1613:1994, rev. B - Tetra- through Octa-Chlorinated
	Dioxins and Furans by Isotope Dilution HRGC/HRMS.
LOQ	Adeguato.
Incertezza	Nd.
Note	

5.2.6 PBDE

Tecnica estrattiva	Soxhlet.
Tecnica di purificazione	Colonnina gel di silice o equivalenti.
Tecnica di identificazione e quantificazione	HRGC-HRMS.
Metodo	EPA 1614A:2010 - Brominated Diphenyl Ethers in Water, Soil, Sediment, and Tissue by HRGC/HRMS.
LOQ	Adeguato.
Incertezza	Nd.
Note	

Metodo alternativo	Metodo interno ARPAE Emilia Romagna.
Note	Vedi par. 5.2.3 analisi IPA

5.3 MATRICE SEDIMENTI

5.3.1 METALLI

Tecnica estrattiva	Microonde.
Tecnica di purificazione	
Tecnica di identificazione e quantificazione	ICP-MS.
Metodo	UNI EN ISO 17924-2:2016 oppure EPA 3051A:2007 + EPA 6020B:2014 oppure EPA 200.8.
LOQ	Adeguato.
Incertezza	Adeguata.
Note	

5.3.2 TRIBUTILSTAGNO

Metodo 1

Tecnica di estrazione	Ultrasuoni, derivatizzazione e SPME. 0,5 g di sedimento vengono pesati accuratamente in una provetta di vetro pirex provvista di tappo con setto in teflon. Dopo aver fatto le opportune aggiunte di standard marcati di organostannici, vengono aggiunti 5 mL di soluzione HCl 20%: MeOH (1:1). La provetta viene chiusa e l'estrazione viene effettuata attraverso bagno ad ultrasuoni. Il campione viene poi centrifugato a 3500 rpm per 5 minuti e 2 mL della soluzione contenente gli analiti vengono trasferiti in una vial da 20 mL a cui si aggiungono 7 mL di tampone acetato (pH 5.3; 1,5 M). La vial viene tappata e agitata. Dopo aver aggiunto alla soluzione 0,5 mL di STEB (sodio tetraetilborato) 2%, si agita tramite agitatore orbitale per un minuto e si procede all'analisi strumentale. L'estrazione viene effettuata con SPME utilizzando un autocampionatore per fibra.
Tecnica di identificazione e quantificazione	GC – MS. Modalità SIM (selected ion monitoring). Si utilizza per la quantificazione il metodo della taratura con standard interno (tributilstagno deuterato). Gli standard vengono preparati in matrice: si addizionano ad un sedimento esente da organostannici gli standard interni ed opportune quantità di organostannici non derivatizzati e si opera la stessa procedura di estrazione e derivatizzazione che subiscono anche i campioni.
Metodo	Metodo interno ARPA FVG.
LOQ	Adeguato: 1 μg/Kg.
Incertezza	Adeguata.
Note	

Esempio di condizioni strumentali per autocampionatore SPME:

250 mpro di condizioni sirumentani per autocampionatori si mi21	
Temperatura	65°C.
Incubazione	5 minuti.
Estrazione	40 minuti.
Profondità estrazione della fibra	25 mm.
Tempo di desorbimento della fibra	300 secondi.
Inject penetration	50 mm.
Agitator speed	250 rpm.

Esempio di condizioni strumentali per GC-MS:

Iniettore	split/splitless che opera in condizioni pulsed splitless;	
	Pulse pressure 40.0 psi, pulse time 1.0 min, purge time 1.05 min (20	
	ml/min).	
Temperatura iniettore	265 °C.	
Gas di trasporto	elio, con flusso costante a 1,4 mL/min.	
Programma di temperatura	60°C per 1 min; 30°C/min fino a 190°C (costante per 1 min.); 10°C/min fino	
	a 240°C (costante per 1 min.); 15°C/min fino a 310°C (costante per 6 min).	
Temperatura della sorgente	230°C.	
Modalità di acquisizione	SIM.	

Metodo 2

Tecnica di estrazione	Estrazione assistita con microonde (MAE). Il campione iniziale di 2,0 g viene essiccato all'aria. Ad ogni campione sono aggiunti 10 mL di una soluzione estraente (Acetato di Ammonio 0,5M, Acido Acetico 1M, in Metanolo). Si estrae a 100 °C per 5 min. Dopo raffreddamento, si filtra in vials da 10 mL. Segue evaporazione sotto azoto ad un volume di 2 mL (è preferibile non diminuire ulteriormente il volume per evitare un intorbidimento della soluzione). I campioni sono conservati a -20 °C. Prima dell'analisi strumentale ogni campione è diluito di un fattore 2 con acqua di grado 2.
Tecnica di identificazione e quantificazione	HPLC-ICP-MS. Si utilizza come metodo di taratura la calibrazione esterna. Gli standard sono preparati direttamente in vials di vetro di capacità 1,5 mL. Sia i campioni che gli standard sono in matrice 50 % acquosa e 50% solvente. Una percentuale maggiore di solvente determina una notevole instabilità del plasma. La quantificazione dell'analita avviene mediante spettrometro ICP-MS, utilizzando gli isotopi più abbondanti dello stagno: 118 Sn e 120 Sn. Si utilizza un micronebulizzatore PFA e una camera di nebulizzazione ciclonica raffreddata a 2 °C, per minimizzare la quantità di solvente in torcia; l'utilizzo di ossigeno post colonna diminuisce la quantità di sostanza organica che si deposita sull'interfaccia.
Metodo	Metodo interno ARPAL Liguria.
LOQ	Non adeguato: 5 μg/Kg corrispondente a SQA.
Incertezza	Adeguata.
Note	Un problema sulla valutazione del recupero per questi livelli è che le matrici certificate reperibili sono riferite a livelli di concentrazione molto maggiori.

Esempio di condizioni strumentali per HPLC:

	*
Colonna	C18 ultrafast (2.1mm x 8cm x 1.9 µm) o equivalente.
Fase mobile:	Acetonitrile: Acqua: Acido Acetico 65:23:12 con aggiunta di TEA allo 0,1%.
Flusso (mL/min)	0,3.
Volume iniettato (μL)	20.

SOLUZIONI TECNICHE MIGLIORATIVE

L'utilizzo di un U-HPLC può influire sul miglioramento delle performance della metodica analitica. Gli strumenti di ultima generazione (dedicati alla speciazione inorganica) sono dotati di un autocampionatore con diluitore automatico. Un fattore limitante è risultato infatti essere la preparazione manuale degli standard in solvente. Inoltre l'utilizzo di ICP-MS di nuova generazione permetterebbe di arrivare a limiti di quantificazione congrui con quanto richiesto dalla normativa sulle sostanze prioritarie.

Metodo alternativo	ISPRA Quaderni 08/2016.
Note	Indica una serie di metodiche per la determinazione di composti organostannici in matrici marine.

5.3.3 IPA

I valori di SQA per gli IPA nella matrice sedimento fissati dal D.lgs 172/2015 non sono particolarmente restrittivi. Per questo motivo possono essere utilizzati diversi metodi che permettano, senza grandi difficoltà, il raggiungimento dei limiti di quantificazione richiesti dalla normativa.

Metodo 1 (escluso naftalene)

Tecnica di estrazione	Estrazione con solvente per mezzo di un sistema Soxhlet (es. di miscela estraente: esano/diclorometano 8:2). Il campione viene essiccato a 40°C, setacciato su maglie da 2 mm. L'analisi viene effettuata solo sulla frazione < 2 mm. Il risultato analitico viene poi espresso rispetto al peso secco della frazione passante. Il campione iniziale (5 g) viene omogeneizzato con un opportuno materiale disperdente (es. terra di diatomee) e subito prima della fase di estrazione devono essere aggiunti gli standard interni o gli standard surrogati, ad es. il p-terfenile-d14.
Tecnica di purificazione	Eliminazione dello zolfo con rame metallico attivato. Sistemi GPC (cromatografia di gel permeazione) automatizzati che purificano il campione anche dall'eventuale presenza di zolfo. Lo svantaggio della GPC è, oltre al costo della strumentazione, l'utilizzo di elevate quantità di solvente. Tecniche di purificazione alternative: purificazione manuale attraverso cromatografia su gel di silice.
Tecnica di identificazione e quantificazione	HPLC-FLD.
Metodo	EPA 3540C (estrazione) + EPA 3630C + EPA 8310 (determinazione).
LOQ	Adeguati.
Incertezza	Nd.
Note	Tra gli IPA da determinare è presente anche il naftalene che può essere determinato insieme agli altri composti meno volatili utilizzando precauzioni specifiche quali ad esempio la cura nelle fasi di evaporazione ed eventualmente l'utilizzo di un composto marcato come standard interno per compensare tali perdite. L'alternativa è quella di determinarlo separatamente con una metodica specifica per i composti volatili. In questo modo si semplifica anche la procedura per la determinazione degli IPA più pesanti permettendo di utilizzare per la preparazione del campione l'essiccamento.

Esempio di condizioni strumentali per Soxhlet:

r	
Temperatura	100°C.
Pressione operativa	1500 psi.
Tempo di riscaldamento	5 min.
Numero di cicli statici di estrazione	2.
Tempo di ogni ciclo statico	7 min.
Volume di "flush"	50 %.
Tempo di purge	60 sec.

Esempio di condizioni strumentali per HPLC:

Gradiente di eluizione:

Escripto di condizioni stramentari per ili Ec.		Gradiente ai ciaizione.		
Colonna	Zorbax Eclipse PAH (1.8µm x 4.6 mm x 100 mm) o equivalente.	Tempo (min)	% A	% B
Temperatura del forno della colonna (°C)	25 °C (±2°C).	0	40	60
Fase mobile:		2	45	55
Eluente A	Acetonitrile.	10	55	45
Eluente B	Acqua/acetonitrile (77%/23%).	15	65	35
Gradiente di eluizione	vedi a fianco.	19	75	25
		23	85	15
		27.5	95	5
		29.5	97,5	2,5
		30	40	60

Metodo 1 (naftalene)

Tecnica estrattiva	SPME. Es. campione iniziale 1 g. Il campione umido viene pesato in un vial specifico per SPME contenente 2 g di NaCl. Si addizionano lo standard interno (naftalene-d8) e acqua purificata. Il vial viene tappato, incubato a 40°C per 15 minuti ed estratto per 25 minuti impiegando una fibra del tipo 85 μm Carboxen/PDMS.
Tecnica di identificazione e	GC-MS.
quantificazione	La fibra viene desorbita nell'iniettore (260°C) per 5 minuti.
Metodo	UNI 10899:2001
LOQ	Adeguato.
Incertezza	Adeguata.
Note	

Metodo 2

Tecnica estrattiva	PFE (pressure fluid extraction) con ASE. Il campione viene essiccato a 40°C, macinato e setacciato. Il campione iniziale è di 5 g e addizionato di standards deuterati. Estrazione con diclorometano ed esano (1:1).				
Tecnica di purificazione	Colonna in gel di silice. Volume finale 200 µL.				
Tecnica di identificazione e quantificazione	GC-MS.				
Metodo	EPA 3545A (estrazione) + EPA 3630C (purificazione) + EPA 8270E (determinazione).				
LOQ	Adeguato.				
Incertezza	Adeguata.				
Note	Con lo stesso estratto si possono analizzare anche PCB e PCDD/PCDF.				

SOLUZIONI TECNICHE MIGLIORATIVE

Si potrebbe provare a sostituire il diclorometano come solvente di estrazione con altri solventi a minore tossicità, ad esempio acetone. Ovviamente tale modifica comporterebbe una rivalidazione, anche se parziale, del metodo nel caso in cui fosse accreditato.

Nel caso del singolo quadrupolo è utile, al fine di aumentare la sensibilità strumentale, lavorare in modalità SIM (selected ion monitoring), selezionando e monitorando valori di m/z specifici per le varie molecole. Un altro accorgimento è quello di utilizzare una tecnica di iniezione quale la solvent vent che permette di introdurre grosse quantità di campione. Bisogna porre attenzione al fatto che in questi casi la fase di purificazione deve essere necessariamente più spinta in modo da non introdurre nello strumento grandi quantità di interferenti che possono sporcare il liner e la sorgente e diminuire la vita della colonna.

Sfruttando la modalità SRM (selected reaction monitoring) tipica degli strumenti a triplo quadrupolo, la GC-MS-MS risulta essere maggiormente specifica e sensibile.

Per quanto riguarda la preparativa, per eliminare la fase acquosa si può anidrificare il campione con sodio solfato invece di essiccarlo per evitare possibili perdite degli analiti più volatili.

5.3.4 PESTICIDI

Metodo 1

Tecnica estrattiva	QuEChERS. Il campione viene essiccato a 40°C, macinato e setacciato. Estrazione con acetonitrile dopo l'aggiunta della opportuna frazione di acqua, di solfato di magnesio e cloruro di sodio.				
Tecnica di purificazione	Un'aliquota di fase organica viene purificata tramite la dispersione di reagenti quali solfato di magnesio, per rimuovere l'acqua, PSA e Carbone. L'estratto viene poi sottoposto alla rimozione dello zolfo, tramite ripartizione liquido-liquido, con reattivo TBA (tetrabutilammonio solfito). Alla fine l'estratto viene concentrato e sottoposto ad analisi.				
Tecnica di identificazione e quantificazione	GC-MS o GC-MS-MS.				
Metodo	Metodo interno ARPAE Emilia Romagna.				
LOQ	Adeguato.				
Incertezza	Adeguata.				
Note					

Esempio di condizioni strumentali per GC-MS:

Iniettore	split/splitless che opera in condizioni pulsed splitless.
Temperatura iniettore	250 °C.
Gas di trasporto	elio, con flusso costante.
Programma di temperatura	70°C per 3 min; 25°C/min sino a 150°C; 5°C/min sino a 280°C; 280°C
	per 30 min.
Tipi di colonna	DB5.
Temperatura della sorgente	230°C.
Temperatura Quadrupolo	150°C.

Metodo 2

Tecnica estrattiva	Ultrasuoni.
Tecnica di purificazione	GPC.
Tecnica di identificazione e quantificazione	GC-MS o GC-MS-MS.
Metodo	EPA 3550C + EPA 3640A + EPA 8270E
LOQ	Adeguato, tranne che per Aldrin e Dieldrin.
Incertezza	Adeguata.
Note	

5.3.5 PCB (Policlorobifenili)

Metodo 1

Tecnica estrattiva	PFE (pressure fluid extraction) con ASE. Il campione viene essiccato a 40°C, macinato e setacciato. Il campione iniziale è di 5 g e addizionato di standard PCB marcati ¹³ C. Estrazione con diclorometano ed esano (1:1).					
Tecnica di purificazione	Colonna in gel di silice e trattamento con polvere di rame per abbattere lo zolfo. Successivamente si passa su colonna di allumina per separare la frazione dei PCB da PCDD/PCDF. Volume finale 200 µL.					
Tecnica di identificazione e quantificazione	GC-MS-MS.					
Metodo	EPA 3545A (estrazione) + EPA 3665A + EPA 3660B + EPA 8270E (determinazione).					
LOQ	Adeguato.					
Incertezza	Adeguata.					
Note	Con lo stesso estratto si possono analizzare anche IPA e PCDD/PCDF.					

SOLUZIONI TECNICHE MIGLIORATIVE

Si potrebbe provare a sostituire il diclorometano come solvente di estrazione con altri solventi a minore tossicità, ad esempio acetone. Ovviamente tale modifica comporterebbe una rivalidazione, anche se parziale, del metodo nel caso in cui fosse accreditato.

Metodo 2 (simile al Metodo 1 ma con iniettore PTV)

Tecnica di estrazione	Accelerated Solvent Extraction (ASE) o Soxhlet. Se il campione di laboratorio presenta granulometria con dimensione massima 2 mm, la quantità di campione essiccato all'aria da sottoporre all'estrazione deve essere maggiore di 10					
	g. Per granulometrie superiori è necessario macinare l'intero campione o aumentarne la quantità.					
Tecnica di purificazione	Trattamento con rame metallico per eliminare la presenza di zolfo. Se necessario si effettuata una ulteriore purificazione mediante colonna multistrato, costituita dai seguenti strati partendo dal fondo: NaHCO3/gel di silice/celite acida/gel di silice.					
Tecnica di identificazione e quantificazione	GC-MS tandem a bassa risoluzione. Iniettore PTV.					
Metodo	Interno ARPAL Liguria.					
LOQ	Adeguato.					
Incertezza	Adeguata.					
Note	È preferibile calcolare l'incertezza direttamente sulla somma ottenuta dai congeneri analizzati anziché come combinazione delle incertezze dei singoli congeneri (somma di varianze) per poter introdurre il contributo dovuto alla correlazione.					

Esempio di condizioni strumentali:

Escripto di condizioni stranic.	nun.
Colonna	DB-5MS (30 m x 0,25 mm x 0,25 μm).
Tipo Iniettore	PTV (volume di iniezione $5\mu L$) o PTV alti volumi (volume di iniezione $20\mu L$).
Parametri Trappola ionica:	
q_z	0,45.
excitation time	15 msec.
excitation voltage (V)	0.18 x numero atomi di cloro +1.52.

5.3.6 PCDD/PCDF (Policlorodibenzodiossine/Policlorodibenzofurani)

La tab. 3/A del D. Lgs. 172/2015 riporta il valore dello standard di qualità ambientale espresso come media annua per il parametro sommatoria TE PCDD, PCDF (diossine e furani) e PCB diossina simili ed è pari a $2x10^{-3}$ µg/kg s.s.. Tale parametro è un valore che viene calcolato sommando il contributo di tossicità di tutti i congeneri. I valori di TEF (fattori di tossicità equivalente) da utilizzare per diossine e furani sono quelli NATO del 1989, mentre per i PCB diossina simili sono i fattori WHO del 2005.

Metodo 1

Tecnica di estrazione	Sistema di estrazione accelerata con solvente (ASE). Es. 10 g di campione miscelati con una piccola quantità di Extrelut e addizionati degli standard marcati di estrazione. Solvente di estrazione: Toluene. Viene effettuato un cambio di solvente da Toluene a Esano dopo aver concentrato l'estratto con rotovapor.				
Tecnica di purificazione	Es. si aggiunge all'estratto circa 0,5 g di rame in polvere (attivato tramite lavaggio con HCl) e si mette sotto agitazione per circa un'ora. Si lascia decantare e si trasferisce l'estratto in una vial pulita facendo attenzione a non prelevare il solfuro formatosi. Attacco acido Es. vengono addizionati con cautela all'estratto alcuni mL di acido solforico al 96%, si tappa la vial e si mette in agitazione per 15-20 minuti. Si lasciano separare le due fasi e si trasferisce la fase organica in una vial pulita, facendo attenzione a non prelevare l'acido. Purificazione con sistema automatizzato Power-Prep TM Oltre ad eliminare le sostanze interferenti, permette di frazionare le diossine ed i furani dai PCB. Si usano colonne monouso di silice, allumina e carbone. Le frazioni ottenute dalla fase di purificazione vengono portate a piccolo volume ed analizzate separatamente.				
Tecnica di identificazione e quantificazione Metodo	Gascromatografia accoppiata alla spettrometria di massa ad alta risoluzione (HRGC-HRMS). EPA 3545A (estrazione) + EPA 1613B + EPA 1668C per i PCB.				
LOQ	Non adeguato $(0,00115~\mu g/Kg)$ invece di $0,0006~\mu g/Kg)$ Nel calcolo del LOQ del parametro sommatoria viene utilizzato l'approccio di tipo medium bound, ovvero si considera che tutti i singoli congeneri siano presenti in concentrazione pari alla metà del loro limite di quantificazione e tale valore viene utilizzato nel calcolo della tossicità equivalente.				
Note Note	Adeguata. Per risolvere adeguatamente i congeneri di PCDD/PCDF più tossici (2378-TCDD e 2378-TCDF) è consigliabile utilizzare una colonna cromatografica specifica per l'analisi delle diossine. E' importante che la colonna utilizzata permetta anche una buona risoluzione dei PCB. La taratura viene effettuata utilizzando le soluzioni standard commerciali certificate e viene effettuata mediante diluizione isotopica.				

Esempio di condizioni strumentali per GC-MS:

Colonna	Restek RTX-Dioxin2 60 m x 0,25 mm x 0,25 μm.				
Tipo Iniettore	Splitless o PTV (solvent vent).				
Condizioni MS:	Taratura con gas di riferimento FC43 (perfluoro-tributilammina). Acquisizione in modalità MID (Multiple Ion Detection) e tecnica "lock plus cali" per ottenere condizioni estremamente stabili per acquisizioni di dati di lunghe sequenze operative. Vengono impostate delle finestre di acquisizione e, all'interno di ognuna, vengono monitorate, oltre alle masse esatte degli analiti di interesse, anche due masse esatte relative a due frammenti del gas di riferimento (FC43) definite rispettivamente lock mass (L) e calibration mass (C) che vengono utilizzate per la taratura interna del sistema.				

SOLUZIONI TECNICHE MIGLIORATIVE

La GC accoppiata alla spettrometria di massa ad alta risoluzione è sicuramente la tecnica più avanzata e performante per la determinazione di questa classe di composti. Nonostante questo il LOQ ottenuto dal laboratorio con il principio del medium bound non risulta soddisfare i requisiti della normativa, non raggiungendo il 30% dello SQA.

Una delle motivazioni del mancato raggiungimento del LOQ richiesto per PCDD e PCDF risiede nel fatto di considerare come LOQ per i singoli congeneri la concentrazione corrispondente al primo punto della retta di taratura. Dall'analisi dei cromatogrammi per tale punto ed in particolare dalla valutazione dei rapporti segnale/rumore dei singoli congeneri risulta evidente la possibilità di poter scendere ulteriormente con la concentrazione. Non sono tuttavia disponibili in commercio soluzioni standard a concentrazione più bassa.

Una ipotesi attuabile per abbassare il LOQ dei singoli congeneri risulta quindi quella dell'analisi statistica della retta di taratura per ottenere una stima del LOQ utilizzando ad esempio il metodo delle iperboli fiduciali. I valori ottenuti vanno poi verificati sperimentalmente su campioni reali addizionati a valori vicini al LOQ calcolato.

L'ipotesi di aumentare la quantità di campione analizzata viene scartata in quanto comporta delle problematiche sia in fase di estrazione che in fase di purificazione.

6 PROBLEMATICHE APERTE E IPOTESI FUTURE SULLA APPLICAZIONE DEI METODI

6.1 Uniformità dei dati analitici nel Distretto di Bacino

La presente Linea Guida è il primo passo del cammino verso l'omogeneizzazione delle metodiche analitiche utilizzate dai vari membri costituenti il SNPA, volte a garantire l'uniformità dei risultati analitici così come richiesto dalle normative attinenti (es. legge n. 167 del 2017 che richiede di "garantire l'intercomparabilità, a livello di distretto idrografico, dei dati del monitoraggio delle sostanze prioritarie").

Per poter avere una risposta congruente tra tutte le Regioni che attuano il monitoraggio delle sostanze prioritarie all'interno dello stesso Distretto di Bacino è importante che la metodica analitica più idonea da utilizzare per ogni sostanza prioritaria e il rispettivo LOQ siano concordati prima dell'avvio dei nuovi monitoraggi.

Inoltre, poiché l'art.78-sexies del D.Lgs. 152/2006 e s.m.i. recita:"in mancanza [...] di un metodo di analisi che rispetti i requisiti minimi di prestazione [...], le ARPA e le APPA assicurano che il monitoraggio sia svolto applicando le migliori tecniche disponibili a costi sostenibili", potrebbe apparire sufficiente, in questo caso, concordare tra le diverse Regioni afferenti allo stesso bacino idrografico l'utilizzo di metodi con uno stesso LOQ e con una incertezza paragonabile.

A livello di Distretto dovrebbe essere quindi scelta la metodica analitica che meglio risponde alle richieste del D. Lgs. 219/2010 oppure, ove questo non sia possibile, perlomeno la migliore tecnica di misura tra quelle disponibili e che garantisca il medesimo LOQ; in caso contrario si avranno situazioni in cui alcuni laboratori evidenziano la presenza di una particolare sostanza mentre altri non possono evidenziarla perché non hanno la metodica adatta a rilevarla.

Ad esempio, il Pentaclorobenzene ha un SQA pari a $0{,}007~\mu g/L$ che richiede di scegliere una metodica di analisi che permetta di ottenere un LOQ di $0{,}002~\mu g/L$; nella tabella 1 dell'Allegato 1 si nota che alcuni laboratori dichiarano di utilizzare un metodo di misura con un LOQ pari a $0{,}5~\mu g/L$ mentre altri dichiarano di poter raggiungere un LOQ pari a $0{,}0001~\mu g/L$.

E' chiaro che tali differenze nelle metodiche utilizzate comportano differenti capacità di rilevare la presenza/assenza delle sostanze prioritarie, come evidenziato anche dalla Commissione Europea nel caso EU Pilot 7304/2015 sull'Italia, in relazione all'applicazione della Direttiva Quadro Acque, dove si osserva che il mancato coordinamento sulla definizione dei LOQ nel monitoraggio delle sostanze prioritarie nei bacini idrografici italiani ha portato ad un'indeterminatezza sulla presenza effettiva di tali sostanze in entrata e/o in chiusura di bacino. Di conseguenza è impossibile valutare se le misure definite nel Piano di Distretto possano successivamente portare ad un effettivo miglioramento dello stato chimico del corpo idrico.

6.2 LOQ dei singoli composti in una sommatoria

Una delle problematiche presenti nella tabella 1/A del D. Lgs. 172/2015 è che nel caso in cui lo SQA sia stabilito per una sommatoria di sostanze, non sono definiti i LOQ dei singoli isomeri o composti della stessa famiglia. Un modo per risolvere questo problema è riportato ad esempio nel Progetto Europeo ENV08 WFD "Traceable measurements for monitoring critical pollutants under the European Waterframework Directive (WFD 2000/60/EC)", a cui ISPRA ha partecipato, per la definizione dei singoli LOQ della sommatoria degli isomeri b e k del benzofluorantene e della sommatoria del Benzo(g,h,i)perilene con l'Indeno(1,2,3-cd)pirene. In quest'ambito è stato deciso che, basandosi su indicazioni di letteratura circa l'abbondanza dei singoli composti, per la prima coppia deve essere considerato un rapporto 2:1 mentre per la seconda un rapporto 1:1. Nella tabella che segue sono presentati i valori dei LOQ per i singoli composti sopra riportati.

 $\textbf{Tabella 6.1} - LOQ \ da \ utilizzare \ per \ ogni \ singolo \ isomero \ nelle \ sommatorie \ degli \ isomeri \ b \ e \ k \ del \ benzofluorantene \ e \ della \ sommatoria \ del \ Benzo(g,h,i)perilene \ con \ l'Indeno(1,2,3-cd)pirene$

Composti	SQA-MA (µgL-1) (altre acque di superficie)	LOQ (µgL-1)	
Benzo(b)fluorantene	$\Sigma = 0.03$	0.02	
Benzo(k)fluorantene	2-0.03	0.01	
Benzo(g,h,i) perilene	Z =0.003	0.001	
Indeno(1,2,3-cd)pyrene	$\Sigma = 0.002$	0.001	

Un approccio simile, ovvero definizione sulla base di ricerche bibliografiche di rapporti definiti tra singoli composti, potrebbe essere applicato anche per determinare il LOQ delle altre sommatorie presenti nella tabella 1/A del D. Lgs. 172/2015 (i.e. antiparassitari, ciclodiene e DDT totale).

Anche il modo in cui si calcola l'incertezza può dare origine a differenze nella sua espressione. Un approccio preliminare, ma condiviso, può essere l'applicazione della relazione di Horwitz/Thompson, per poi passare gradatamente all'applicazione della ISO 11352:2012 oppure utilizzare l'approccio previsto dal documento EURACHEM/CITAC Guide "Setting and using target uncertainty in chemical measurement" STMU 2015.

6.3 Sostanze con LOQ difficilmente (o non) raggiungibili

Uno dei nodi importanti da affrontare è quello delle sostanze per le quali non risulta possibile garantire i LOQ richiesti dalla normativa presso nessun laboratorio delle Agenzie Ambientali e trovare delle soluzioni per risolvere il problema.

Le soluzioni possono essere molteplici, a partire dalla definizione di quali sono le tecniche che hanno un costo sostenibile e per le quali è possibile raggiungere un LOQ che possa essere garantito a livello nazionale oppure l'attivazione di uno studio per lo sviluppo del metodo presso uno specifico laboratorio agenziale o tramite formazione di appositi GdL. Propedeutica per la scelta della soluzione sarà l'acquisizione di informazioni essenziali quali la verifica dello stato dell'arte in ambito internazionale, le dotazioni strumentali dei laboratori del SNPA e il personale disponibile presso i laboratori delle Agenzie.

Un'altra ipotesi da considerare nel determinare alcune sostanze particolarmente difficoltose da analizzare e/o che presentano maggiori problemi di conformità alle richieste della normativa in termini di corrispondenza ai LOQ o ancora che richiedono una strumentazione altamente performante e costosa, è quella relativa alla costituzione di una **rete di laboratori accreditati** (come indicato anche dalla legge 132/2016). Questo modello è già stato applicato in due casi particolari: nel monitoraggio delle sostanze dell'elenco di controllo (Watch List) e nel primo monitoraggio nazionale sulle sostanze perfluoroalchiliche.

Per rendere generale questo modello dovrebbero essere individuati dei sottogruppi di laboratori agenziali specializzati che possano garantire alle altre Agenzie una eventuale sussidiarietà analitica per attività ordinaria e straordinaria (ad esempio uno o più laboratori per distretto specializzati nella determinazione di particolari famiglie di sostanze).

Tuttavia occorre che il SNPA verifichi la fattibilità di questa scelta, soprattutto in considerazione dei seguenti punti:

- Numerosità dei campioni da analizzare.
- Criteri di scelta dei laboratori specializzati, a livello nazionale, per ciascun parametro o famiglia di parametri.
- Trasporto interagenziale dei campioni coerente con la ISO 17025.
- Costo economico (definizione di un tariffario comune) e capacità organizzativa.

Infatti la ripartizione dei costi e del numero di analisi che può condurre ogni singola Agenzia nelle attività di sussidiarietà è uno dei problemi che deve essere risolto a livello del Consiglio del SNPA. Tutto ciò presuppone una semplificazione e un allineamento della gestione amministrativa delle Agenzie e costi medi uguali per tutti i laboratori SNPA. Quest'ultimo punto è già all'ordine del giorno

nell'applicazione della L.132/2016 con lo sviluppo dei Livelli Essenziali delle Prestazioni Tecniche Ambientali (LEPTA) che per poter essere applicati devono basarsi su una valutazione dei costi comune.

Il problema della numerosità dei campioni può essere mitigato per esempio rivedendo, quando possibile, le frequenze di monitoraggio ed eventualmente diminuendo il numero di punti da monitorare. La diminuzione del numero di stazioni può essere raggiunta mediante l'utilizzo di un'approfondita analisi delle pressioni che permetta di identificare dove una sostanza potrebbe effettivamente essere ritrovata in uno specifico corpo idrico.

Per il monitoraggio delle sostanze prioritarie ed emergenti è quindi possibile attivare una risposta a vari livelli:

- a livello di autorità di Distretto: per quelle sostanze che possono essere determinate da una metodica in cui tutti o alcuni laboratori, afferenti allo stesso Distretto, raggiungono il LOQ richiesto per legge;
- a livello nazionale: quando non esiste alcun laboratorio a livello di Distretto che possa rispondere alle richieste di legge oppure quando solo alcuni laboratori possono rispondere a particolari richieste quali, ad esempio, il monitoraggio delle sostanze dell'elenco di controllo (WatchList) o di sostanze emergenti e/o particolari situazioni emergenziali.

Tutto ciò è sempre più importante poiché l'Europa ci chiede nuove sfide nel monitoraggio di sostanze pericolose ed emergenti in tempi sempre più brevi.

7 BIBLIOGRAFIA

UNI EN ISO 17294-2:2016 Qualità dell'acqua - Applicazione della spettrometria di massa al plasma accoppiato induttivamente (ICP-MS) - Parte 2: Determinazione di elementi selezionati, compresi gli isotopi dell'uranio.

EPA Method 200.8, Revision 5.4 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry.

APAT IRSA-CNR 3200 Manuali e linee guida 29/2003 – Mercurio.

EPA Method 7473 Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry.

APAT IRSA-CNR 3150C Manuali e linee guida 29/2003: Determinazione spettrofotometrica diretta del Cromo (VI) mediante difenicarbazide.

EPA Method 7199:1996 - Determination of Hexavalent Chromium in Drinking Water, Groundwater, and Industrial Wastewater Effluents by Ion Chromatography.

UNI EN 16694:2015 Qualità dell'acqua - Determinazione di alcuni eteri difenili polibromurati (PBDE) in campioni di acqua tal quale - Metodo che utilizza estrazione in fase solida (SPE) con dischi SPE e gas-cromatografia con spettrometria di massa (GC-MS).

UNI 10899:2001 Qualità dell'acqua – Determinazione di idrocarburi volatili (VOC) e idrocarburi volatili alogenati (VOX) – Metodo per microestrazione su fase solida (SPME) e gascromatografia capillare.

EPA Method 5030C:2003 - Purge-and-Trap for Aqueous Samples.

EPA METHOD 8260C: 2006 - Volatile organic compounds by gas chromatography/mass spectrometry (GC/MS).

APAT IRSA-CNR 5150 Manuali e linee guida 29/2003 – Solventi clorurati.

APAT IRSA-CNR 5140 Manuali e linee guida 29/2003 – Solventi organici aromatici.

APAT IRSA-CNR 5080 Manuali e linee guida 29/2003 – Idrocarburi policiclici aromatici.

UNI EN 16691:2015 Qualità dell'acqua - Determinazione di alcuni idrocarburi policiclici aromatici (IPA) in campioni di acqua tal quale - Metodo che utilizza estrazione in fase solida (SPE) con dischi SPE e gas-cromatografia con spettrometria di massa (GC-MS).

EPA METHOD 8270E, Revision 5 - Semivolatile organic compounds by gas chromatography/mass spectrometry.

APAT IRSA-CNR 5060 Manuali e linee guida 29/2003 – Prodotti fitosanitari.

Rapporti ISTISAN 07/31 ISS.CAC.015.rev00 – Residui di prodotti fitosanitari (antiparassitari): estrazione in fase solida (SPE) e analisi gascromatografica con rivelatori selettivi.

EPA Method 1668, Revision C - Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS.

EPA Method 1613: 1994 - Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS.

APAT IRSA-CNR 5090 Manuali e linee guida 29/2003 – Pesticidi clorurati.

UNI EN 16693:2015 - Qualità dell'acqua - Determinazione di pesticidi organoclorurati (OCP) in campioni di acqua tal quale - Metodo che utilizza estrazione in fase solida (SPE) con dischi SPE e gascromatografia con spettrometria di massa (GC-MS).

Report of study BfR-IX-2005 - Fast multi residue screening of 300 pesticides in drinking water.

EPA Method 525.2, Revision 2.0: Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry.

UNI EN ISO 22032:2009: Qualità dell'acqua - Determinazione di difenileteri polibromurati scelti nel sedimento e nei fanghi delle acque di scarico - Metodo per estrazione e gascromatografia/spettrometria di massa.

UNI EN ISO 12010:2014: Qualità dell'acqua - Determinazione di alcani policlorurati a catena corta in acqua - Metodo che utilizza la gas cromatografia- spettrometria di massa (GC-MS) e della ionizzazione chimica a ione negativo

UNI EN ISO 17353:2006: Qualità dell'acqua - Determinazione di composti organici dello stagno, selezionati - Metodo gascromatografico.

APAT IRSA-CNR 5070B Manuali e linee guida 29/2003 – Determinazione mediante cromatografia liquida ad alta prestazione con rivelazione spettrofotometrica nell'ultravioletto (HPLC-UV).

EPA Method 3535A: Solid-Phase Extraction (SPE).

EPA Method 3510C: Separatory funnel liquid-liquid extraction.

EPA Method 3545A: Pressurized Fluid Extraction (PFE).

EPA Method 3540C: Soxhlet Extraction.

EPA Method 3665A: Sulfuric Acid/Permanganate Cleanup.

EPA Method 3660B: Sulfur Cleanup. **EPA Method 3630C**: Silica Gel Cleanup.

EPA Method 8310: Polynuclear Aromatic Hydrocarbons.

EPA Method 604 – Phenols.

ISO 16308:2014 Water quality - Determination of glyphosate and AMPA - Method using high performance liquid chromatography (HPLC) with tandem mass spectrometric detection.

ISO 25101:2009 Water quality - Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) - Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry.

R. Narizzano, F. Risso, A Magherini, G. Cordone, M. Ottonelli, E. Smirnova, S. Nadotti, L. Rivara, R. La Rocca, E. Magi, S. Lottici, S. Maggiolo, C.E. Pepe, M. Garbarino: "Extensive study on physicochemical properties of polychlorinated biphenyls in a commercial ion trap mass spectrometer, relevance in analytical and environmental chemistry". *J Mass Spectrom*. 2017;52:837–847.

F. Risso, A. Magherini, M. Ottonelli, E. Magi, S. Lottici, S. Maggiolo, M. Garbarino, R. Narizzano: "A comprehensive approach to actual polychlorinated biphenyls environmental contamination" *Environ Sci Pollut Res*; 23, 8770-8780, (2016).

Berto D., Boscolo Brusà R. (A cura di), 2015. I Composti Organostannici in ambiente marino e lagunare. ISPRA, QUADERNI – Ricerca Marina n. 8/2016, Roma, pp 117.

Forsberg, N. D.; Wilson, G. R.; Anderson, K. A., *Journal of agricultural and food chemistry*, 2011, 59(15), 8108-8116.

ISPRA, Manuali e Linee Guida, 2016, 143.

Chatterjee, N. S.; Utture, S.; Banerjee, K.; Shabeer, T. A.; Kamble, N.; Mathew, S., & Kumar, K. A., Food chemistry, 2016, 196, 1-8.

Falomo J. (2009). Sviluppo di metodiche innovative nel campo del biomonitoraggio ambientale. Tesi di Dottorato XXI ciclo del Dottorato di Ricerca in Metodologie di Biomonitoraggio dell'Alterazione Ambientale dell'Università degli Studi di Trieste.

Millán E., Pawliszyn J. (2000). Determination of butyltin species in water and sediment by solid-phase microextraction—gas chromatography—flame ionization detection. Journal of Chromatography A, 873: 63-71.

CO.RI.LA - Manuale dei metodi analitici per il controllo ambientale di acque e sedimenti della laguna di Venezia.

Amendola, L.; Cortese, M.; Vinatoru, D.; Sposato, S.; Insogna; S.; *Analytica Chimica Acta* 975 (2017) 70-77.

ALLEGATO 1

Tabella 1.1 – Limiti di Quantificazione (LOQ) raggiunti e adeguamento alla normativa per la matrice acqua

Sostanza	N° laboratori	% LOQ adeguato su	LOQ Minimo	LOQ Massimo	LOQ richiesto (SQA/3)
	esecutivi	lab. esecutivi*	μg/L	μg/L	μg /L
2,4 D	11	100,0%	0,005	0,06	0,167
Difenileteri bromurati	7	100,0%	0,000001	0,02	0,047
2-Clorofenolo	7	100,0%	0,008	1	1,333
Ometoato	7	100,0%	0,005	0,1	0,167
Terbutrina	6	100,0%	0,003	0,01	0,022
2,4,5 T	5	100,0%	0,01	0,1	0,167
Chinossifen	4	100,0%	0,01	0,02	0,050
Cloroalcani C10-13	2	100,0%	0,1	0,1	0,133
Ossidemeton-metile	2	100,0%	0,01	0,01	0,167
Cloronitrotolueni	1	100,0%	0,01	0,01	0,333
Acido perfluorobutanoico (PFBA)	1	100,0%	0,01	0,01	2,3
Acido perfluoropentanoico (PFPeA)	1	100,0%	0,01	0,01	1,0
Acido perfluoroesanoico (PFHxA)	1	100,0%	0,01	0,01	0,33
Acido perfluorobutansolfonico (PFBS)	1	100,0%	0,01	0,01	1,0
Diclorometano	19	94,7%	0,01	6	6,7
Naftalene	18	94,4%	0,001	0,5	0,67
Simazina	16	93,8%	0,003	0,2	0,333
Alacloro	15	93,3%	0,003	0,1	0,10
Terbutilazina (incluso metabolita)	15	93,3%	0,003	0,1	0,17
Linuron	14	92,9%	0,005	0,06	0,17
Dimetoato	13	92,3%	0,005	0,1	0,17
Bentazone	12	91,7%	0,005	0,06	0,17
MCPA	12	91,7%	0,005	0,06	0,17
Clorfenvinfos	11	90,9%	0,0001	0,02	0,033
Mecoprop	11	90,9%	0,005	0,06	0,17
Benzene	20	90,0%	0,008	1	3,3
Tetracloroetilene	20	90,0%	0,008	1	3,3
Tricloroetilene	20	90,0%	0,008	1	3,3
Triclorometano	20	90,0%	0,008	0,5	0,83
Arsenico	20	90,0%	0,008	3	3,3
	19	89,5%	0,008	1	3,3
1,2-Dicloroetano	9	88,9%		-	
Di(2-etilesil)ftalato (DEHP) Esaclorobutadiene	17	88,9% 88,2%	0,01	0,5 0,1	0,43 0,20
			,		
Atrazina	16	87,5%	0,003	0,4	0,20
Antracene	16	87,5%	0,00005	0,1	0,033
Nonilfenoli (4-nonilfenolo)	14	85,7%	0,003	0,3	0,10
Diuron	14	85,7%	0,005	0,4	0,067
Isoproturon	14	85,7%	0,005	0,4	0,10
Cromo totale	20	85,0%	0,1	2,5	2,3
Tetracloruro di carbonio	19	84,2%	0,01	1	4,0
3-Clorofenolo	6	83,3%	0,008	1	0,67
Esaclorobenzene	16	81,3%	0,0001	0,1	0,017
1,2 Diclorobenzene	16	81,3%	0,01	0,5	0,67
1,3 Diclorobenzene	16	81,3%	0,01	0,5	0,67
1,4 Diclorobenzene	16	81,3%	0,01	0,5	0,67
Trifluralin	15	80,0%	0,0001	0,03	0,010
1,1,1 Tricloroetano	15	80,0%	0,01	1	3,3
Aclonifen	5	80,0%	0,0001	0,1	0,040
3,4-Dicloroanilina	5	80,0%	0,01	0,1	0,167

Sostanza	N°	% LOQ	LOQ	LOQ	LOQ richiesto
	laboratori	adeguato su	Minimo	Massimo	(SQA/3)
	esecutivi	lab. esecutivi*	μg/L	μg/L	μg /L
2,4,5-Triclorofenolo	5	80,0%	0,008	1	0,33
Toluene	19	78,9%	0,01	1	1,67
Clorobenzene	16	75,0%	0,01	5	1,0
Pentaclorofenolo	12	75,0%	0,008	0,5	0,133
3-Cloroanilina	4	75,0%	0,01	0,5	0,67
4-Clorofenolo	4	75,0%	0,008	1	0,67
Demeton	4	75,0%	0,01	0,01	0,033
Xileni	19	73,7%	0,01	3	1,67
Metamidofos	7	71,4%	0,005	0,3	0,167
Clorpirifos (etile)	16	68,8%	0,0001	0,05	0,010
2,4-Diclorofenolo	9	66,7%	0,008	1	0,33
2-Cloroanilina	3	66,7%	0,01	0,1	0,33
4-Cloroanilina	3	66,7%	0,01	0,1	0,33
Nichel e composti	20	65,0%	0,01	5	1,33
Triclorobenzeni	17	64,7%	0,008	1	0,13
2,4,6-Triclorofenolo	8	62,5%	0,008	1	0,33
2-Clorotoluene	10	60,0%	0,01	0,5	0,33
1-Cloro-3-nitrobenzene	5	60,0%	0,01	0,5	0,33
Ottilfenoli ((4-(1,1',3,3'-tetrametilbutil) -fenolo))	14	57,1%	0,002	0,1	0,033
3-Clorotoluene	7	57,1%	0,01	0,5	0,33
4-Clorotoluene	9	55,6%	0,01	0,5	0,333
Esaclorocicloesano	15	53,3%	0,0001	0,2	0,007
Dieldrin	14	50,0%	0,0001	0,05	0,003
1-Cloro-2-nitrobenzene	4	50,0%	0,01	0,5	0,33
1-Cloro-4-nitrobenzene	4	50,0%	0,01	0,5	0,33
Cibutrina	2	50,0%	0,0001	0,01	0,001
Bifenox	2	50,0%	0,0001	0,01	0,004
Acido perfluoroottanoico (PFOA)	2	50,0%	0,01	0,05	0,033
Mercurio e composti	20	45,0%	0,003	0,5	0,023
Fluorantene	18	44,4%	0,00005	0,1	0,002
Aldrin	14	42,9%	0,0001	0,05	0,003
Endrin	14	35,7%	0,0001	0,05	0,003
Isodrin	14	35,7%	0,0001	0,05	0,003
DDT e analoghi	15	33,3%	0,0001	0,05	0,003
Tributilstagno (composti)	6	33,3%	0,00001	0,03	0,00007
Composti del Trifenilstagno	3	33,3%	0,00006	0,03	0,00007
Piombo e composti	20	30,0%	0,05	3	0,40
Fenitrotion	10	30,0%	0,0001	0,02	0,003
Pentaclorobenzene	15	26,7%	0,0001	0,5	0,002
Diclorvos	8	25,0%	0,0001	0,02	0,003
Paration metile	8	25,0%	0,0001	0,02	0,003
Endosulfan	13	23,1%	0,0001	0,03	0,002
Malation	13	23,1%	0,0025	0,02	0,003
Eptaclor	10	20,0%	0,0001	0,05	0,002
Cadmio e composti	20	15,0%	0,01	0,5	0,027
Azinfos etile	8	12,5%	0,0025	0,02	0,003
Fention	8	12,5%	0,003	0,03	0,003
Mevinfos	8	12,5%	0,003	0,02	0,003
Diclorvos	9	11,1%	0,0001	0,02	0,0002
Azinfos metile	10	10,0%	0,003	0,02	0,003
Paration etile	11	9,1%	0,0001	0,05	0,003
Benzo(a)pirene	18	5,6%	0,00005	0,1	0,00006
Acido perfluorottansolfonico e suoi sali (PFOS)	2	0,0%	0,01	0,05	0,0002
Eptacloro ed eptacloro epossido	10	0,0%	0,0001	0,05	0,000000067
Dicofol	2	0,0%	0,01	0,02	0,0004

Sostanza	N°	% LOQ	LOQ	LOQ	LOQ richiesto
	laboratori	adeguato su	Minimo	Massimo	(SQA/3)
	esecutivi	lab. esecutivi*	μg/L	μg/L	μg /L
Cipermetrina	4	0,0%	0,0001	0,01	0,00003
Esabromociclododecano (HBCDD)	0				0,001

^{*}Percentuale di laboratori che hanno un LOQ adeguato rispetto al numero totale di laboratori che eseguono la determinazione.

ALLEGATO 2

Tabella 2.1 – Metodi proposti per la determinazione delle sostanze prioritarie e affini nella matrice acqua

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note
Tab1/A (Dlgs.172/2015)						
Difenileteri bromurati	32534-81-9	0,01	SPE	NCI GC-MS	EPA 525.2 + ISO 22032	
Difenficien bromuran	32534-81-9	0,0001	SPE-disk	GC-MS-MS	UNI EN 16694:2015	
Cloroalcani C10-13	85535-84-8	0,1	LLE e poi allumina	NCI GC-MS	UNI EN ISO 12010	
Di(2-etilesil)ftalato	117-81-7	0,1	LLE	HPLC - DAD	EPA 3510C + EPA 604 (versione HPLC)	Campione iniziale: 2 L
(DEHP)	117-81-7	0,4	SPE-disk	GC-MS	EPA 3535A + EPA 8270E	
Esaclorobenzene	118-74-1	0,002	SPE	GC-MS	EPA 8270E	Campione iniziale: 1L Volume finale: 250µL Vedi par. 5.1.4
Esaclorobutadiene	87-68-3	0,05	SPME	GC-MS	UNI 10899	Vedi par. 5.1.3
Esaciorobutadiene	87-68-3	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	Vedi par. 5.1.3
Esaclorocicloesano	608-73-1	0,006	SPE	GC-MS-MS	APAT IRSA 5090 Man 29/2003	Triplo quadrupolo
Pentaclorobenzene	608-93-5	0,002	SPE	GC-MS	EPA 8270E	Campione iniziale: 1L Volume finale: 250µL Vedi par. 5.1.4
Pentaclorofenolo	87-86-5	0,1	LLE	HPLC - rivelatore DAD	EPA 3510C + EPA 604 (versione HPLC)	Campione iniziale: 2 L
	87-86-5	0,25	SPE	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003	•
Nonilfenoli (4-	84852-15-3	0,05	SPE	GC-MS	Metodo interno rif. APAT IRSA 5060	
nonilfenolo)	84852-15-3	0,1	LLE	HPLC - rivelatore DAD	EPA 3510C + EPA 604 (versione HPLC)	Campione iniziale: 2 L
	84852-15-3	0,02	SPE-disk	GC-MS	EPA 3535A + EPA 8270E	
016 11.//4 /1.11.0.01	140-66-9	0,02	LLE	HPLC - rivelatore DAD	EPA 3510C + EPA 604 (versione HPLC)	Campione iniziale: 2 L
Ottilfenoli ((4-(1,1',3,3'-	140-66-9	0,05	SPE	GC-MS	Metodo interno rif. APAT IRSA 5060	•
tetrametilbutil)-fenolo))	140-66-9	0,005	SPE-disk	GC-MS	EPA 3535A + EPA 8270E	
Tributilstagno (composti)	36643-28-4	0,00006	LLE (previa derivatizzazione)	GC-MS-MS	UNI EN ISO 17353	vedi par 5.1.10
Acido perfluorottansolfonico e suoi sali (PFOS)	1763-23-1	0,0002	SPE online	, i		Triplo Quadrupolo
Eptacloro ed eptacloro epossido	76-44-8 / 1024-57-3	0,005	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Modifica: iniettore PTV invece di split/splitless
Eptacloro ed eptacloro epossido	76-44-8 / 1024-57-3	0,0006	LLE	GC-MS	APAT IRSA 5090 Man 29/2003	

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note
VOC						I
Benzene	71-43-2	0,06	Fibra SPME	GC-MS	UNI 10899	
Delizelle	71-43-2	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
1.2-Dicloroetano	107-06-2	0,1	Fibra SPME	GC-MS	UNI 10899	
1,2-Dicioloetano	107-06-2	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
D:-1	75-09-2	0,75	Fibra SPME	GC-MS	UNI 10899	
Diclorometano	75-09-2	0,02	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
Totalogotilono	127-18-4	0,1	Fibra SPME	GC-MS	UNI 10899	
Tetracloroetilene	127-18-4	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
T-+11:1	56-23-5	0,1	Fibra SPME	GC-MS	UNI 10899	
Tetracloruro di carbonio	56-23-5	0,02	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
Tricloroetilene	79-01-6	0,01	Fibra SPME	GC-MS	UNI 10899	
Tricioroettiene	79-01-6	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
Triclorobenzeni	12002-48-1	0,05	Fibra SPME	GC-MS	UNI 10899	
Triciorobenzeni	12002-48-1	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
Triclorometano	67-66-3	0,05	Fibra SPME	GC-MS	UNI 10899	
Triciorometano	67-66-3	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
Metalli						
G 1 :	7440-43-9	0,01	-	ICP-MS	UNI EN ISO 17294-2	
Cadmio e composti	7440-43-9	0,02	-	ICP-MS	EPA 200.8	
D' 1 (*	7439-92-1	0,3	-	ICP-MS	UNI EN ISO 17294-2	
Piombo e composti	7439-92-1	0,4	-	ICP-MS	EPA 200.8	
34	7439-97-6	0,01	-	ICP-MS	UNI EN ISO 17294-2	
Mercurio e composti	7439-97-6	0,02	-	ICP-MS	EPA 200.8	
Nichel e composti	7440-02-0	0,3	-	ICP-MS	UNI EN ISO 17294-2	
Nichel e composti	7439-97-6	1	-	ICP-MS	EPA 200.8	

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note
Pesticidi						
Alacloro	15972-60-8	0,01	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
Atrazina	1912-24-9	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Clorfenvinfos	470-90-6	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Clorpirifos (Clorpirifos etile)	2921-88-2	0,009	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Aldrin	309-00-2	0,003	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
Dieldrin	60-57-1	0,003	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
Endrin	72-20-8	0,003	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
Isodrin	465-73-6	0,003	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
	-	0,008	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
DDT e analoghi	-	0,002	SPE	GC-MS	EPA 8270E	Campione iniziale: 1L Volume finale: 250µL Vedi par. 5.1.4
Diuron	330-54-1	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
	115-29-7	0,008	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
Endosulfan	115-29-7	0,002	SPE	GC-MS	EPA 8270E	Campione iniziale: 1L Volume finale: 250µL Vedi par. 5.1.4
Isoproturon	34123-59-6	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Simazina	122-34-9	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Trifluralin	1582-09-8	0,008	SPE	GC-MS-MS	APAT IRSA 5060 Man 29/2003	Triplo quadrupolo
Dicofol	115-32-2	0,01	SPE	GC-MS-MS	APAT IRSA 5090 Man 29/2003	Triplo quadrupolo
Cipermetrina	52315-07-8	0,01	nc	UHPLC-MS	BfR-IX-2005	
Diclorvos	62-73-7	0,02	nc	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Terbutrina	886-50-0	0,01	nc	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Chinossifen	124495-18-7	0,01	nc	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Aclonifen	74070-46-5	0,02	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Cibutrina	28159-98-0	0,01	nc	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note
Bifenox	42576-02-3	0,05	nc	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Bilellox	42576-02-3	0,001	SPE	GC-MS	APAT IRSA 5090 Man 29/2003	
Idrocarburi policiclici ar	romatici (IPA)					
Benzo(a)pirene	50-32-8	0,00005	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Benzo(b)fluorantene	205-99-2	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Benzo(k)fluorantene	207-08-9	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Benzo(g,h,i)perilene	191-24-2	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Indeno(1,2,3-cd)pirene	193-39-5	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Antracene	120-12-7	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Fluorantene	206-44-0	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Naftalene	91-20-3	0,0001	SPE	HPLC-Fluorimetro-PDA	APAT IRSA 5080 Man 29/2003	
Tab1/B (Dlgs. 172/2015)						
2-Cloroanilina	95-51-2	0,1	SPE	GC-MS	EPA 8270E	
3-Cloroanilina	108-42-9	0,1	SPE	GC-MS	EPA 8270E	
4-Cloroanilina	106-47-8	0,1	SPE	GC-MS	EPA 8270E	
	95-57-8	0,25	SPE stirene/divinilbenzene	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003	
2-Clorofenolo	95-57-8	0,1	SPE-disk previa acidificazione	HPLC - rivelatore DAD	EPA 3535A + EPA 604 (versione HPLC)	
	108-43-0	0,25	SPE stirene/divinilbenzene	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003	
3-Clorofenolo	108-43-0	0,5	SPE-disk previa acidificazione	HPLC - rivelatore DAD	EPA 3535A + EPA 604 (versione HPLC)	
	106-48-9	0,25	SPE stirene/divinilbenzene	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003	
4-Clorofenolo	106-48-9	0,3	SPE-disk previa acidificazione	HPLC - rivelatore DAD	EPA 3535A + EPA 604 (versione HPLC)	
1-Cloro-2-nitrobenzene	88-73-3	0,01	SPE	GC-MS-MS	EPA 8270E	
1-Cloro-3-nitrobenzene	121-73-3	0,01	SPE	GC-MS-MS	EPA 8270E	
1-Cloro-4-nitrobenzene	100-00-5	0,01	SPE	GC-MS-MS	EPA 8270E	

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note
Cloronitrotolueni	-	0,01	SPE	GC-MS-MS	EPA 8270E	
3,4-Dicloroanilina	95-76-1	0,1	SPE	GC-MS	EPA 8270E	
1.1.1 Tricloroetano	71-55-6	0,1	SPME	GC-MS	UNI 10899	Vedi par. 5.1.3
1,1,1 Theoroetano	71-55-6	0,02	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	Vedi par. 5.1.3
	95-95-4	0,25	SPE stirene/divinilbenzene	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003	
2,4,5-Triclorofenolo	95-95-4	0,3	SPE-disk previa acidificazione	HPLC - DAD	EPA 3535A + EPA 604 (versione HPLC)	
	88-06-2	0,25	SPE stirene/divinilbenzene	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003	
2,4,6-Triclorofenolo	88-06-2	0,3	SPE-disk previa acidificazione	HPLC - DAD	EPA 3535A + EPA 604 (versione HPLC)	
Composti del Trifenilstagno	-	0,00006	LLE (previa derivatizzazione)	GC-MS-MS	UNI EN ISO 17353	vedi par 5.1.10
Acido perfluorobutanoico (PFBA)	375-22-4	0,005	SPE on line	UHPLC-MS-MS	ISO 25101	Triplo Quadrupolo
Acido perfluoropentanoico (PFPeA)	2706-90-3	0,005	SPE on line	UHPLC-MS-MS	ISO 25101	Triplo Quadrupolo
Acido perfluoroesanoico (PFHxA)	307-24-4	0,005	SPE on line	UHPLC-MS-MS	ISO 25101	Triplo Quadrupolo
Acido perfluorobutansolfonico (PFBS)	375-73-5	0,005	SPE on line	UHPLC-MS-MS	ISO 25101	Triplo Quadrupolo
Acido perfluoroottanoico (PFOA)	335-67-1	0,005	SPE on line	UHPLC-MS-MS	ISO 25101	Triplo Quadrupolo
VOC						
Clorobenzene	108-90-7	0,01	SPME	GC-MS	UNI 10899	
Ciorobelizelle	108-90-7	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
2-Clorotoluene	95-49-8	0,05	SPME	GC-MS	UNI 10899	
2-Ciolotoluelle	95-49-8	0,1	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
3-Clorotoluene	108-41-8	0,05	SPME	GC-MS	UNI 10899	
3-Clorotoluene	108-41-8	0,1	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note	
4-Clorotoluene	106-43-4	0,05	SPME	GC-MS	UNI 10899		
4-Ciorotoluene	106-43-4	0,1	Purge & trap	GC-MS	EPA 5030C + EPA 8260C		
1.2 Diclorobenzene	95-50-1	0,05	SPME	GC-MS	UNI 10899		
1,2 Diciolobenzene	95-50-1	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C		
1.3 Diclorobenzene	541-73-1	0,05	SPME	GC-MS	UNI 10899		
1,3 Dictorobenzene	541-73-1	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C		
1.4 Dialambanana	106-46-7	0,05	SPME	GC-MS	UNI 10899		
1,4 Diclorobenzene	106-46-7	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C		
	120-83-2	0,25	SPE stirene/divinilbenzene	LC-MS-DAD	APAT IRSA 5070 B Man 29/2003		
2,4-Diclorofenolo	120-83-2	0,3	SPE-disk previa acidificazione	HPLC - rivelatore DAD	EPA 3535A + EPA 604 (versione HPLC)		
T. 1	108-88-3	0,1	SPME	GC-MS	UNI 10899		
Toluene	108-88-3	0,008	Purge & trap	Purge & trap GC-MS EPA 5030C +			
V.1 .	1330-20-7	0,05	SPME	GC-MS	UNI 10899		
Xileni	1330-20-7	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C		
Metalli							
Arsenico	7440-38-2	0,1	-	ICP-MS	UNI EN ISO 17294-2		
Arsenico	7440-38-2	1	-	ICP-MS	EPA 200.8		
Cromo totale	74440-47-3	0,2	-	ICP-MS	UNI EN ISO 17294-26		
Cromo totale	74440-47-3	1	-	ICP-MS	EPA 200.8		
Pesticidi							
Azinfos etile	2642-71-9	0,003	SPE	GC-MS	APAT IRSA 5060 Man 29/2003	_	
Azinfos metile	86-50-0	0,003	SPE	GC-MS	APAT IRSA 5060 Man 29/2003		
Bentazone	25057-89-0	0.05/0.01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo	
2,4 D	94-75-7	0.05/0.01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo	
Demeton	298-03-3	0,001	Nd	UHPLC-MS	BfR-IX-2005		
Dimetoato	60-51-5	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo	

Sostanza	CAS	LOQ (µg/L) raggiungibile	Tecnica di estrazione e purificazione	Tecnica di identificazione e quantificazione	Metodo di riferimento	Note
Fenitrotion	122-14-5	0,003	Nd	UHPLC-MS	BfR-IX-2005	
Fention	55-38-9	0,003	Nd	UHPLC-MS	BfR-IX-2005	
Linuron	330-55-2	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Malation	121-75-5	0,001	SPE	GC-MS	APAT IRSA 5060 Man 29/2003	
MCPA	94-74-6	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Mecoprop (MCPP)	93-65-2	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Metamidofos	10265-92-6	0,001	Nd	UHPLC-MS	BfR-IX-2005	
Mevinfos	7786-34-7	0,002	Nd	UHPLC-MS	BfR-IX-2005	
Ometoato	1113-02-6	0,001	Nd	UHPLC-MS	BfR-IX-2005	
Ossidemeton-metile	301-12-2	0,0005	Nd	UHPLC-MS	BfR-IX-2005	
Paration etile	56-38-2	0,0006	SPE	GC-MS	APAT IRSA 5060 Man 29/2003	
Paration metile	298-00-0	0,0006	SPE	GC-MS	APAT IRSA 5060 Man 29/2003	
Terbutilazina (incluso metabolita)	5915-41-3	0,01	Iniezione diretta	LC-MS-MS	BfR-IX-2005	Triplo quadrupolo
Glifosate		0,03	Derivatizzazione con FMOC	LC-MS-MS	ISO 16308	
ACQUE SOTTERRANEE	C (Dec. 6 lug 20	016)				
Dibromoclorometano	124-48-1	0,008	Purge & trap	GC-MS	EPA 5030C + EPA 8260C	
Diossine e Furani (PCDD, PCDF)		0,00000149	LLE / colonna multistrato+power prep	HRGC/HRMS	EPA 1613B	
		0,00202	LLE / colonna multistrato e/o power prep	HRGC/HRMS	EPA 1668C	
PCB		0.0001 (singolo congenere) 0.003 (totale)	SPE-disk (divinilbenzene)	GC-MS-MS	Metodo interno (ARPAL)	Triplo quadrupolo
Idrocarburi totali (frazione estraibile metodo B-Ispra123/2015)		50	LLE / Florisil + Solfato di sodio anidro	GC-FID	GC-FID ISPRA Manuali e linee guida 123/2015	

Tabella 2.2 – Prestazioni raggiunte con i metodi proposti per la determinazione delle sostanze prioritarie e affini nella matrice acqua

	SQA	LOQ richiesto	LOQ raggiungi	Incertezza richiesta	Incertezza				
Sostanza	SQA (μg/L)	μg/L (30% SQA)	bile (µg/L)	μg/L (50% SQA)	raggiungibile (μg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
Tab1/A (Dlgs.172/2	015)								
Difenileteri	0,14	0,042	0,01	0,07	0,05	18% a 0,02 μg/L	97% a 0,02 μg/L	EPA 525.2 + ISO 22032	Incertezza calcolata considerando il 25 % di accuratezza ed il 25 % di precisione
bromurati	0,14	0,042	0,0001	0,07	0,06	12-25% a 0,0001 μg/L; 4-21% a 0,001 μg/L	78-128% a 0,0001 μg/L; 99- 114% a 0,001 μg/L	UNI EN 16694:2015	
Cloroalcani C10- 13	0,4	0,12	0,1	0,2	0,3	23% a 0,1 μg/L	93% a 0,1 μg/L	UNI EN ISO 12010	Incertezza del metodo ISO 12010
Di(2-etilesil) ftalato (DEHP)	1,3	0,39	0,1	0,65	0,57	nd	nd	EPA 3510C + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
Ttalato (DETIT)	1,3	0,39	0,4	0,65	0,57	14,5% a 0,4 μg/L; 10,7% a 1,3 μg/L	86% a 0,4 μg/L; 87% a 1,3 μg/L	EPA 3535A + EPA 8270E	
Esaclorobenzene	0,005	0,0015	0,002	0,0025	0,0022	nd	nd	EPA 8270E	Vedi par. 5.1.4
Esaclorobutadiene	0,05	0,015	0,05	0,025	nd	15,6%	nd	UNI 10899:2001	Vedi par. 5.1.3
	0,05	0,015	0,008	0,025	nd	nd	nd	EPA 5030C + EPA 8260C	Vedi par. 5.1.3
Esaclorocicloesan o	0,02	0,006	0,006	0,01	0,005	nd	nd	APAT IRSA 5090 Man 29/2003	
Pentaclorobenzene	0,007	0,0021	0,002	0,0035	0,0031	nd	nd	EPA 8270E	Vedi par. 5.1.4
	0,4	0,12	0,1	0,2	0,18	nd	nd	EPA 3510C + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
Pentaclorofenolo	0,4	0,12	0,25	0,2	0,2	0,03 a 0,25 μg/L	90-100%	APAT IRSA 5070 B Man 29/2003	
	0,4	0,12	0,1	0,2	0,18	nd	nd	EPA 3535A + Metodo Interno Rif. BfR-IX-2005	
Nonilfenoli (4-	0,3	0,09	0,05	0,15	0,13	0,006 a 0,05µg/l	80-95%	Metodo interno rif. APAT IRSA 5060	
nonilfenolo)	0,3	0,09	0,1	0,15	0,13	nd	nd	EPA3510C + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
	0,3	0,09	0,02	0,15	0,13	nd	nd	EPA 3535A + EPA 8270E	
Ottilfenoli ((4-	0,1	0,03	0,05	0,05	0,04	0,006 a 0,05µg/L	80-95%	Metodo interno rif. APAT	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
(1,1',3,3'-								IRSA 5060	
tetrametilbutil)- fenolo))	0,1	0,03	0,02	0,05	0,04	nd	nd	EPA 3510C + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
	0,1	0,03	0,005	0,05	0,4	nd	nd	EPA 3535A + EPA 8270E	
Tributilstagno (composti)	0,0002	0,00006	nd	0,0001	nd	nd	nd	UNI EN ISO 17353	vedi par 5.1.10
Acido perfluorottansolfo nico e suoi sali (PFOS)	6,50 E- 04	0,000195	0,0002	0,000325	nd	nd	nd	ISO 25101	
Eptacloro ed	2,00 E- 07	0,000000 06	0,005	0,0000001	0,002(LQ)	0,0007 a 0,005µg/l	80-95%	APAT IRSA 5060 Man 29/2003	
eptacloro epossido	2,00 E- 07	0,000000 06	0,0006	0,0000001	nd	12,5%	70%	APAT IRSA 5090 Man 29/2003	
VOC									
Benzene	10	3	0,06	5	nd	14,2%	nd	UNI 10899	
Benzene	10	3	0,008	5	nd	nd	nd	EPA 5030C + EPA 8260C	
1,2-Dicloroetano	10	3	0,1	5	nd	15,7%	nd	UNI 10899	
1,2-Dictoroctano	10	3	0,008	5	nd	nd	nd	EPA 5030C + EPA 8260C	
Diclorometano	20	6	0,75	10	nd	12,5%	nd	UNI 10899	
Dictoronietano	20	6	0,02	10	nd	nd	nd	EPA 5030C + EPA 8260C	
Tetracloroetilene	10	3	0,1	5	nd	18%	nd	UNI 10899	
Tetracioroethene	10	3	0,008	5	nd	nd	nd	EPA 5030C + EPA 8260C	
Tetracloruro di	12	3,6	0,1	6	nd	19,5%	nd	UNI 10899	
carbonio	12	3,6	0,02	6	nd	nd	nd	EPA 5030C + EPA 8260C	
Tricloroetilene	10	3	0,01	5	nd	16%	nd	UNI 10899	
Theoroemene	10	3	0,008	5	nd	nd	nd	EPA 5030C + EPA 8260C	
Triclorobenzeni	0,4	0,12	0,05	0,2	nd	8,7%	nd	UNI 10899	
THEIOIOUEIIZEIII	0,4	0,12	0,008	0,2	nd	nd	nd	EPA 5030C + EPA 8260C	
Triclorometano	2,5	0,75	0,05	1,25	nd	29,2%	nd	UNI 10899	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
	2,5	0,75	0,008	1,25	nd	nd	nd	EPA 5030C + EPA 8260C	
Metalli							•		
Cadmio e	0,08	0,024	0,05	0,04	0,02	0,013	nd	UNI EN ISO 17294-2	Si può raggiungere LOQ = 0,01 μg/L
composti	0,08	0,024	0,02	0,04	nd	2,25	nd	EPA 200.8	
Piombo e	1,2	0,36	0,3	0,6	0,2	0,19	nd	UNI EN ISO 17294-2	
composti	1,2	0,36	0,4	0,6	0,2	0,19	nd	EPA 200.8	
Mercurio e	0,07	0,021	0,01	0,035	0,017	0,007	nd	UNI EN ISO 17294-2	
composti	0,07	0,021	0,02	0,035	0,017	0,007	nd	EPA 200.8	
NT 1 1	4	1,2	0,3	2	0,6	0,16	nd	UNI EN ISO 17294-2	
Nichel e composti	4	1,2	1	2	nd	2,23	nd	EPA 200.8	
Pesticidi	•								•
Alacloro	0,3	0,09	0,01	0,15	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Atrazina	0,6	0,18	0,01	0,3	0,005	nd	nd	BfR-IX-2005	
Clorfenvinfos	0,1	0,03	0,01	0,05	0,005	nd	nd	BfR-IX-2005	
Clorpirifos (Clorpirifos etile)	0,03	0,009	0,009	0,015	0,005	nd	nd	BfR-IX-2005	
Aldrin	0,01	0,003	0,003	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Dieldrin	0,01	0,003	0,003	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Endrin	0,01	0,003	0,003	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Isodrin	0,01	0,003	0,003	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
DDT e analoghi	0,01	0,003	0,008	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
	0,01	0,003	0,002	0,005	0,0025	nd	nd	EPA 8270E	Vedi par. 5.1.4
Diuron	0,2	0,06	0,01	0,1	0,005	nd	nd	BfR-IX-2005	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
Endosulfan	0,005	0,0015	0,008	0,0025	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
	0,005	0,0015	0,002	0,0025	0,0025	nd	nd	EPA 8270E	
Isoproturon	0,3	0,09	0,01	0,15	0,005	nd	nd	BfR-IX-2005	
Simazina	1	0,3	0,01	0,5	0,005	nd	nd	BfR-IX-2005	
Trifluralin	0,03	0,009	0,008	0,015	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Dicofol	0,0013	0,00039	0,01	0,00065	nd	nd	nd	APAT IRSA 5090 Man 29/2003	
Cipermetrina	0,0000	0,000024	0,01	0,00004	nd	8,65%	nd	BfR-IX-2005	
Diclorvos	0,0006	0,00018	0,02	0,0003	nd	nd	nd	BfR-IX-2005	
Terbutrina	0,065	0,0195	0,01	0,0325	nd	nd	nd	BfR-IX-2005	
Chinossifen	0,15	0,045	0,01	0,075	nd	nd	nd	BfR-IX-2005	
Aclonifen	0,12	0,036	0,02	0,06	0,01	nd	nd	BfR-IX-2005	
Cibutrina	0,0025	0,00075	0,01	0,00125	nd	nd	nd	BfR-IX-2005	
	0,012	0,0036	0,05	0,006	nd	nd	nd	BfR-IX-2005	
Bifenox	0,012	0,0036	0,001	0,006	nd	14,87%	61,8%	APAT IRSA 5090 Man 29/2003	
IPA									
Benzo(a)pirene	0,0001 7	0,000051	0,00005	0,000085	0,00007	0.03 a 0.064 ng/L	85% a 0.0085 μg/L	APAT IRSA 5080 Man 29/2003	
Benzo(b) fluorantene			0,0001			0.004 a 0.01 µg/L	99% a 0.01 μg/L	APAT IRSA 5080 Man 29/2003	
Benzo(k) fluorantene			0,0001			0.003 a 0.009 μg/L	88% a 0.009 μg/L	APAT IRSA 5080 Man 29/2003	
Benzo(g,h,i) perilene			0,0001			0.004 a 0.008 µg/L	81% a 0.008 µg/l	APAT IRSA 5080 Man 29/2003	
Indeno(1,2,3-cd) pirene			0,0001		_	0.003 a 0.008 μg/L	76% a 0.008 μg/L	APAT IRSA 5080 Man 29/2003	
Antracene	0,1	0,03	0,0001	0,05	0,044	0.0085 a 0.096 μg/L	97% a 0.091 μg/L	APAT IRSA 5080 Man 29/2003	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
Fluorantene	0,0063	0,00189	0,0001	0,00315	0,0028	0.0020 a 0.0037 μg/L	103% a 0.010 μg/L	APAT IRSA 5080 Man 29/2003	
Naftalene	2	0,6	0,0001	1	0,88	0.023 a 0.051 μg/L	67% a 0.0067 μg/L	APAT IRSA 5080 Man 29/2003	
Tab1/B (Dlgs. 172/2	2015)								
2-Cloroanilina	1	0,3	0,1	0,5	0,39	28% a 2 μg/L	58% a 2 μg/L	EPA 8270E	Incertezza calcolata considerando il 30 % di accuratezza ed il 30 % di precisione
3-Cloroanilina	2	0,6	0,1	1	0,78	24% a 2 μg/L	51% a 2 μg/L	EPA 8270E	Incertezza calcolata considerando il 30 % di accuratezza ed il 30 % di precisione
4-Cloroanilina	1	0,3	0,1	0,5	0,39	24% a 2 μg/L	51% a 2 μg/L	EPA 8270E	Incertezza calcolata considerando il 30 % di accuratezza ed il 30 % di precisione
2-Clorofenolo	4	1,2	0,25	2	1,8	0,05 a 0,25 μg/L	98%	APAT IRSA 5070 B Man 29/2003	
2-Ciorofeliolo	4	1,2	0,1	2	1,76	nd	nd	EPA 3535A + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
3-Clorofenolo	2	0,6	0,25	1	0,9	0,02 a 0,25 μg/L	90-100%	APAT IRSA 5070 B Man 29/2003	
3-Ciorofeliolo	2	0,6	0,5	1	0,88	nd	nd	EPA 3535A + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
4-Clorofenolo	2	0,6	0,25	1	0,9	0,02 a 0,25 μg/L	90-100%	APAT IRSA 5070 B Man 29/2003	
4-Clorolenolo	2	0,6	0,3	1	0,88	nd	nd	EPA 3535A + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
1-Cloro-2- nitrobenzene	1	0,3	0,01	0,5	0,32	8% a 0,1 μg/L	97% a 0,1 μg/L	EPA 8270E	Incertezza calcolata considerando il 25 % di accuratezza ed il 25 % di precisione
1-Cloro-3- nitrobenzene	1	0,3	0,01	0,5	0,32	9% a 0,1 μg/L	99% a 0,1 μg/L	EPA 8270E	incertezza calcolata considerando il 25 % di accuratezza ed il 25 % di

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
									precisione
1-Cloro-4- nitrobenzene	1	0,3	0,01	0,5	0,32	8% a 0,1 μg/L	99% a 0,1 μg/L	EPA 8270E	incertezza calcolata considerando il 25 % di accuratezza ed il 25 % di precisione
Cloronitrotolueni	1	0,3	0,01	0,5	0,32	9% a 0,1 μg/L	98% a 0,1 μg/L	EPA 8270E	incertezza calcolata considerando il 25 % di accuratezza ed il 25 % di precisione
3,4-Dicloroanilina	0,5	0,15	0,1	0,25	0,2	24% a 2 μg/L	52% a 2 μg/L	EPA 8270E	incertezza calcolata considerando il 30 % di accuratezza ed il 30 % di precisione
1,1,1	10	3	0,1	5	nd	17,1%	nd	UNI 10899	Vedi par. 5.1.3
Tricloroetano	10	3	0,02	5	nd	nd	nd	EPA 5030C + EPA 8260C	Vedi par. 5.1.3
2,4,5-	1	0,3	0,25	0,5	0,4	0,03 a 0,25 μg/L	90-100%	APAT IRSA 5070 B Man 29/2003	
Triclorofenolo	1	0,3	0,3	0,5	0,44	nd	nd	EPA 3535A + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
2,4,6-	1	0,3	0,25	0,5	0,4	0,03 a 0,25 μg/L	90-100%	APAT IRSA 5070 B Man 29/2003	
Triclorofenolo	1	0,3	0,3	0,5	0,44	nd	nd	EPA 3535A + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
Composti del Trifenilstagno	0,0002	0,00006	nd	0,0001	nd	nd	nd	UNI EN ISO 17353	vedi par 5.1.10
Acido perfluorobutanoic o (PFBA)	7	2,1	0,005	3,5	nd	nd	nd	ISO 25101	
Acido perfluoropentanoic o (PFPeA)	3	0,9	0,005	1,5	nd	nd	nd	ISO 25101	
Acido perfluoroesanoico (PFHxA)	1	0,3	0,005	0,5	nd	nd	nd	ISO 25101	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
Acido perfluorobutansolf onico (PFBS)	3	0,9	0,005	1,5	nd	nd	nd	ISO 25101	
Acido perfluoroottanoico (PFOA)	0,1	0,03	0,005	0,05	nd	nd	nd	UNI EN ISO 25101	
VOC									
Clorobenzene	3	0,9	0,01	1,5	nd	8,9%	nd	UNI 10899	
Ciorobenzene	3	0,9	0,008	1,5	nd	nd	nd	EPA 5030C + EPA 8260C	
2-Clorotoluene	1	0,3	0,05	0,5	nd	14,3%	nd	UNI 10899	
2-Clorotoluene	1	0,3	0,1	0,5	nd	nd	nd	EPA 5030C + EPA 8260C	
2 Claratalyana	1	0,3	0,05	0,5	nd	13,2%	nd	UNI 10899	
3-Clorotoluene	1	0,3	0,1	0,5	nd	nd	nd	EPA 5030C + EPA 8260C	
4-Clorotoluene	1	0,3	0,05	0,5	nd	12,9%	nd	UNI 10899	
4-Clorotoluene	1	0,3	0,1	0,5	nd	nd	nd	EPA 5030C + EPA 8260C	
1,2	2	0,6	0,05	1	nd	9,02%	nd	UNI 10899	
Diclorobenzene	2	0,6	0,008	1	nd	nd	nd	EPA 5030C + EPA 8260C	
1,3	2	0,6	0,05	1	nd	10,6%	nd	UNI 10899	
Diclorobenzene	2	0,6	0,008	1	nd	nd	nd	EPA 5030C + EPA 8260C	
1,4	2	0,6	0,05	1	nd	9,76%	nd	UNI 10899	
Diclorobenzene	2	0,6	0,008	1	nd	nd	nd	EPA 5030C + EPA 8260C	
2,4-Diclorofenolo	1	0,3	0,25	0,5	0,4	nd	102%	APAT IRSA 5070 B Man 29/2003	
2,4-Dictorofeffor	1	0,3	0,3	0,5	0,44	nd	nd	EPA 3535A + EPA 604 (versione HPLC)	Incertezza calcolata con Horwitz
Toluene	5	1,5	0,1	2,5	nd	19,1%	nd	UNI 10899	
Tordene	5	1,5	0,008	2,5	nd	nd	nd	EPA 5030C + EPA 8260C	
Xileni	5	1,5	0,05	2,5	nd	12,6%	nd	UNI 10899	
Allelli	5	1,5	0,008	2,5	nd	nd	nd	EPA 5030C + EPA 8260C	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
Metalli									
A	10	3	0,1	5	1,6	0,45 μg/L	nd	UNI EN ISO 17294-2	
Arsenico	10	3	1	5	nd	nd	nd	EPA 200.8	
Cromo totale	7	2,1	0,2	3,5	1	$0,25~\mu g/L$	nd	UNI EN ISO 17294-2	
Cromo totale	7	2,1	1	3,5	nd	nd	nd	EPA 200.8	
Pesticidi									
Azinfos etile	0,01	0,003	0,003	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Azinfos metile	0,01	0,003	0,003	0,005	0,005	nd	nd	APAT IRSA 5060 Man 29/2003	
Bentazone	0,5	0,15	0.05	0,25	0,025	nd	nd	BfR-IX-2005	
2,4 D	0,5	0,15	0.05	0,25	0,025	nd	nd	BfR-IX-2005	
Demeton	0,1	0,03	0,001	0,05	nd	nd	nd	BfR-IX-2005	
Dimetoato	0,5	0,15	0,01	0,25	0,005	nd	nd	BfR-IX-2005	
Fenitrotion	0,01	0,003	0,003	0,005	nd	nd	nd	BfR-IX-2005	
Fention	0,01	0,003	0,003	0,005	nd	nd	nd	BfR-IX-2005	
Linuron	0,5	0,15	0,01	0,25	0,005	nd	nd	BfR-IX-2005	
Malation	0,01	0,003	0,001	0,005	nd	nd	nd	APAT IRSA 5060 Man 29/2003	
MCPA	0,5	0,15	0,01	0,25	0,025	nd	nd	BfR-IX-2005	
Mecoprop (MCPP)	0,5	0,15	0,01	0,25	0,025	nd	nd	BfR-IX-2005	
Metamidofos	0,5	0,15	0,001	0,25	nd	nd	nd	BfR-IX-2005	
Mevinfos	0,01	0,003	0,002	0,005	nd	nd	nd	BfR-IX-2005	
Ometoato	0,5	0,15	0,001	0,25	nd	nd	nd	BfR-IX-2005	
Ossidemeton- metile	0,5	0,15	0,0005	0,25	nd	nd	nd	BfR-IX-2005	
Paration etile	0,01	0,003	0,0006	0,005	nd	nd	nd	APAT IRSA 5060 Man 29/2003	

Sostanza	SQA (µg/L)	LOQ richiesto µg/L (30% SQA)	LOQ raggiungi bile (µg/L)	Incertezza richiesta µg/L (50% SQA)	Incertezza raggiungibile (µg/L)	Ripetibilità	Recupero	Metodo di riferimento	Note
Paration metile	0,01	0,003	0,0006	0,005	nd	nd	nd	APAT IRSA 5060 Man 29/2003	
Terbutilazina (incluso metabolita)	0,5	0,15	0,01	0,25	0,005	nd	nd	BfR-IX-2005	
Glifosate	0,1	0,03	0,03	0,05	nd	nd	nd	ISO 16308	
ACQUE SOTTERI	RANEE (I	Dec. 6/07/201	16)						
Dibromoclorometa no	0,13	0,039	0,008	0,065	nd	nd	nd	EPA 5030C + EPA 8260C	
Diossine e Furani (PCDD, PCDF)	4,00E- 06	0,000001 2	0,000001 49	0,000002	0,00000164	15%	70%-130%	EPA 1613:B	
	0,01	0,003	0,00202	0,005	0,004	15%	70%-130%	EPA 1668:C	
PCB	0,01	0,003	0.0001 (singolo congenere) 0.003 (totale)	0,005	0.0044 (Horwitz)	CV% 5-15 (singolo congenere)	90-115% (singolo congenere)	Metodo interno (ARPAL)	Incertezza calcolata sul totale in modo da includere gli effetti di correlazione
Idrocarburi totali (frazione estraibile metodo B- Ispra123/2015)	350	105	50	175	25	CV%<16,5	80%-110%	ISPRA Manuali e linee guida 123/2015	Approccio Arpa per la valutazione dell'incertezza

Tabella 2.3 – Metodi proposti per la determinazione delle sostanze prioritarie e affini nella matrice biota

Sostanza	CAS	LOQ raggiungibile (µg/Kg umido)	Tecnica di estrazione	Tecnica di purificazione	Tecnica analitica di identificazione e quantificazione	Metodo/i di riferimento
Tab1/A (Dir. 39/2013/UE)						
Difenileteri bromurati	32534-81-9	Da metodo	Soxhlet	Colonnina come da metodo	HRGC-HRMS	EPA 1614A
	32534-81-9	0,003	liofilizzaz, estraz in Ultrasuoni	gel di silice o power prep	GC-MS-MS (o HRMS)	Metodo interno ARPAE
Esaclorobenzene	118-74-1	0,5	Quechers	nd	SPME-GC-MS	Metodo Interno ARPA FVG (Rif. European EN 15662)
Esaclorobutadiene	87-68-3	15	Purge&Trap o Fibra SPME	nd	GC-MS	EPA 5021A + EPA 8260C o UNI 10899
Diossine e composti diossina- simili	Cfr. la nota 10 – alleg. X direttiva 2000/60/CE	Da metodo	Soxhlet	Colonnina come da metodo	HRGC-HRMS	EPA 1613
Eptacloro ed eptacloro epossido	76-44-8 / 1024- 57-3	0,5	Quechers	nd	SPME-GC-MS	Metodo Interno ARPA FVG (Rif. European EN 15662)
Mercurio e composti	7439-97-6	0,025	Mineralizzazione con microonde	-	ICP-MS	EPA 3051A + EPA 200.8
Dicofol	115-32-2	10	Quechers	dSPE	GCxGC-TOF	Metodo Interno ARPA Sicilia (Rif. European EN 15662)
	50-32-8	0,5	Liofilizzazione ed estrazione in ultrasuoni	gel di silice	GC-MS	Metodo interno ARPAE
Benzo(a)pirene	50-32-8	5	Quechers	dSPE	GC-MS-MS	Metodo interno ARPA Sicilia (Rif. European EN 15662)
Fluorantene	206-44-0	0,5	Liofilizzazione ed estrazione in ultrasuoni	gel di silice	GC-MS	Metodo interno ARPAE
riuorantene	206-44-0	10	Quechers	dSPE	GC-MS-MS	Metodo interno ARPA Sicilia (Rif. European EN 15662)

Tabella 2.4 – Prestazioni raggiunte con i metodi proposti per la determinazione delle sostanze prioritarie e affini nella matrice biota

Sostanza	CAS	SQA (Dir 39/2013) (µg/kg umido)	LOQ richiesto - 30% SQA (μg/kg umido)	LOQ raggiungibile (µg/kg umido)	Incertezza richiesta - 50% SQA µg/kg	Incertezza raggiungibile	Ripetibilità	Recupero	Metodo di riferimento
Tab1/A (Dir. 39/2013/U	JE)								
Difenileteri bromurati	32534-81-9	0,0085	0,00255	Da metodo	0,00425	Da metodo	Da metodo	Da metodo	EPA 1614A
	32534-81-9	0,0085	0,00255	0,003	0,00425	0,00425 μg/Kg	nd	70-110 %	metodo interno ARPAE
Esaclorobenzene	118-74-1	10	3	0,5	5	nd	nd	nd	Metodo Interno ARPA FVG (Rif. European EN 15662)
Esaclorobutadiene	87-68-3	55	16.5	15	27.5	nd	15.6	nd	EPA 5021A + EPA 8260C o UNI 10899
Diossine e composti diossina-simili	Cfr. la nota 10 – alleg. X direttiva 2000/60/CE	0,0065	0,00195	Da metodo	0,00325	nd	nd	nd	EPA 1613
Eptacloro ed eptacloro epossido	76-44-8 / 1024-57-3	6.70E-03	0,00201	0,5	0,00335	nd	nd	nd	Metodo Interno ARPA FVG (Rif. European EN 15662)
Mercurio e composti	7439-97-6	20	6	0,025	10	nd	nd	nd	EPA 3051A + EPA 200.8
Dicofol	115-32-2	33	9,9	10	16.5	nd	nd	nd	Metodo Interno ARPA Sicilia (Rif. European EN 15662)
	50-32-8	5	1,5	0,5	2,5	2,5 μg/Kg	nd	65-120%	Metodo interno ARPAE
Benzo(a)pirene	50-32-8	5	1,5	5	2,5	nd	6,59	78,5%	Metodo interno ARPA Sicilia (Rif. European EN 15662)
	206-44-0	30	9,9	0,5	15	15 μg/Kg	nd	65-120%	Metodo interno ARPAE
Fluorantene	206-44-0	30	9,9	10	15	nd	4,76	72,6%	Metodo interno ARPA Sicilia (Rif. European EN 15662)

Tabella 2.5 – Metodi proposti per la determinazione delle sostanze prioritarie e affini nella matrice sedimenti

Sostanza	CAS	Unità di misura	LOQ raggiungibile	Tecnica di estrazione	Tecnica di purificazione	Tecnica analitica di identificazione e quantificazione	Metodo di riferimento
Tab 2/A e 3/A Dlgs 172/2015 con integrazioni		Sul secco					
Metalli							
Cadmio	7440-43-9	mg/Kg	0,05	micro-onde	n/a	ICP-MS	ISO 17294
Cadillo	7440-43-9	mg/Kg	0,02	micro-onde	n/a	ICP-MS	EPA 3051A +6020A
Mercurio	7439-97-6	mg/Kg	0,04	micro-onde	n/a	ICP-MS	ISO 17294
Piombo	7439-92-1	mg/Kg	0,05	micro-onde	n/a	ICP-MS	ISO 17294
FIOIIIOO	7439-92-1	mg/Kg	3	micro-onde	n/a	ICP-MS	EPA 3051A +6020A
Nichel	7440-02-0	mg/Kg	0,05	micro-onde	n/a	ICP-MS	ISO 17294
Nichei	7440-02-0	mg/Kg	3	micro-onde	n/a	ICP-MS	EPA 3051A +6020A
Organo Metalli							
Tributilstagno		μg/Kg	1	Ultrasuoni + derivatizzazione + SPME	nessuna	GC-MS	Metodo interno (ARPA FVG)
Tributilstagno		μg/Kg	5	solvente + microonde	nessuna	HPLC + ICP MS	Metodo interno (ARPAL)
IPA							
A	120-12-7	μg/Kg	2	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
Antracene	120-12-7	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A +EPA 3630C + EPA 8270E
	91-20-3	μg/Kg	1	SPME		GC-MS	UNI 10899
Naftalene	91-20-3	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A +EPA 3630C + EPA 8270E
D	50-32-8	μg/Kg	2	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
Benzo(a)Pirene	50-32-8	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A +EPA 3630C + EPA 8270E
Para (h) Elvarant	205-99-2	μg/Kg	2	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
Benzo(b)Fluorantene	205-99-2	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A +EPA 3630C + EPA 8270E
Benzo(k)Fluorantene	207-08-9	μg/Kg	2	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
Benzo(k)Fluorantene	207-08-9	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A +EPA 3630C + EPA 8270E

Sostanza	CAS	Unità di misura	LOQ raggiungibile	Tecnica di estrazione	Tecnica di purificazione	Tecnica analitica di identificazione e quantificazione	Metodo di riferimento
Benzo(g,h,i)perilene	191-24-2	μg/Kg	2	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
Benzo(g,n,t)pertiene	191-24-2	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A +EPA 3630C + EPA 8270E
Indeno(123cd)pirene	193-39-5	μg/Kg	5	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
maeno(125cu)pirene	193-39-5	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A + EPA 3630C + EPA 8270E
Fluorantene	206-44-0	μg/Kg	2	ASE	colonnina gel di silice	HPLC-FLD	EPA 3540C + EPA 3630C + EPA8310
Piuoramene	206-44-0	μg/Kg	2	ASE	colonnina gel di silice	GC-MS	EPA 3545A + EPA 3630C + EPA 8270E
Pesticidi							
Aldrin	000309-00-2	μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA o Cu	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
	000309-00-2	μg/Kg	0,1	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A+ EPA 8270E
Dieldrin	000060-57-1	μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
	000060-57-1	μg/Kg	0,1	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A+ EPA 8270E
Lindano (gamma- esaclorocicloesano)	000058-89-9	μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
esaciorocicioesano)	000058-89-9	μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A+ EPA 8270E
alfa-Esacloroesano	319-84-6	μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
	319-84-6	μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A + EPA 8270E
beta-Esacloroesano	319-85-7	μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
	319-85-7	μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A + EPA 8270E
DDT		μg/Kg	0,01	Quechers	Quechers+	GC-MS-MS	Metodo interno ARPAE

Sostanza	CAS	Unità di misura	LOQ raggiungibile	Tecnica di estrazione	Tecnica di purificazione	Tecnica analitica di identificazione e quantificazione	Metodo di riferimento
					Rimozione zolfo con TBA	triplo quadrupolo	
DDT		μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A + EPA 8270E
DDD		μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
		μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A + EPA 8270E
DDE		μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
		μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A + EPA 8270E
Esaclorobenzene	118-74-1	μg/Kg	0,01	Quechers	Quechers+ Rimozione zolfo con TBA	GC-MS-MS triplo quadrupolo	Metodo interno ARPAE
	118-74-1	μg/Kg	0,06	Ultrasuoni	GPC	GC-MS	EPA 3550C + EPA 3640A + EPA 8270E
Altre sostanze							
$\sum T.E.$ PCDD, PCDF e PCB-DL		μg/Kg	0,00115	ASE/SOXHLET	Powerprep	GC-HRMS	EPA 3545A + EPA1613B + EPA 1668
		μg/Kg	0,13	ASE/SOXHLET	Powerprep	GC-HRMS	EPA 1668
PCB totali		μg/Kg	0,01	ASE	Desolforazione con rame + colonna allumina	GC-MS-MS	EPA 3545A + EPA 3665 +EPA 3660 +EPA 8270E
		μg/Kg	0,03	ASE	Desolforazione con rame + colonna multistrato	GC-MS-MS	Metodo interno (ARPAL)
Arsenico	7440-38-2	mg/Kg	0,5			ICP-MS	EPA 3051A + EPA 200.8
Cromo totale	7440-47-3	mg/Kg	2,5			ICP-MS	EPA 3051A + EPA 200.8
Cromo VI		mg/Kg	0,6	digestione alcalina		Spettrofotometro UV- Vis	EPA 3060A + EPA 7196A

Tabella 2.6 – Prestazioni raggiunte con i metodi proposti per la determinazione delle sostanze prioritarie e affini nella matrice sedimenti

Sostanza	Unità di misura	SQA (Dlgs. 172/2015)	LOQ richiesto (30% SQA)	LOQ raggiungibile	Incertezza richiesta (50% SQA)	Incertezza raggiungibile	Ripetibilità	Recupero	Metodo di riferimento
Tab 2/A e 3/A Dlgs 172/2015 con integrazioni	Sul secco								
Metalli									
	mg/Kg	0,3	0,09	0,05	0,15	nd	nd	nd	ISO 17294
Cadmio	mg/Kg	0,3	0,09	0,02	0,15	0,08	0,011 a 0,24 mg/Kg	101% a 0,24 mg/Kg	EPA 3051A +6020A
Mercurio	mg/Kg	0,3	0,09	0,04	0,15	nd	nd	nd	ISO 17294
	mg/Kg	30	9	0,05	15	nd	nd	nd	ISO 17294
Piombo	mg/Kg	30	9	3	15	7,3 a 30 mg/Kg	0,37 a 21,1 mg/Kg	102% a 21,1 mg/Kg	EPA 3051A + 6020A
	mg/Kg			0,05	0				ISO 17294
Nichel	mg/Kg			3		0,83 a 2,16 mg/Kg	0,038 a 2,16 mg/Kg	99,7% a 2,16 mg/Kg	EPA 3051A + 6020A
Organo Metalli									
	μg/Kg	5	1,5	1	2,5	nd	nd	nd	Metodo interno ARPA FVG
Tributilstagno	μg/Kg	5	1,5	5	2,5	2,5	2,1 (Sn massa 118) 0,34 (Sn massa 120) livello:15,2 µg/Kg	Problema su valutazione recupero: le matrici certificate reperibili hanno livelli di concentrazione molto maggiori.	Metodo interno ARPAL
IPA									
	μg/Kg	24	7,2	2	12	nd	nd	70-130%	EPA 3540C + EPA 3630C + EPA8310
Antracene	μg/Kg	24	7,2	2	12	11	15,1% a 2ug/kg; 2,2% a 360 ug/kg	113% a 2 ug/kg; 127% a 360 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E

Sostanza	Unità di misura	SQA (Dlgs. 172/2015)	LOQ richiesto (30% SQA)	LOQ raggiungibile	Incertezza richiesta (50% SQA)	Incertezza raggiungibile	Ripetibilità	Recupero	Metodo di riferimento
	μg/Kg	35	10,5	1	17,5	nd	nd	70-130%	UNI 10899
Naftalene	μg/Kg	35	10,5	2	17,5	15	7,3% a 2ug/kg; 3,5% a 220 ug/kg	103% a 2ug/kg; 126% a 220 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E
	μg/Kg	30	9	2	15			70-130%	EPA 3540C + EPA 3630C + EPA8310
Benzo(a)Pirene	μg/Kg	30	9	2	15	13	8,6% a 2ug/kg; 3,0% a 650 ug/kg	91% a 2ug/kg; 92% a 650 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E
	μg/Kg	40	12	2	20			70-130%	EPA 3540C + EPA 3630C + EPA8310
Benzo(b)Fluorantene	μg/Kg	40	12	2	20	18	9,0% a 2ug/kg; 5,0% a 820 ug/kg	93% a 2ug/kg; 106% a 820 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E
	μg/Kg	20	6	2	10			70-130%	EPA 3540C + EPA 3630C + EPA8310
Benzo(k)Fluorantene	μg/Kg	20	6	2	10	9	5,9% a 2ug/kg; 0,9% a 500 ug/kg	103% a 2ug/kg; 84% a 500 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E
	μg/Kg	55	16,5	2	27,5			70-130%	EPA 3540C + EPA 3630C + EPA8310
Benzo(g,h,i)perilene	μg/Kg	55	16,5	2	27,5	24	5,3% a 2ug/kg; 2,6% a 360 ug/kg	92% a 2ug/kg; 129% a 360 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E
	μg/Kg	70	21	5	35			70-130%	EPA 3540C + EPA 3630C + EPA8310
Indeno(123cd)pirene	μg/Kg	70	21	2	35	31	4,7% a 2ug/kg; 7,1% a 370 ug/kg	97% a 2ug/kg; 130% a 370 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E
	μg/Kg	110	33	2	55			70-130%	EPA 3540C + EPA 3630C + EPA8310
Fluorantene	μg/Kg	110	33	2	55	48	4,4% a 2ug/kg; 2,5% a 1790 ug/kg	88% a 2ug/kg; 104% a 1790 ug/kg	EPA 3545A +EPA 3630C +EPA 8270E

Sostanza	Unità di misura	SQA (Dlgs. 172/2015)	LOQ richiesto (30% SQA)	LOQ raggiungibile	Incertezza richiesta (50% SQA)	Incertezza raggiungibile	Ripetibilità	Recupero	Metodo di riferimento
Pesticidi									
	μg/Kg	0,2	0,06	0,01	0,1	0,05	nd	nd	Metodo interno ARPAE
Aldrin	μg/Kg	0,2	0,06	0,1	0,1	nd	11,87	nd	EPA 3550C + EPA 3640A + EPA 8270E
	μg/Kg	0,2	0,06	0,01	0,1	0,05	nd	nd	Metodo interno ARPAE
Dieldrin	μg/Kg	0,2	0,06	0,1	0,1	nd	10,89	nd	EPA 3550C + EPA 3640A + EPA 8270E
Lindano (gamma-	μg/Kg	0,2	0,06	0,01	0,1	0,05	nd	nd	Metodo interno ARPAE
esaclorocicloesano)	μg/Kg	0,2	0,06	0,06	0,1	nd	14,58	14,58 nd	EPA 3550C + EPA 3640A + EPA 8270E
	μg/Kg	0,2	0,06	0,01	0,1	0,05	nd	nd	Metodo interno ARPAE
alfa-Esacloroesano	μg/Kg	0,2	0,06	0,06	0,1	nd	9,84	nd	EPA 3550C + EPA 3640A + EPA 8270E
	μg/Kg	0,2	0,06	0,01	0,1	0,05	nd	nd	Metodo interno ARPAE
beta-Esacloroesano	μg/Kg	0,2	0,06	0,06	0,1	nd	11,35	nd nd nd nd nd nd nd nd	EPA 3550C + EPA 3640A + EPA 8270E
	μg/Kg	1	0,3	0,01	0,5	0,05	nd	nd	Metodo interno ARPAE
DDT	μg/Kg	1	0,3	0,06	0,5	nd	9,95	nd	EPA 3550C + EPA 3640A + EPA 8270E
222	μg/Kg	0,8	0,24	0,01	0,4	0,05	nd	nd	Metodo interno ARPAE
DDD	μg/Kg	0,8	0,24	0,06	0,4	nd	10,62	nd	EPA 3550C + EPA 3640A + EPA 8270E
222	μg/Kg	1,8	0,54	0,01	0,9	0,05	nd	nd	Metodo interno ARPAE
DDE	μg/Kg	1,8	0,54	0,06	0,9	nd	9,82	nd	EPA 3550C + EPA 3640A + EPA 8270E
Esaclorobenzene	μg/Kg	0,4	0,12	0,01	0,2	0,05	nd	nd	Metodo interno ARPAE
Esaclorobenzene	μg/Kg	0,4	0,12	0,06	0,2	nd	11,25	nd	EPA 3550C + EPA 3640A + EPA 8270E
Altre sostanze									
∑ T.E. PCDD, PCDF e PCB-DL	μg/Kg	2,00E-03	0,0006	0,00115	0,001	0,0007	RSD% 4,3	nd	EPA 3545A + EPA1613B + EPA 1668

Sostanza	Unità di misura	SQA (Dlgs. 172/2015)	LOQ richiesto (30% SQA)	LOQ raggiungibile	Incertezza richiesta (50% SQA)	Incertezza raggiungibile	Ripetibilità	Recupero	Metodo di riferimento
	$\mu g/Kg$	8	2,4	0,13	4	nd	nd	nd	EPA 1668
	μg/Kg	8	2,4	0,01 (singolo congenere)	4	4	nd	nd	EPA 3545A + EPA 3665 + EPA 3660 + EPA 8270E
PCB totali	μg/Kg	8	2,4	0,03	4	3,5 (Horwitz) calcolata sul totale in modo da includere gli effetti di correlazione	CV% 2-6 (singolo congenere)	90-120% (singolo congenere)	Metodo interno (ARPAL)
Arsenico	mg/Kg	12	3,6	0,5	6		5,97		EPA 3051A + EPA 200.8
Cromo totale	mg/Kg	50	15	2,5	25		7,89		EPA 3051A + EPA 200.8
Cromo VI	mg/Kg	2	0,6	0,6	1		9,7		EPA 3060A + EPA 7196A

Note: per il CAS di queste sostanze vedi Tabella 2.5

Sistema agenziale Programma triennale 2014-2016

GdL n. 2 – Area 1 Formazione del dato "Direttiva 2000/60/CE: armonizzazione metodi di analisi sostanze prioritarie"

Nota di sintesi per approvazione in Consiglio del Sistema Nazionale del prodotto finale

Manuale e linea guida "Linea guida per la scelta dei metodi di analisi di sostanze prioritarie ai sensi della Direttiva 2000/60/CE"

<u>Sommario</u>. 1. Informazioni generali – 2. Sintetica descrizione del prodotto – 3. Processo di validazione: punti di forza e punti di debolezza del prodotto – 4. Proposta delibera/raccomandazione/ rapporto tecnico e sperimentazione - 5. Diffusione del prodotto - 6. Eventuale condivisione con soggetti esterni 7. Trasmissione amministrazioni centrali/territoriali - 8. Parere del responsabile di area

1. Informazioni generali

La Direttiva Quadro europea in materia di Acque 2000/60/CE (DQA) prevede la definizione e l'effettuazione di programmi di monitoraggio dello stato delle acque. In particolare, per verificare lo stato chimico dei corpi idrici, richiede la determinazione della concentrazione di sostanze ritenute pericolose per gli ecosistemi e l'ambiente acquatico, per poi confrontarla con uno standard di qualità ambientale.

Il documento "Linea guida per la scelta dei metodi di analisi di sostanze prioritarie ai sensi della Direttiva 2000/60/CE" rappresenta il documento di sintesi delle attività del Gruppo di Lavoro 2 "Direttiva 2000/60/CE: armonizzazione metodi di analisi sostanze prioritarie", tema "Acque Direttiva 2000/60/CE", AREA 1 "Formazione del dato", nell'ambito del programma triennale 2014-2016 del Sistema Nazionale di Protezione dell'Ambiente (SNPA).

Il documento prodotto dal Gruppo di Lavoro (GdL) si propone la finalità di agevolare l'armonizzazione dell'approccio analitico per il monitoraggio delle sostanze prioritarie nelle matrici acque interne, biota e sedimenti. Il suo scopo è pertanto quello di fornire indicazioni metodologiche e tecniche per l'analisi di sostanze prioritarie in accordo con quanto previsto dalla DQA e s.m.i., sia per la corretta applicazione della Direttiva 2009/90/CE riguardo ai criteri minimi di prestazione per i metodi di analisi, che per permettere l'intercomparabilità a livello di distretto idrografico dei dati di monitoraggio delle sostanze prioritarie e quindi dello stato di qualità dei corpi idrici (come previsto anche dalla Legge n. 167 del 2017).

Agenzia coordinatrice del GdL: ARPA Piemonte

Agenzie partecipanti come componenti del GdL:
ARPA Friuli Venezia Giulia
ARPAV Veneto
APPA Trento
ARPA Sicilia
ARPAM Marche
ARPAE Emilia Romagna
ARPAL Liguria
ARTA Abruzzo
ARPA Umbria
ISPRA

2. Sintetica descrizione del prodotto

Il GdL ha avuto come obiettivo la stesura di una linea guida relativa all'armonizzazione delle metodiche di analisi delle sostanze prioritarie ai sensi della DQA per le matrici acque interne, biota e sedimenti.

Le attività svolte si possono riassumere nel seguente prospetto:

- a) predisposizione di un questionario per la raccolta delle informazioni e sua somministrazione a tutte le ARPA/APPA per la compilazione;
- b) ricezione dei questionari e disamina delle informazioni inserite per valutare la situazione effettiva relativamente alle metodiche utilizzate e al rispetto dei requisiti richiesti dalla normativa;
- c) definizione dei criteri per la scelta del metodo analitico da utilizzare per le determinazioni di sostanze prioritarie nell'ambito del monitoraggio ai sensi della DOA;
- d) proposta da parte degli esperti del GdL di metodiche adeguate da utilizzare per la determinazione delle sostanze prioritarie su matrici acqua, biota e sedimenti.

Il GdL ha valutato quanto emerso dalla ricognizione e, in base alle risultanze ed alle competenze peculiari, ciascuna Agenzia partecipante ha assunto la responsabilità di una o più sostanze di cui indicare le metodiche analitiche. In seguito si sono riunite tutte le indicazioni, si è formulata la proposta metodologica e definito l'elenco dei metodi per l'analisi delle sostanze prioritarie.

Il documento contiene la descrizione della situazione delle ARPA/APPA relativamente alla determinazione delle sostanze prioritarie derivata dalla disamina dei questionari pervenuti, la definizione dei criteri per la scelta dei metodi analitici, la proposta dei metodi da utilizzare per la determinazione delle sostanze prioritarie ai sensi della DQA e infine viene gettato uno sguardo sul futuro con ipotesi di organizzazione delle attività analitiche di alcune sostanze "problematiche" per il monitoraggio ai sensi della DQA.

3. <u>Processo di validazione: punti di forza e punti di debolezza del prodotto</u>

Un punto di forza del prodotto è quello di rappresentare una prima sintesi delle metodiche inerenti la determinazione delle sostanze prioritarie ai sensi della DQA e di fornire i criteri per la scelta dei metodi analitici. Inoltre il GdL ha ricercato un percorso condiviso volto a standardizzare il più possibile le modalità da adottare per le attività analitiche inerenti il monitoraggio delle sostanze prioritarie, partendo proprio dai metodi che sono attualmente utilizzati nelle Agenzie del SNPA, e selezionando quelli adeguati per rispettare le indicazioni di prestazioni fornite dalla normativa cogente, ove possibile. Oltre a ciò nel documento sono indicati i dati delle prestazioni realmente raggiungibili dai laboratori del SNPA.

La LG risponde anche all'esigenza di avere un documento di riferimento per chi svolge questa attività, anche per rispondere ai rilievi effettuati dalla Commissione Europea nell'ambito dell'implementazione della DQA in Italia.

Il lavoro svolto è stato impegnativo in quanto ha riguardato un numero rilevante di sostanze in tre matrici diverse (acque, biota e sedimenti), per questo ha richiesto tempi più lunghi del previsto.

Inoltre la situazione nazionale sulle metodiche adottate per l'analisi di queste sostanze è molto disomogenea, come emerso dalla ricognizione, e riuscire ad effettuare una armonizzazione dei metodi è un processo lungo in quanto adottare un nuovo metodo è sicuramente un procedimento oneroso, specialmente se il metodo è accreditato.

L'attività ha comportato l'organizzazione di diverse videoconferenze webex e di un continuo e costante contatto fra i membri del GdL, sia telefonico che con posta elettronica. Tutti i documenti prodotti durante i vari step per la realizzazione del prodotto sono stati condivisi regolarmente attraverso la posta elettronica.

La partecipazione ai lavori è stata buona e vi è sempre stata ampia disponibilità per giungere ad una proposta condivisa, anche se i tempi di risposta di alcuni partecipanti al GdL non sono sempre stati brevi.

Le Agenzie partecipanti al GdL hanno condiviso e approvato il documento finale che è stato quindi trasmesso anche alla rete dei referenti. Ad un componente del GdL che non ha partecipato in modo continuativo ai lavori, ma al quale è sempre stata inviata tutta la documentazione e i resoconti delle riunioni, è stato applicato il criterio silenzio/assenso.

Riguardo alla rete dei referenti vi sono state risposte diversificate: Arpa Lombardia ha inviato alcune osservazioni, Arpa Valle d'Aosta e Arpa Campania hanno manifestato un riscontro positivo di apprezzamento del lavoro complessivo, Arpa Lazio e Arpa Toscana hanno anche inviato i loro contributi alla LG. Per i restanti referenti è stato applicato il criterio silenzio/assenso allo scadere dei termini previsti.

In sede di consultazione della rete dei referenti è stato anche proposto un approccio diverso della linea guida, basato sulla omogeneizzazione delle prestazioni dei metodi piuttosto che sulla omogeneizzazione dei metodi utilizzati dalle Agenzie; tale impostazione, condivisibile in linea di principio, risulta tuttavia non coerente con il mandato ricevuto dal GdL e potrà essere alla base del lavoro futuro del SNPA.

4. <u>Proposta delibera/raccomandazione/rapporto tecnico e sperimentazione</u>

In allegato viene riportata la proposta di Delibera con cui il Consiglio SNPA adotterà il prodotto.

5. Diffusione del prodotto

Il Documento sarà diffuso mediante pubblicazione sul sito dell'ISPRA e sarà rivolto alle ARPA/APPA, alle Autorità di Distretto, alle Regioni e al MATTM.

- 6. Eventuale condivisione con soggetti esterni
- 7. <u>Trasmissione amministrazioni centrali/territoriali</u>

La Linea Guida è di interesse per le Autorità di Distretto e le Regioni

8. Parere del Responsabile di area

11 giugno 2018

Il Coordinatore del GDL 2 Area 1 Dr.ssa Claudia Vanzetti